Advertisement

Organic Sulfur Compounds in the Environment Biogeochemistry, Microbiology, and Ecological Aspects

  • Don P. Kelly
  • Neil A. Smith
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

More than a decade has elapsed since the review in Advances by Bremner and Steele (1978) of the role of microorganisms in the atmospheric sulfur cycle. In the intervening decade or so, the dawning realization in the 1970s that volatile organic sulfur compounds are major components of the global sulfur cycle has developed from informed speculation to the status of established fact, supported by ever-accumulating data.

Keywords

Salt Marsh Sulfur Compound Hydrogen Sulfide Carbon Disulfide Sulfur Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, D. G., Haro, M. T., Richard, G., Takata, A. M., Weiler, P. J., Bean, D. J., Cornaby, B. W., Mihlan, G. J., and Rogers, S. E., 1980, Health Impacts, Emissions, and Emission Factors for Noncriterra Pollutants Subject to De Minimus Guidelines and Emitted from Stationary Conventional Combustion Processes, U.S. Environmental Protection Agency, Report EPA-450/2-80-074.Google Scholar
  2. Ackman, R. G., Tocher, C. S., and McLachlan, J., 1966, Occurrence of dimethyl-β-propiothetin in marine phytoplankton, J. Fish. Res. Board Can. 23: 357.Google Scholar
  3. Adams, D. F., Farwell, S. O., Robinson, E., Pack, M. R., and Bamesberger, W. L., 1981, Biogenic sulfur source strengths, Environ. Sci. Technol. 15: 1493.Google Scholar
  4. Albone, E. S., 1984, Mammalian Semiochemistry, Wiley, Chichester.Google Scholar
  5. Albone, E. S., Gosden, P. E., and Ware, G. C., 1977, Bacteria as a source of chemical signals in mammals, in: Chemical Signals in Vertebrates (D. Mueller-Schwarze and M. M. Mozell, eds.), pp. 35–43, Plenum Press, New York.Google Scholar
  6. Albone, E. S., Gosden, P. E., Ware, G. C., Macdonald, D. W., and Hough, N. G., 1978, Bacterial action and chemical signalling in the red fox (Vulpes vulpes) and other mammals, in: Flavor Chemistry of Animal Foods (R. W. Bullard, ed.), pp. 78–91, ACS Symposium Series 67, American Chemical Society, Washington, D.C.Google Scholar
  7. Amphlett, M. J., 1968, The Microbiological Transformation of Sulphur-Containing Aromatic Compounds, Ph.D. thesis, University of Wales.Google Scholar
  8. Andersen, K. K., and Bernstein, D. T., 1975, Some chemical constituents of the scent of the striped skunk Mephitis mephitis, J. Chem. Ecol. 1: 493.Google Scholar
  9. Andersen, K. K., Bernstein, D. T., Caret, R. L., and Romanczyk, L. J., 1982, Chemical constituents of the defensive secretion of the striped skunk Mephitis mephitis, Tetrahedron 38: 1965.Google Scholar
  10. Anderson, R., Kates, M., and Volcani, B. E., 1976, Sulphonium analogues of lecithin in diatoms, Nature (London) 263: 51.Google Scholar
  11. Ando, H., Kumagai, M., Karashimada, T., and Iida, H., 1957, Diagnostic use of dimethyl sulfoxide reduction test within Enterobacteriaceae, Jpn. J. Microbiol. 1: 335.PubMedGoogle Scholar
  12. Andreae, M. O., 1980a, Dimethyl sulfoxide in marine and fresh waters, Limnol. Oceanogr. 25: 1054.Google Scholar
  13. Andreae, M. O., 1980b, The production of methylated sulfur compounds by marine phytoplankton, in: Biogeochemistry of Ancient and Modern Environments (P. A. Trudinger and M. R. Walter, eds.), pp. 253–259, Springer Verlag, Berlin.Google Scholar
  14. Andreae, M. O., 1985, The emission of sulfur to the remote atmosphere: A background paper, in: The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere (J. N. Galloway, ed.), pp. 5–25, Reidel, New York.Google Scholar
  15. Andreae, M. O., 1986, The ocean as a source of atmospheric sulfur compounds, in: The Role of Air-Sea Exchange in Geochemical Cycling (P. Buat-Menard, ed.), pp. 331–362, Reidel, New York.Google Scholar
  16. Andreae, M. O., and Barnard, W. R., 1984, The marine chemistry of dimethyl sulfide, Mar. Chem. 14: 267.Google Scholar
  17. Andreae, M. O., and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, Science 221: 744.PubMedGoogle Scholar
  18. Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979a, Direct measurements of emission rates of some atmospheric biogenic sulfur compounds, Tellus 31: 174.Google Scholar
  19. Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979b, Carbon disulphide and carbonyl sulphide from biogenic sources and their contributions to the global sulphur cycle, Nature (London) 282: 493.Google Scholar
  20. Anness, B. J., 1980, The reduction of dimethylsulphoxide to dimethyl sulphide during fermentation, J. Inst. Brewing 86: 134.Google Scholar
  21. Anness, B. J., and Bamforth, C. W., 1982, Dimethyl sulphide—a review, J. Inst. Brewing 88: 244.Google Scholar
  22. Anness, B. J., Bamforth, C. W., and Wainwright, T., 1979, The measurement of dimethyl sulfoxide in barley and malt and its reduction to dimethyl sulfide by yeast, J. Inst. Brewing 85: 346.Google Scholar
  23. Anonymous, 1955, Recommendations of the International Commission on Radiological Protection, Br. J. Radiol., Suppl. 6.Google Scholar
  24. Ashworth, J., Briggs, G. G., Evans, A. A., and Matula, J., 1977, Inhibition of nitrification by nitrapyrin, carbon disulphide and trithiocarbonate, J. Sci. Food Agric. 28: 673.Google Scholar
