Physiological Ecology and Regulation of N2 Fixation in Natural Waters

  • Hans W. Paerl
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


Biological nitrogen fixation, the enzyme (nitrogenase)-catalyzed process by which certain procaryotes reduce atmospheric dinitrogen (N2) to ammonia (NH3), is of fundamental importance in mediating the availability of utilizable nitrogen in the biosphere (Delwiche, 1970; Carpenter and Capone, 1983; Howarth et al., 1988). This process is of particular relevance in ecosystems exhibiting deficiencies in nitrogen availability; in this regard, it is well established that geographically and trophically diverse freshwater lakes, rivers, and reservoirs as well as estuarine, coastal, and oceanic habitats exhibit chronic nitrogen deficiencies (Ryther and Dunstan, 1971; Eppley et al., 1973; Parsons et al., 1977; Mann, 1982; Goldman and Horne, 1983; Wetzel, 1983). Among these waters, newly formed combined nitrogen inputs attributable to N2 fixation may regulate productivity and fertility (Horne and Fogg, 1970; Horne and Viner, 1971; Horne and Goldman, 1972; Brezonik, 1973; Mague and Holm-Hansen, 1975; Wiebe et al., 1975; Lean et al., 1978; Paerl et al., 1981; Martinez et al., 1983).


Acetylene Reduction Oxygenic Photosynthesis Experimental Lake Area Cyanobacterial Dominance Organic Matter Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadjian, V., and Paracer, S., 1986, Symbiosis: An Introduction to Biological Associations, University Press of New England, Hanover.Google Scholar
  2. Axler, R., Gersberg, R. M., and Goldman, C. R. G., 1980, Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California, Can. J. Fish. Aquat. Sci. 37: 707–712.Google Scholar
  3. Bautista, M. F., and Paerl, H. W., 1985, Diel N2 fixation in an intertidal marine cyanobacterial mat community, Mar. Chem. 16: 369–377.Google Scholar
  4. Bebout, B., Paerl, H. W., Crocker, K. M., and Prufert, L. E., 1987, Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community, Appl. Environ. Microbiol. 53: 2353–2362.PubMedGoogle Scholar
  5. Beeton, A. M., 1965, Eutrophication of the St. Lawrence Great Lakes, Limnol. Oceanogr. 10: 240–254.Google Scholar
  6. Bergman, B., Lindblad, P., and Rai, A., 1986, Nitrogenase in free-living and symbiotic cyanobacteria: Immunoelectron microscope localization, FEMS Microbiol. Lett. 35: 75–78.Google Scholar
  7. Beyerinck, M. W., 1888, Bot. Ztg. 46: 725–735, 741–750, 757–790, 797–804.Google Scholar
  8. Birge, E. A., and Juday, C., 1922, The inland waters of Wisconsin. The plankton. 1. Its quality and chemical composition, Wis. Geol. Nat. Hist. Surv. Bull. 64: 1–222.Google Scholar
  9. Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R., 1980, Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii, Proc. Nat. Acad. Sci. USA 77: 7342–7345.PubMedGoogle Scholar
  10. Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R., 1982, Expression of an alternative nitrogen-fixing system in Azotobacter vinelandii, J. Bacteriol. 150: 1244–1246.PubMedGoogle Scholar
  11. Bishop, P. E., Premakumar, R., Joerger, R. D., Jacobson, M. R., Dalton, D. A., Chisnell, J. R., and Wolfinger, E. D., 1988, Alternative nitrogen fixing systems in Azotobacter vinelandii, in: Nitrogen Fixation: Hundred Years After (H. Bothe, F. J. de Bruyn, and W. E. Newton, eds.), pp. 71–80, Gustav Fischer, Stuttgart.Google Scholar
  12. Bohlool, B. B., and Wiebe, W. J., 1978, Nitrogen fixing communities in an intertidal ecosystem, Can. J. Microbiol. 24: 932–938.PubMedGoogle Scholar
  13. Bothe, H., 1982, Nitrogen fixation, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 87–104, Blackwell Scientific Publications, Oxford.Google Scholar
  14. Bothe, H., Distler, E., and Eisbrenner, G., 1978, Hydrogen metabolism in blue-green algae, Biochemie 60: 277–289.Google Scholar
  15. Brezonik, P. L., 1973, Nitrogen Sources and Cycling in Natural Waters, U.S. Environmental Protection Agency Report 660/3-73-002.Google Scholar
  16. Bryceson, I., and Fay, P., 1981, Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation, Mar. Biol. 61: 159–166.Google Scholar