  25. Babich, H., and Stotzky, G., 1978, Atmospheric sulfur compounds and microbes, Environ. Res. 15: 513.PubMedGoogle Scholar
  26. Balandrin, M. F., Lee, S. M., and Klocke, J. A., 1988, Biologically active volatile organosulfur compounds from seeds of the neem tree, Azadirachta indica (Meliaceae), J. Agric. Food Chem. 36: 1048.Google Scholar
  27. Bandy, A. R., Maroulis, P. J., Shalaby, L., and Wilner, L. A., 1981, Evidence for a short trophospheric residence time for carbon disulfide, Geophys. Res. Lett. 8: 1180.Google Scholar
  28. Banwart, W. L., and Bremner, J. M., 1976, Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials, Soil Biol. Biochem. 8: 439.Google Scholar
  29. Barnard, W. R., Andreae, M. O., Watkins, W. E., Bingemer, H., and Georgii, H. W., 1982, The flux of dimethyl sulfide from the oceans to the atmosphere, J. Geophys. Res. 87: 8787.Google Scholar
  30. Barnard, W. R., Andreae, M. O., and Iverson, R. L., 1984, Dimethylsulfide and Phaeocystis poucheti in the south-eastern Bering Sea, Continental Shelf Res. 3: 103.Google Scholar
  31. Bates, T. S., Charlson, R. J., and Gammon, R. H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature (London) 329: 319.Google Scholar
  32. Bechard, M. J., and Rayburn, W. R., 1979, Volatile organic sulfides from freshwater algae, J. Phycol. 15: 379.Google Scholar
  33. Biedlingmaier, S., and Schmidt, A., 1983, Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca, Arch. Microbiol. 136: 124.Google Scholar
  34. Bills, D. D., and Keenan, T. W., 1968, Dimethyl sulfide and its precursor in sweetcorn, J. Agric. Food Chem. 16: 643.Google Scholar
  35. Bilous, P. T., and Weiner, J. H., 1985, Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101, J. Bacteriol. 162: 1151.PubMedGoogle Scholar
  36. Blom, H. J., van den Elzen, J. P. A. M., Yap, S. H., and Tangerman, A., 1988, Methanethiol and dimethylsulfide formation from 3-methylthiopropionate in human and rat hepatocytes, Biochim. Biophys. Acta 972: 131.PubMedGoogle Scholar
  37. Brassell, S. C., Lewis, C. A., de Leeuw, J. W., de Lange, L., and Sinninghe Damste, J. J., 1986, Isoprenoid thiophenes: Novel products of sediment diagenesis, Nature (London) 320: 160.Google Scholar
  38. Bremner, J. M., and Steele, C. G., 1978, Role of microorganisms in the atmospheric sulfur cycle, Adv. Microb. Ecol. 2: 155.Google Scholar
  39. Brown, K. A., and Bell, J. N. B., 1986, Vegetation—the missing sink in the global cycle of carbonyl sulphide, Atmos. Environ. 20: 537.Google Scholar
  40. Cantoni, G. L., and Anderson, D. G., 1956, Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa, J. Biol. Chem. 222: 171.PubMedGoogle Scholar
  41. Challenger, F., 1959, Aspects of the Organic Chemistry of Sulphur, Butterworths, London.Google Scholar
  42. Challenger, F., and Simpson, M. I., 1948, Studies on biological methylation, Arch. Biochem. 69: 514.Google Scholar
  43. Chen, S., Zieve, L., and Mahadevan, V., 1970, Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine, J. Lab. Clin. Med. 75: 628.PubMedGoogle Scholar
  44. Chengelis, C. P., and Neal, R. A., 1987, Oxidative metabolism of carbon disulfide by isolated rat liver hepatocytes and microsomes, Biochem. Pharmacol. 36: 363.PubMedGoogle Scholar
  45. Cline, J. D., and Bates, T. S., 1983, Dimethylsulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere, Geophys. Res. Lett. 10: 949.Google Scholar
  46. Cocks, A., and Kallend, T., 1988, The chemistry of atmospheric pollution, Chem. Br. 24: 884.Google Scholar
  47. Conkle, J. P., Camp, B. J., and Welch, B. E., 1975, Trace composition of human respiratory gas, Arch. Environ. Health 30: 290.PubMedGoogle Scholar
  48. Conway, E. J., 1942, Mean geochemical data in relation to oceanic evolution, Proc. R. Ir. Acad. Sect. A 48: 119.Google Scholar
  49. Cook, A. M., and Huetter, R., 1982, Ametyne and prometyne as sulfur sources for bacteria, Appl. Environ. Microbiol. 43: 781.PubMedGoogle Scholar
  50. Cooper, A. J. L., 1983, Biochemistry of sulfur-containing amino acids, Annu. Rev. Biochem. 52: 187.PubMedGoogle Scholar
  51. Cox, R. A., and Sandalls, F. J., 1974, The photooxidation of hydrogen sulfide in air, Atmos. Environ. 8: 1269.PubMedGoogle Scholar
  52. Cripps, R. E., 1971, Microbial Metabolism of Aromatic Compounds Containing Sulphur, Ph.D. thesis, University of Warwick, Coventry, United Kingdom.Google Scholar
  53. Cripps, R. E., 1973, The microbial metabolism of thiophen-2-carboxylate, Biochem. J. 134: 353.PubMedGoogle Scholar
  54. Crump, D. R., 1980a, Thietanes and dithiolanes from the anal gland of the stoat, Mustela erminea, J. Chem. Ecol. 6: 759.Google Scholar
  55. Crump, D. R., 1980b, Anal gland secretion of the ferret (Mustela putorius forma furo), J. Chem. Ecol. 6: 837.Google Scholar
  56. Dacey, J. W. H., and Wakeham, S. G., 1986, Oceanic dimethylsulfide: Production during Zooplankton grazing on phytoplankton, Science 233: 1314.PubMedGoogle Scholar
  57. Dacey, J. W. H., King, G. M., and Wakeham, S. G., 1987, Factors controlling emission of dimethylsulphide from salt marshes, Nature (London) 330: 643.Google Scholar
  58. Dando, P. R., Southward, A. J., Southward, E. C., and Barrett, R. L., 1986, Possible energy sources for chemosynthetic prokaryotes symbiotic with invertebrates from Norwegian fjord, Ophelia 26: 135.Google Scholar