  17. Bunt, J. S., Cooksey, K. E., Keeb, M. A., Lee, C. C., and Taylor, B. F., 1970, Assay of algal nitrogen fixation in the marine subtropics by acetylene reduction, Nature (London) 227: 1163–1164.Google Scholar
  18. Burgess, B. K., 1984, Structure and reactivity of nitrogenase: An overview, in: Advances in Nitrogen Fixation Research (W. E. Newton and C. Veeger, eds.), pp. 103–130, Nyhoff/Junk, The Hague.Google Scholar
  19. Burns, N. M., and Ross, C., 1972, Project Hypo: An Intensive Study of the Lake Erie Central Basin Hypolimnion and Related Surface Water Phenomena, Can. Centre Inland Waters, Paper 6, U.S. Environmental Protection Agency Technical Report TS-05-71-208-24.Google Scholar
  20. Burris, J. E., 1977, Photosynthesis, photorespiration, and dark respiration in eight species of algae, Mar. Biol. 39: 371–379.Google Scholar
  21. Burris, R. H., and Wilson, P. W., 1946, Characteristics of the nitrogen-fixing enzyme in Nostoc muscorum, Bot. Gaz. 108: 254–262.Google Scholar
  22. Capone, D. G., and Taylor, B. F., 1977, Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testudinum, Mar. Biol. (Berlin) 40: 12–28.Google Scholar
  23. Capone, D. G., and Taylor, B. F., 1980, Microbial nitrogen cycling in a seagrass community, in: Estuarine Perspectives (V. S. Kennedy, ed.), pp. 153–161, Academic Press, New York.Google Scholar
  24. Carpenter, E. J., 1983, Nitrogen fixation by marine Oscillatoria (Trichodesmium) in the world’s oceans, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 65–104, Academic Press, New York.Google Scholar
  25. Carpenter, E. J., and Capone, D. G. (eds.), 1983, Nitrogen in the Marine Environment, Academic Press, New York.Google Scholar
  26. Carpenter, E. J., and McCarthy, J. J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thiebautii in the western Sargasso Sea, Limnol. Oceanogr. 20: 389–401.Google Scholar
  27. Carpenter, E. J., and Price, C. C., IV., 1976, Marine Oscillatoria (Trichodesmium): An explanation for aerobic nitrogen fixation without heterocysts, Science 191: 1278–1280.PubMedGoogle Scholar
  28. Carr, N. G., and Whitton, B. A. (eds.), 1982, The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford.Google Scholar
  29. Cloud, P., 1976, Beginnings of biospheric evaluation and their biogeochemical consequences, Paleobiology 2: 351–387.Google Scholar
  30. Cohen, Y., Castenholz, R. W., and Halvorson, H. O., 1984, Microbial Mats: Stromatolites, A. R. Liss, New York.Google Scholar
  31. Cole, J. J., Howarth, R. W., Nolan, S. S., and Marino, R., 1986, Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: Some implications for the aquatic nitrogen cycle, Biogeochemistry 2: 179–196.Google Scholar
  32. Collier, R. W., 1985, Molybdenum availability in the Northeast Pacific Ocean, Limnol. Oceanogr. 30: 1351–1354.Google Scholar
  33. Cronberg, G., Grelin, C., and Larsson, K., 1975, The Late Trummen restoration project. II. Bacteria, phytoplankton and phytoplankton productivity, Verh. Int. Ver. Limnol. 19: 1088–1096.Google Scholar
  34. Darwin, C., 1858, Narrative of the Surveying Voyages of H.M.S. Adventure and Beagle (1840–1843), Oxford University Press, Oxford.Google Scholar
  35. Delwiche, C. C., 1970, The nitrogen cycle, Sci. Am. 223: 136–146.Google Scholar
  36. Di Guiseppi, J., and Fridovich, I., 1984, Toxicology of molecular oxygen, Crit. Rev. Toxicol. 12: 315–342.Google Scholar
  37. Dilworth, M. J., Eady, R. R., Robson, R. L., and Miller, R. W., 1987, Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo, Nature (London) 327: 167–169.Google Scholar
  38. Donze, M., Haveman, J., and Schiereck, P., 1972, Absence of photosystem 2 in heterocysts of the bluegreen alga Anabaena, Biochim. Biophys. Acta 256: 157–161.PubMedGoogle Scholar
  39. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr. 12: 196–206.Google Scholar
  40. Dugdale, R. C., Menzel, D. W., and Ryther, J. H., 1961, Nitrogen fixation in the Sargasso Sea, Deep-Sea Res. 7: 298–300.Google Scholar
  41. Eady, R. R., Robson, R. L., Richardson, T. H., Miller, R. W., and Hawkins, M., 1987, The vanadium nitrogenase of Azotobacter chroococcum: Purification and properties of the VFe protein, Biochem. J. 244: 197–199.PubMedGoogle Scholar