  59. De Bont, J. A. M., van Dijken, J. P., and Harder, W., 1981, Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S, J. Gen. Microbiol. 127: 315.Google Scholar
  60. Deprez, P. P., Franzmann, P. D., and Burton, H. R., 1986, Determination of reduced sulfur gases in Antarctic lakes and seawater by gas chromatography after solid absorbent preconcentration, J. Chromatogr. 362: 9.Google Scholar
  61. Dickson, D. M., Wyn Jones, R. G., and Davenport, J., 1980, Steady state osmotic adaptation in Ulva lactuca, Planta 150: 158.Google Scholar
  62. Dickson, D. M., Wyn Jones, R. G., and Davenport, J., 1982, Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes, Planta 155: 409.Google Scholar
  63. Drotar, A., Burton, G. A., Tavernier, J. E., and Fall, R., 1987a, Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases, Appl. Environ. Microbiol. 53: 1626.PubMedGoogle Scholar
  64. Drotar, A., Fall, L. R., Mishalanie, E. A., Tavernier, J. E., and Fall, R., 1987b, Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila, Appl. Environ. Microbiol. 53: 2111.PubMedGoogle Scholar
  65. Eisenberg, M. A., 1975, Biotin, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 27–56, Academic Press, New York.Google Scholar
  66. Elliott, S., Lu, E., and Sherwood-Rowland, F., 1989, Hydrogen sulfide in oxic seawater, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 314–326, American Chemical Society (Symposium Series 393), Washington, D.C.Google Scholar
  67. Ensley, B. D., 1975, Microbial metabolism of condensed thiophenes, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 309–317, Academic Press, New York.Google Scholar
  68. Ensley, B. D., 1984, Microbial metabolism of condensed thiophenes, in: Microbial Degradation of Organic Compounds (T. D. Gibson, ed.), pp. 309–317, Marcel Dekker, Inc., New York.Google Scholar
  69. Eriksson, E., 1963, The yearly circulation of sulfur in nature, J. Geophys. Res. 68: 4001.Google Scholar
  70. Fedorak, P. M., Payzant, J. D., Montgomery, D. S., and Westlake, D. W. S., 1988, Microbial degradation of N-alkyl tetrahydrothiophenes found in petroleum, Appl. Environ. Microbiol. 54: 1243.PubMedGoogle Scholar
  71. Feigel, B. J., and Knackmuss, H.-J., 1988, Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid, FEMS Microbiol. Leu. 55: 113.Google Scholar
  72. Ferchichi, M., Hemme, D., Nardi, M., and Pamboukian, N., 1985, Production of methanethiol from methionine by Brevibacterium linens CNRZ 918, J. Gen. Microbiol. 131: 715.PubMedGoogle Scholar
  73. Ferchichi, M., Hemme, D., and Nardi, M., 1986, Induction of methanethiol production by Brevibacterium linens CNRZ 918, J. Gen. Microbiol. 132: 3075.Google Scholar
  74. Ferek, R. J., and Andreae, M. O., 1983, The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean, Geophys. Res. Lett. 10: 393.Google Scholar
  75. Ferek, R. J., and Andreae, M. O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature (London) 307: 148.Google Scholar
  76. Ferek, R. J., Chatfield, R. B., and Andreae, M. O., 1986, Vertical distribution of dimethyl sulphide in the marine atmosphere, Nature (London) 320: 514.Google Scholar
  77. Fletcher, I., 1989, North Sea DMS emissions as a source of background sulfate over Scandinavia: a model, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 489–501, American Chemical Society (Symposium Series 393), Washington, D.C.Google Scholar
  78. Franzmann, P. D., Deprez, P. P., Burton, H. R., and van den Hoff, J., 1987, Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide, Aust. J. Freshwater Res. 38: 409.Google Scholar
  79. Fuhrman, J. A., and Ferguson, R. L., 1986, Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: Agreement between chemical and microbiological measurements, Mar. Ecol. Prog. Ser. 33: 237.Google Scholar
  80. Gianturco, M. A., Giammarino, A. S., and Friedel, P., 1968, Volatile constituents of coffee V, Nature (London) 210: 1358.Google Scholar
  81. Graedel, T. E., Kammlott, G. W., and Franey, J. P., 1981, Carbonyl sulfide: Potential agent of atmospheric sulfur corrosion, Science 212: 663.PubMedGoogle Scholar
  82. Grosjean, D., and Lewis, R., 1982, Atmospheric photooxidation of methyl sulfide, Geophys. Res. Lett. 9: 1203.Google Scholar
  83. Guenther, A., Lamb, B., and Westberg, H., 1989, U.S. National biogenic sulfur emissions inventory, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 14–30, American Chemical Society, (Symposium Series 393), Washington, D.C.Google Scholar
  84. Haas, P., 1935, CLVII, The liberation of methyl sulfide by seaweed, Biochem. J. 29: 1297.PubMedGoogle Scholar
  85. Haines, B., Black, M., and Bayer, C., 1989, Sulfur emissions from roots of the rain forest tree Stryphnodendron excelsum, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 58–69, American Chemical Society (Symposium Series 393), Washington, D.C.Google Scholar
  86. Hall, M. R., and Berk, R. S., 1968, Microbial growth on mercaptosuccinic acid, Can. J. Microbiol. 14: 515.Google Scholar
  87. Harvey, G. R., and Lang, R. F., 1986, Dimethylsulfoxide and dimethylsulfone in the marine atmosphere, Geophys. Res. Lett. 13: 49.Google Scholar