  42. Edmondson, W. T., 1970, Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage, Science 169: 690–691.PubMedGoogle Scholar
  43. Eppley, R. W., Renger, E. H., Venrick, E. L., and Mullin, M. M., 1973, A study of plankton dynamics and nutrient cycling in the Central Gyre of the North Pacific Ocean, Limnol. Oceanogr. 18: 534–551.Google Scholar
  44. Fallon, R. D., and Brock, T. D., 1980, Planktonic blue-green algae: Production, sedimentation, and decomposition in Lake Mendota, Wisconsin, Limnol. Oceanogr. 25: 72–88.Google Scholar
  45. Finke, L. R., and Seeley, H. W., Jr., 1978, Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes, Appl. Environ. Microbiol. 36: 129–138.PubMedGoogle Scholar
  46. Flett, R. J., Schindler, D. W., Hamilton, R. D., and Campbell, E. R., 1980, Nitrogen fixation in Canadian Precambrian Shield Lakes, Can. J. Fish. Aquat. Sci. 37: 494–505.Google Scholar
  47. Fogg, G. E., 1942, Studies on nitrogen fixation by blue-green algae. I. Nitrogen fixation by Anabaena cylindrica Lemn., J. Exp. Biol. 19: 78–87.Google Scholar
  48. Fogg, G. E., 1944, Growth and heterocyst production in Anabaena cylindrica Lemn., New Phytol. 43: 164–175.Google Scholar
  49. Fogg, G. E., 1969, The physiology of an algal nuisance, Proc. R. Soc. Lond. B 173: 175–189.Google Scholar
  50. Fogg, G. E., 1971, Extracellular products of algae in freshwater, Arch. Hydrobiol. Beih. Ergebn. Limnol. 5: 1–25.Google Scholar
  51. Fogg, G. E., 1974, Nitrogen fixation, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 650–582, Blackwell Scientific Publications, Oxford.Google Scholar
  52. Fogg, G. E., and Burton, N. F., 1977, Utilization of glycolate by bacteria epiphytic on seaweeds, J. Phycol. Suppl. 13: 22.Google Scholar
  53. Fogg, G. E., Stewart, W. D. P., Fay, P., and Walsby, A. E., 1973, The Blue-Green Algae, Academic Press, London.Google Scholar
  54. Gallon, J. R., and Chaplin, A. E., 1988, Recent studies on N2 fixation by nonheterocystous cyanobacteria, in: Nitrogen Fixation: Hundred Years After (H. Bothe, F. J. de Bruyn, and W. E. Newton, eds.), pp. 183–188, Gustav Fischer, Stuttgart.Google Scholar
  55. Ganf, G. G., and Horne, A. J., 1975, Diural stratification, photosynthesis and nitrogen fixation in a shallow, equatorial lake (Lake George, Uganda), Freshwater Biol. 5: 13–39.Google Scholar
  56. Geitler, L., 1932, Cyanophycaea, in: Rabenherst’s Kryptogamenflora von Deutschland, Osterreich und der Schweiz (R. Kolkwitz, ed.), Vol. 14, Akademische Verlagsgesell-Schaft, Leipzig.Google Scholar
  57. Gibson, C. E., Wood, R. B., Dickson, E. L., and Jenson, D. H., 1971, The succession of phytoplankton in Lough Neagh, 1968–1970, Mitt. Int. Ver. Theor. Angew. Limnol. 19: 140–160.Google Scholar
  58. Goldman, C.R., 1964, Primary productivity and micronutrient limiting factors in some North American and New Zealand lakes, Int. Ver. Theor. Angew. Limnol. Verh. 15: 365–374.Google Scholar
  59. Goldman, C. R., and Horne, A. J., 1983, Limnology, McGraw Hill, New York.Google Scholar
  60. Gotto, J. W., and Taylor, B. F., 1976, N2 fixation associated with decaying leaves of the red mangrove (Rhizophora mangle), Appl. Environ. Microbiol. 31: 781–783.PubMedGoogle Scholar
  61. Granhall, V., and Lundgren, A., 1971, Nitrogen fixation in Lake Erken, Limnol. Oceanogr. 16: 711–719.Google Scholar
  62. Guerinot, M. L., and Colwell, R. R., 1985, Enumeration, isolation, and characterization of N2-fixing bacteria from seawater, Appl. Environ. Microbiol. 50: 350–355.PubMedGoogle Scholar
  63. Guerinot, M. L., and Patriquin, D. G., 1981, N2 fixing vibrios isolated from the gastrointestinal tract of sea urchins, Can. J. Microbiol. 27: 311–347.PubMedGoogle Scholar
  64. Haystead, A., Robinson, R., and Stewart, W. D. P., 1970, Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae, Arch. Mikrobiol. 74: 235–243.PubMedGoogle Scholar
  65. Hazelkorn, R., 1986, Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria, Annu. Rev. Microbiol. 40: 525–547.Google Scholar
  66. Head, W. D., and Carpenter, E. J., 1975, Nitrogen fixation associated with the marine macroalgae Codium fragile, Limnol. Oceanogr. 20: 815–823.Google Scholar