  88. Harwood, J. J., and Nicholls, R. G., 1979, The plant sulpholipid—a major component of the sulphur cycle, Biochem. Soc. Trans. 7: 440.PubMedGoogle Scholar
  89. Hatakeyama, S., Okuda, M., and Akimoto, H., 1982, Formation of sulfur dioxide and methanesulfonic acid in the photooxidation of dimethyl sulfide in the air, Geophys. Res. Lett. 9: 583.Google Scholar
  90. Hatakeyama, S., Izumi, K., and Akimoto, H., 1985, Yield of SO2 and formation of aerosol in the photooxidation of DMS under atmospheric conditions, Atmos. Environ. 19: 135.Google Scholar
  91. Hattula, T., and Granroth, B., 1974, Formation of dimethyl sulfide from S-methylmethionine in onion seedlings (Allium cepa), J. Sci. Food Agric. 25: 1517.PubMedGoogle Scholar
  92. Headley, J. V., 1987, GC/MS identification of organosulfur compounds in environmental samples, Biomed. Environ. Mass Spectrom. 14: 275.PubMedGoogle Scholar
  93. Hitchcock, D. R., 1975, Dimethyl sulfide emissions to the global atmosphere, Chemosphere No. 3, pp. 137–138, Pergamon Press, New York.Google Scholar
  94. Hitchcock, D. R., 1976, Atmospheric sulfates from biological sources, J. Air Pollut. Control Assoc. 26: 210.PubMedGoogle Scholar
  95. Hoeven, J. C. M. van der, Mak, J. K., Flohr, P. M., and Knippenberg, J. A. J. van, 1986, Review of Literature on Carbon Disulfide, Bericht der NOTOX,’ s-Hertogenbosch, und D.H.V., Raumplanung und Umwelt, Bereich Umweltschutz.Google Scholar
  96. Howes, B. L., Dacey, J. W. H., and Wakeham, S. G., 1985, Effects of sampling technique on measurements of pore water constituents in salt marsh sediments, Limnol. Oceanogr. 30: 221.Google Scholar
  97. Ishikawa, M., Shibuya, K., Tokita, F., and Koshimizu, M., 1984, A study of bad breath. (2) The evaluation of bad breath by methyl mercaptan production from methionine, Koku Eisei Gakkai Zasshi 34: 124.Google Scholar
  98. Johnson, R. E., 1983, Chemical signals and reproductive behavior, in: Pheromones and Reproduction in Mammals (J. G. Vandenbergh, ed.), pp. 3–37, Academic Press, New York.Google Scholar
  99. Jørgensen, B. B., and Okholm-Hansen, B., 1986, Emissions of biogenic sulfur gases from a Danish estuary, Atmos. Environ. 19: 1737.Google Scholar
  100. Junge, C. E., 1960, Sulfur in the atmosphere, J. Geophys. Res. 65: 227.Google Scholar
  101. Kadota, H., and Ishida, Y., 1972, Production of volatile sulfur compounds by microorganisms, Annu. Rev. Microbiol. 26: 127.PubMedGoogle Scholar
  102. Kaizu, T., 1976a, Source of foul breath and its control, Nippon Shika Ishikai Zasshi 29: 228.PubMedGoogle Scholar
  103. Kaizu, T., 1976b, Analysis of volatile sulfur compounds in exhaled air by gas chromatography, Nippon Shishubyo Gakkai Kaishi 18: 1.PubMedGoogle Scholar
  104. Kaizu, T., Tsunoda, M., Aoki, H., and Kimura, K., 1978, Analysis of volatile sulfur compounds in mouth air by gas chromatography, Bull. Tokyo Dent. Coll. 19: 43.PubMedGoogle Scholar
  105. Kaji, H., Hisamura, M., Saito, N., and Murao, M., 1978, Evaluation of volatile sulfur compounds in the expired alveolar gas in patients with liver cirrhosis, Clin. Chim. Acta 85: 279.PubMedGoogle Scholar
  106. Kanagawa, T., and Kelly, D. P., 1986, Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus, FEMS Microbiol. Lett. 34: 13.Google Scholar
  107. Kanagawa, T., and Kelly, D. P., 1987, Degradation of substituted thiophenes by bacteria isolated from activated sludge, Microb. Ecol. 13: 47.Google Scholar
  108. Kanagawa, T., Dazai, M., and Takahara, Y., 1980, Degradation of O,O-dimethyl phosphorodithioate by activated sludge, Agric. Biol. Chem. 44: 2631.Google Scholar
  109. Kanagawa, T., Dazai, M., and Fukuoka, S., 1982, Degradation of O,O-dimethyl phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2, Agric. Biol. Chem. 46: 2571.Google Scholar
  110. Kargi, F., 1987, Biological oxidation of thianthrene, thioxanthene and dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius, Biotechnol. Lett. 9: 478.Google Scholar
  111. Kargi, F., and Robinson, J. M., 1984, Microbial oxidation of dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius, Biotechnol. Bioeng. 26: 687.PubMedGoogle Scholar
  112. Katalyse, 1987, BUND, Oko-Institut, ULF: Chemie am Arbeitsplatz. Gefahrliche Arbeitsstoffe, Berufskrankheiten und Auswege, Rowohlt, Reinbeck.Google Scholar
  113. Keenan, T. W., and Lindsay, R. C., 1968, Evidence for a dimethyl sulfide precursor in milk, J. Dairy Sci. 51: 112.Google Scholar
  114. Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989, Dimethyl sulfide production in marine phytoplankton, in: Biogenic Sulfur in the Environment (E. S. Saltzman and W. J. Cooper, eds.), pp. 167–182, American Chemical Society (Symposium Series 393), Washington, D.C.Google Scholar
  115. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175: 587.PubMedGoogle Scholar
  116. Kelly, D. P., 1980, The sulphur cycle: Definitions, mechanisms and dynamics, in: Sulphur in Biology, Ciba Foundation Symposium 72 (new series), pp. 3–18, Excerpta Medica, Amsterdam.Google Scholar
  117. Kelly, D. P., 1982, Biochemistry of the chemolithotropic oxidation of inorganic sulphur, Phil. Trans. R. Soc. London Sect. B 298: 499.Google Scholar
  118. Kelly, D. P., 1988, Oxidation of sulphur compounds, Soc. Gen. Microbiol. Symp. 42: 65.Google Scholar
  119. Khalil, M. A., and Rasmussen, R. A., 1984, Global sources, lifetimes and mass balances of carbonyl sulfide (COS) and carbon disulfide in the earth’s atmosphere, Atmos. Environ. 18: 1805.Google Scholar
  120. Kieber, D. J., and Mopper, K., 1983, Reversed phase high performance liquid chromatographic analysis of alpha-keto acid quinoxalinole derivatives: Optimization of technique and application to natural samples, J. Chromatogr. 281: 135.Google Scholar
  121. Kiene, R. P., 1988, Dimethylsulfide metabolism in salt marsh sediments, FEMS Microbiol. Ecol. 53: 71.Google Scholar
  122. Kiene, R. P., and Capone, D. G., 1988, Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments, Microb. Ecol. 15: 275.Google Scholar
  123. Kiene, R. P., and Taylor, B. F., 1988a, Biotransformations of organosulfur compounds in sediments via 3-mercaptopropionate, Nature (London) 332: 148.Google Scholar
  124. Kiene, R. P., and Taylor, B. F., 1988b, Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments, Appl. Environ. Microbiol. 54: 2208.PubMedGoogle Scholar
  125. Kiene, R. P., and Visscher, P. T., 1987, Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments, Appl. Environ. Microbiol. 53: 2426.PubMedGoogle Scholar
  126. Kiene, R. P., Oremland, R. S., Catena, A., Miller, L. G., and Capone, D. G., 1986, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen, Appl. Environ. Microbiol. 52: 1037.PubMedGoogle Scholar
  127. Kim, K.-H., and Andreae, M. O., 1987, Determination of carbon disulfide in natural waters by adsorbent preconcentration and gas chromatography with flame photometric detection, Anal. Chem. 59: 2670.Google Scholar
  128. King, G. F., Richardson, D. J., Jackson, J. B., and Ferguson, S. J., 1987, Dimethylsulphoxide and trimethylamine-N-oxide as bacterial electron transport acceptors: Use of nuclear magnetic resonance to assay and characterise the reductase system in Rhodobacter capsulatus, Arch. Microbiol. 149: 47.Google Scholar
  129. Kjaer, A., 1977, Low molecular weight sulphur-containing compounds in nature: A survey, Pure Appl. Chem. 49: 137.Google Scholar
  130. Klockow, D., Bayer, W., and Faigle, W., 1978, Gas chromatographic determination of traces of low molecular weight carboxylic and sulfonic acids in aqueous solutions, Fresenius Z. Anal. Chem. 292: 385.Google Scholar
  131. Koehler, M., Genz, I., Babenzien, H.-D., Eckardt, V., Hieke, W., 1978, Mikrobielle Abbau organischer Schwefelverbindungen, Z. Allg. Mikrobiol. 18: 67.Google Scholar
  132. Koehler, M., Genz, I.-L., Schicht, B., and Eckart, V., 1984, Mikrobielle Entschwefelung von Erdoel und schweren Erdoelfraktionen, Zbl. Bakterial. 139: 239.Google Scholar
  133. Koenig, W. A., Ludwig, K., Sievers, S., Rinken, M., Storting, K. H., and Guenther, W., 1980, Identification of volatile organic sulfur compounds in municipal sewage systems by GC/MS, J. High Res. Chromatogr. Chromatogr. Commun. 3: 415.Google Scholar
  134. Krauss, F., and Schmidt, A., 1987, Sulphur sources for growth of Chlorella fusca and their influence on key enzmymes of sulphur metabolism, J. Gen. Microbiol. 133: 1209.Google Scholar
  135. Krouse, H. R., and McCready, R. G. L., 1979, Biogeochemical cycling of sulfur, in: Biogeochemical Cycling of the Mineral-Forming Elements (P. A. Trudinger, ed.), pp. 401–430, Elsevier, Amsterdam.Google Scholar
  136. Laborde, A. L., and Gibson, D. T., 1977, Metabolism of dibenzothiophene by a Beijerinckia species, Appl. Environ. Microbiol. 34: 783.PubMedGoogle Scholar
  137. Laing, W. A., and Christeller, J. T., 1980, A steady-state kinetic study on the catalytic mechanism of ribulose bisphosphate carboxylase from soybean, Arch. Biochem. Biophys. 202: 592.PubMedGoogle Scholar
  138. Larher, F., Hamelin, J., and Stewart, G. R., 1977, L’acide dimethyl sulfonium-3-propanoique de Spartina anglica, Phytochemistry 18: 1396.Google Scholar
  139. Lashen, E. S., and Starkey, R. L., 1970, Decomposition of thiourea by a Penicillium species and soil and sewage-sludge microflora, J. Gen. Microbiol. 64: 139.Google Scholar
  140. Lay, M. D. S., Sauerhoff, M. W., and Saunders, D. R., 1986, Carbon Disulfide, in: Ullmann’s Encyclopaedia of Industrial Chemistry, 5th ed., Vol. A 5, pp. 185–195, Verlag Chemie, Weinheim.Google Scholar
  141. Leder, I. G., 1975, Thiamine, biosynthesis and function, in: Metabolic Pathways, Vol. 7, The Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), pp. 57–73, Academic Press, New York.Google Scholar
  142. Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface, Nature (London) 247: 181.Google Scholar
  143. Ljunggren, G., and Norberg, B. O., 1943, On the effect of toxicity of dimethyl sulfide, dimethyl disulfide and methyl mercaptan, Acta Physiol. Scand. 5: 248.Google Scholar
  144. Lorimer, G. H., and Pierce, J., 1990, Carbonyl sulfide: An alternative substrate for but not an activator of ribulose-1,5-bisphosphate carboxylase, Biochemistry [cited as in press by Ogawa and Togasaki (1988)].Google Scholar
  145. Lovelock, J. E., 1974, CS2 and the natural sulphur cycle, Nature (London) 248: 625.Google Scholar
  146. Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature (London) 237: 452.Google Scholar
  147. Manolis, A., 1983, The diagnostic potential of breath analysis, Clin. Chem. 29: 5.PubMedGoogle Scholar
  148. Maroulis, P. J., and Bandy, A. R., 1976, Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle, Science 196: 247.Google Scholar
  149. Maw, G. A., 1981, The biochemistry of sulphonium salts, in: The Chemistry of the Sulphonium Compounds C. J. M. Stirling, ed.), Part 2, pp. 703–771, Wiley, New York.Google Scholar
  150. McEwan, A. G., Ferguson, S. J., and Jackson, J. B., 1983, Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata, Arch. Microbiol. 136: 300.PubMedGoogle Scholar
  151. Monticello, D. J., and Finnerty, W. R., 1985, Microbial desulfurization of fossil fuels, Annu. Rev. Microbiol. 39: 371.PubMedGoogle Scholar
  152. Monticello, D. J., Bakker, D., and Finnerty, W. R., 1985, Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species, Appl. Environ. Microbiol. 49: 756.PubMedGoogle Scholar
  153. Mormile, M. R., and Atlas, R. M., 1988, Mineralization of the dibenzothiophene biodegradation products 3-hydroxy-2-formyl benzothiophene and dibenzothiophene sulfone, Appl. Environ. Microbiol. 54: 3183.PubMedGoogle Scholar
  154. Moubasher, A. H., Elnaghy, M. A., and Abdel-Hafez, S. I., 1974, Effect of fumigation of three grains with formalin and carbon disulfide on the grain-borne fungi, Bull. Fac. Sci. Assiut Univ. 3: 13.Google Scholar
  155. Munnecke, D. E., Domsch, J. H., and Eckert, J. W., 1962, Fungicidal activity of air passed through columns of soil treated with fungicides, Phytopathology 52: 1298.Google Scholar
  156. Nguyen, B. C., Gaudry, A., Bonsang, B., and Lambert, G., 1978, Reevaluation of the role of dimethyl sulphide in the sulphur budget, Nature (London) 275: 637.Google Scholar
  157. Nriagu, J. O., Holdway, D. A., and Coker, R. D., 1987, Biogenic sulfur and the acidity of rainfall in remote areas of Canada, Science 237: 1189.PubMedGoogle Scholar
  158. Ogawa, T., and Togasaki, R. K., 1988, Carbonyl sulfide: An inhibitor of inorganic carbon transport in cyanobacteria, Plant Physiol. 88: 800.PubMedGoogle Scholar
  159. Oremland, R. S., and Zehr, J. P., 1986, Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium, Appl. Environ. Microbiol. 52: 1031.PubMedGoogle Scholar
  160. Panter, R., and Penzhorn, R. D., 1980, Alkyl sulfonic acids in the atmosphere, Atmos. Environ. 14: 149.Google Scholar
  161. Pearce, F., 1988, Phytoplankton shares the blame for sulphur pollution, New Sci. 11 Feb. 1988, p. 25.Google Scholar
  162. Plennart, W., and Heine, W., 1973, Normalwerte, 4. Aufl., VEB Verlag, Berlin.Google Scholar
  163. Postgate, J. R., and Kelly, D. P., 1982, Sulphur Bacteria, The Royal Society, London.Google Scholar
  164. Rajagopal, B. S., and Daniels, L., 1986, Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria, Curr. Microbiol. 14: 137.Google Scholar
  165. Rasmussen, R. A., 1974, Emission of biogenic hydrogen sulfide, Tellus 26: 254.Google Scholar
  166. Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982a, The oceanic source of carbonyl sulfide (OCS), Atmos. Environ. 16: 1591.Google Scholar
  167. Rasmussen, R. A., Khalil, M. A. K., Dalluge, R. W., Penkett, S. A., and Jones, B., 1982b, Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens, Science 215: 665.PubMedGoogle Scholar
  168. Reed, R. H., 1983, Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine macroalgae, Mar. Biol. Lett. 34: 173.Google Scholar
  169. Robinson, E., and Robbins, R. C., 1970, Gaseous sulfur pollutants from urban and natural sources, J. Air Pollut. Control Assoc. 20: 233.Google Scholar
  170. Rodgers, G. A., Ashworth, J., and Walker, N., 1980, Recovery of nitrifier populations from inhibition by nitrapyrin or CS2, Zbl. Bakteriol. II Abt. 135: 477.Google Scholar
  171. Rohde, H., and Isaksen, I., 1980, Global distribution of sulfur compounds in the trophosphere estimated in a height/latitude transport model, J. Geophys. Res. 85: 7401.Google Scholar
  172. Rosenberg, M., 1989, Microbial films in the mouth: Some ecologically relevant observations, in: Microbial Mats: Ecological Physiology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 245–250, American Society for Microbiology, Washington, D.C.Google Scholar
  173. Rosenberg, M., and Gabbay, J., 1987, Halitosis—a call for affirmative action, Dent. Med. 5: 13.Google Scholar
  174. Saigne, C., and Legrand, M., 1987, Measurements of methanesulphonic acid in Antarctic ice, Nature (London) 330: 240.Google Scholar
  175. Salsbury, R. L., and Merricks, D. L., 1975, Production of methane thiol and dimethyl sulfide by rumen microorganisms, Plant Soil 43: 191.Google Scholar
  176. Sandalls, F. J., and Penkett, S. A., 1977, Measurements of carbonyl sulfide and carbon disulfide in the atmosphere, Atmos. Environ. 11: 197.Google Scholar
  177. Schmidt, N. R, Missan, S. R., Tarbet, W. J., and Cooper, A. D., 1978, The correlation between organoleptic mouth odor ratings and levels of volatile sulfur compounds, Oral Surg. Oral Med. Oral Pathol. 45: 560.PubMedGoogle Scholar
  178. Schreiner, R. P., Stevens, S. E., and Tien, M., 1988, Oxidation of thianthrene by the ligninase of Phanerochaete chrysosporium, Appl. Environ. Microbiol. 54: 1858.PubMedGoogle Scholar
  179. Schultz, T. H., McKenna Kruse, S. M., and Flath, R. A., 1985, Some volatile constituents of female dog urine, J. Chem. Ecol. 11: 169.Google Scholar
  180. Scranton, M. I., and Brewer, P. G., 1977, Occurrence of methane in the near-surface waters of the western subtropical North Atlantic, Deep Sea Res. 24: 127.Google Scholar
  181. Selyuzhiyskii, G. B., 1972, Experimental data used to determine the maximum permissible concentration of methyl mercaptan, dimethyl sulphide and dimethyl disulphide in the air of the production area of paper and pulp plants, Gig. Tr. Prof. Zabol. 16: 46.Google Scholar
  182. Shibuya, I., Yagi, T., and Benson, A. A., 1963, Sulfonic acids in algae, in: Microalgae and Photosynthetic Bacteria, pp. 627–636, University of Tokyo Press, Tokyo.Google Scholar
  183. Singer, A. G., Agosta, W. C., O’Connell, R. J., Pfaffmann, C., Bowen, D. V., and Field, F. H., 1976, Dimethyl disulphide; an attractant pheromone in hamster vaginal secretion, Science 191: 948.PubMedGoogle Scholar
  184. Sivelä, S., 1980, Dimethyl sulphide as a growth substrate for an obligately chemolithotrophic Thiobacillus, in: Commentationes Physico-Mathematicae, Dissert. No. 1 (L. Simons, ed.), pp. 1–69, Societas Scientareum Fennica, Helsinki.Google Scholar
  185. Sivelä, S., and Sundman, V., 1975, Demonstration of Thiobacillus-type bacteria, which utilize methyl sulphides, Arch. Microbiol. 103: 303.Google Scholar
  186. Smith, N. A., and Kelly, D. P., 1988a, Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy, J. Gen. Microbiol. 134: 1407.Google Scholar
  187. Smith, N. A., and Kelly, D. P., 1988b, Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6, J. Gen. Microbiol. 134: 3031.Google Scholar
  188. Smith, N. A., and Kelly, D. P., 1988c, Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m, J. Gen. Microbiol. 134: 3041.Google Scholar
  189. Soeder, C. J., Hegewald, E., and Kneifel, H., 1987, Green algae can use naphthalenesulfonic acids as sources of sulfur, Arch. Microbiol. 148: 260.Google Scholar
  190. Sorensen, N. A., 1961, Structural patterns of polyacetylenic compounds from the plant family Compositae, Pure Appl. Chem. 2: 569.Google Scholar
  191. Sparnins, V. L., Baraby, G. and Wattenberg, L. W., 1988, Effect of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse, Carcinogenesis 9: 131.PubMedGoogle Scholar
  192. Stapley, E. O., and Starkey, R. L., 1970, Decomposition of cysteic acid and taurine by soil microorganisms, J. Gen. Microbiol. 64: 77.Google Scholar
  193. Steudler, P. A., and Peterson, B. I., 1984, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature (London) 311: 455.Google Scholar
  194. Stoiber, R. E., Leggett, D. C., Jenkins, T. F., Murrmann, R. P., and Rose, W. I., 1971, Organic compounds in volcanic gas from Santiaguito volcano, Guatemala, Bull. Geol. Soc. Am. 82: 2299.Google Scholar
  195. Stoll, M., Winter, M., Gaukschi, F., Flament, I., and Willhalm, B., 1967, Recherches sur les aromes. Sur l’arome de café I, Helv. Chim. Acta 50: 628.PubMedGoogle Scholar
  196. Stotzky, G., and Schenk, S., 1976, Volatile organic compounds and microorganisms, Crit. Rev. Microbiol. 4: 353.Google Scholar
  197. Suylen, G. M. H., 1988, Microbial metabolism of dimethyl sulphide and related compounds, Proefschrift, Technical University of Delft, Delft, The Netherlands.Google Scholar
  198. Suylen, G. M. H., and Kuenen, J. G., 1986, Chemostat enrichment and isolation of Hyphomicrobium EG, Antonie von Leeuwenhoek J. Microbiol. Serol. 52: 281.Google Scholar
  199. Suylen, G. M. H., Stefess, G. C., and Kuenen, J. G., 1986, Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds, Arch. Microbiol. 146; 192.Google Scholar
  200. Suylen, G. M. H., Large, P. J., van Dijken, J. P., and Kuenen, J. G., 1987, Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG, J. Gen. Microbiol. 133: 2989.Google Scholar
  201. Sweetnam, P. M., Taylor, S. W., and Elwood, P. C., 1987, Exposure to carbon disulphide and ischaemic heart disease in a viscose rayon factory, Br. J. Ind. Med. 44: 220.PubMedGoogle Scholar
  202. Tazuya, K., Yamada, K., Nakamura, K., and Kumaoka, H., 1987, The origin of the sulfur atom of thiamin, Biochim. Biophys. Acta 924: 210.PubMedGoogle Scholar
  203. Thomel, F., 1987, Synthesen mit Schwefelkohlenstoff, Chem. Z. 111: 285.Google Scholar
  204. Thompson, C. J., Coleman, H. J., Hopkins, R. L., and Rall, H. T., 1965, Hydrocarbon analysis, p. 329, ASTM STP 389, American Society for Testing and Materials.Google Scholar
  205. Timmerman, R. W., 1978, Carbon disulfide, in: Encyclopaedia of Chemical Technology (R. E. Kirk and D. F. Othmer, eds.), pp. 742–757, Wiley, New York.Google Scholar
  206. Tocher, C. S., and Ackman, R. G., 1966, The identification of dimethyl-β-propiothetin in the algae Syracosphaera carterae and Viva carterae in relation to sulfur source and salinity variations, Limnol. Oceanogr. 30: 59.Google Scholar
  207. Tocher, C. S., Ackman, R. G., and McLachlan, J., 1966, The identification of dimethyl-β-propiothetin in the algae Syracosphaera carterae and Ulva lactuca, Can. J. Biochem. 44: 519.PubMedGoogle Scholar
  208. Tomita, B., Inoue, H., Chaya, K., Nakamura, A., Hamamura, N., Ueno, K., Watanabe, K., and Ose, Y., 1987, Identification of dimethyl disulfide-forming bacteria isolated from activated sludge, Appl. Environ. Microbiol. 53: 1541.PubMedGoogle Scholar
  209. Tonzetich, J., 1977, Production and origin of oral malodor: A review of mechanisms and methods of analysis, J. Periodontol. 48: 13.PubMedGoogle Scholar
  210. Tonzetich, J., 1978, Oral malodor: An indicator of health status, Int. Dent. J. 28: 309.PubMedGoogle Scholar
  211. Toon, O. B., Kasting, J. F., Turco, R. P., and Liu, M. S., 1987, The sulfur cycle in the marine atmosphere, J. Geophys. Res. D 92: 943.Google Scholar
  212. Tucker, B. J., Maroulis, P. J., and Bandy, A. R., 1985, Free trophospheric measurements of carbon disulfide over a 45°N to 45°S latitude range, Geophys. Res. Lett. 12: 9.Google Scholar
  213. Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P., 1980, Stratospheric aerosols and climate, Nature (London) 283: 283.Google Scholar
  214. Turner, S. M., and Liss, P. S., 1987, Dimethyl sulphide and dimethyl sulphoniopropionate studies in European coastal waters, American Chemical Society, Division of Environmental Chemistry, 194th National Meeting (New Orleans), Vol. 27, no. 2, pp. 1–4.Google Scholar
  215. Vairavamurthy, A., and Mopper, K., 1987, Geochemical formation of organosulphur compounds (thiols) by addition of H2S to sedimentary organic matter, Nature (London) 329: 623.Google Scholar
  216. Vairavamurthy, A., Andreae, M. O., Iversen, R. L., 1985, Biosynthesis of dimethyl sulfide and dimethyl propiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations, Limnol. Oceanog. 30: 59.Google Scholar
  217. Volkov, I.I., and Rozanov, A. G., 1983, The sulphur cycle in oceans. I. Reservoirs and fluxes, in: The Global Biogeochemical Sulphur Cycle (M. V. Ivanov and J. R. Freney, eds.), pp. 353–448, Wiley, Chichester.Google Scholar
  218. von Damm, K. L. 1983, Chemistry of Submarine Hydrothermal Solutions at 21° North, East Pacific Rise and Guayamas Basin, Gulf of California, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass.Google Scholar
  219. Wagner, C., and Stadtman, E. R. 1962, Bacterial fermentation of dimethyl-β-propiothetin, Arch. Biochem. Biophys. 98: 331.PubMedGoogle Scholar
  220. Wakeham, S. G., Howes, B. L., Dacey, J. W. H., Schwarzenbach, R. P., and Zeyer, J., 1984, Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond, Geochim. Cosmochim, Acta 51: 1675.Google Scholar
  221. Weisiger, R. A., Pinkus, L. M., and Jakoby, W. B., 1980, Thiol S-methyltransferase: Suggested role in detoxication of intestinal hydrogen sulfide, Biochem. Pharmacol. 29: 2885.PubMedGoogle Scholar
  222. Wells, J., and Koves, E., 1974, Detection of carbon disulphide (a disulfiram metabolite) in expired air by gas chromatography, J. Chromatogr. 92: 442.PubMedGoogle Scholar
  223. Wheeler, J. W., von Endt, D. W., and Wenmer, C., 1975, 5-thiomethylpentane-2,3-dione. A unique natural compound from the striped hyaena, J. Amer. Chem. Soc. 97: 441.Google Scholar
  224. White, G. F., Dodgson, K. S., Davies, I., Matts, P. J., Shapleigh, J. P., and Payne, W. J., 1987, Bacterial utilisation of short-chain primary alkyl sulphate esters, FEMS Microbiol. Lett. 4: 173.Google Scholar
  225. White, R. H., 1982, Analysis of dimethyl sulfonium compounds in marine algae, J. Marine Res. 40: 529.Google Scholar
  226. Whitfield, F. B., Shea, S. R., Gillen, K. J., and Shaw, K. J., 1981, Volatile components from the roots of Acacia pulchella R. Br. and their effect on Phytophthora cinnamomi Rands. Aust J. Bot. 29: 195.Google Scholar
  227. Windholz, M. (ed.), The Merck Index, 10th ed., Merck & Co., Inc., Rahway, N.J.Google Scholar
  228. Winer, A. M., Atkinson, R., and Pitts, J. N., 1984, Gaseous nitrate radical: Possible nighttime atmospheric sink for biogenic organic compounds, Science 224: 156.PubMedGoogle Scholar
  229. Winfrey, M. R., Marty, D. G., Bianchi, A. J. M., and Ward, D. M., 1981, Vertical distribution of sulphate reduction, methane production and bacteria in marine sediments, Geomicrobiol. J. 2: 341.Google Scholar
  230. Yen, H. C., and Marrs, B., 1977, Growth of Rhodopseudomonas capsulatus under anaerobic dark conditions with dimethyl sulfoxide, Arch. Biochem. Biophys. 181: 411.PubMedGoogle Scholar
  231. Young, L., and Maw, G. A., 1974, The Metabolism of Sulphur Compounds, Methuen, London.Google Scholar
  232. Zeyer, J., Eicher, P., Wakeham, S. G., and Schwarzenbach, R. P., 1987, Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria, Appl. Environ. Microbiol. 53: 2026.PubMedGoogle Scholar
  233. Zinder, S. H., and Brock, T. D., 1978a, Dimethyl sulfoxide as an electron acceptor for anaerobic growth, Arch. Microbiol. 116: 35.PubMedGoogle Scholar
  234. Zinder, S. H., and Brock, T. D., 1978b, Dimethyl sulfoxide reduction by microorganisms, J. Gen. Microbiol. 105: 335.PubMedGoogle Scholar
  235. Zinder, S. H., Doemel, W. N., and Brock, T. D., 1977, Production of volatile sulfur compounds during the decomposition of algal mats, Appl. Environ. Microbiol. 34: 859.PubMedGoogle Scholar
  236. Zuerrer, D., Cook, A. M., and Leisinger, T., 1987, Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids, Appl. Environ. Microbiol. 53: 1459.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Don P. Kelly
    • 1
  • Neil A. Smith
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryEngland

Personalised recommendations