  67. Healy, F. P., 1982, Phosphate, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 105–124, Blackwell Scientific Publications, Oxford.Google Scholar
  68. Hellebust, J. A., 1965, Excretion of some organic compounds by marine phytoplankton, Limnol. Oceanogr. 10: 192–206.Google Scholar
  69. Hellriegel, H., and Wilfarth, H., 1888, Beilageheft Z. Ver. Rubenzuckerind, D. Reiches.Google Scholar
  70. Holland, H. D., 1978, The Chemistry of the Atsmophere and Oceans, John Wiley & Sons, Inc., New York.Google Scholar
  71. Horne, A. J., and Fogg, G. E., 1970, Nitrogen fixation in some English Lakes, Proc. R. Soc. Lond. B 175: 351–366.Google Scholar
  72. Horne, A. J., and Goldman, C. R., 1972, Nitrogen fixation in Clear Lake, California; 1. Seasonal variation and the role of heterocysts, Limnol. Oceanogr. 17: 678–692.Google Scholar
  73. Horne, A. J., and Viner, A. B., 1971, Nitrogen fixation and its significance in tropical Lake George, Uganda, Nature (London) 232: 417–418.Google Scholar
  74. Howarth, R. W., and Cole, J. J., 1985, Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters, Science 229: 653–655.PubMedGoogle Scholar
  75. Howarth, R. W., Marino, R., Lane, J., and Cole, J., 1988, Nitrogen fixation in freshwater, estuarine and marine ecosystems. I. Rates and importance, Limnol. Oceanogr. 33: 688–701.Google Scholar
  76. Huber, A. L., 1986, Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). I. Field studies on the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia, Hydrobiologia 131: 193–203.Google Scholar
  77. Hutner, S. H., 1972, Inorganic nutrition, Annu. Rev. Microbiol. 26: 313–346.PubMedGoogle Scholar
  78. Jorgensen, B. B., 1980, Mineralization and the bacterial cycling of carbon, nitrogen and sulfur in marine sediments, in Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 239–252, Academic Press, London.Google Scholar
  79. Kamen, M. D., and Gest, H., 1949, Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum, Science 109: 560.PubMedGoogle Scholar
  80. Kawai, A., and Sugahara, I., 1971, Microbiological studies on nitrogen fixation in aquatic environments. II. On the nitrogen fixing bacteria in offshore regions, Bull. Jpn. Soc. Sci. Fish. 37: 981–985.Google Scholar
  81. Knoll, A. H., 1977, Paleomicrobiology, in: Handbook of Microbiology, 2nd ed., pp. 8–29, CRC Press, Boca Raton, Fla.Google Scholar
  82. Lawes, J. B., Gilbert, J. H., and Pugh, E., 1861, Phil. Trans. R. Soc. Lond. 151: 431–577.Google Scholar
  83. Lean, D. R. S., Liao, C. F., Murphy, T. P., and Painter, D. S., 1978, The importance of nitrogen fixation in lakes, Ecol. Bull. 26: 41–51.Google Scholar
  84. Leon, C., Kumazawa, S., and Mitsui, A., 1986, Cyclic appearance of aerobic nitrogenase activity during synchronous growth of unicellular cyanobacteria, Curr. Microbiol. 13: 149–153.Google Scholar
  85. Liebig, J. V., 1842,Die organische Chemie in ihrer Anwendung auf Agrikulture und Physiologie, Vieweg Braunschweig.Google Scholar
  86. Likens, G. E. (ed.), 1972, Nutrients and eutrophication, Am. Soc. Limnol. Oceanogr. Spec. Symp. 1. Google Scholar
  87. Mague, T. H., and Holm-Hansen, O., 1975, Nitrogen fixation on a coral reef, Phycologia 14: 87–92.Google Scholar
  88. Mague, T. H., Mague, F. C., and Holm-Hansen, O., 1977, Physiology and chemical composition of nitrogen fixing phytoplankton in the central North Pacific Ocean, Mar. Biol. 41: 213–227.Google Scholar
  89. Mann, K. H., 1982, Ecology of Coastal Waters, University of California Press, Berkeley.Google Scholar
  90. Margulis, L., 1981, Symbiosis in Cell Evolution, W. H. freeman Co., San Francisco.Google Scholar
  91. Margulis, L., 1982, Early Life, Science Books International, Boston.Google Scholar
  92. Martin, J. H., and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature (London) 331: 341–343.Google Scholar
  93. Martinez, L. A., Silver, M. W., King, J. M., and Alldredge, A. L., 1983, Nitrogen fixation by floating diatom mats: A source of new nitrogen to oligotrophic ocean waters, Science 221: 152–154.PubMedGoogle Scholar
  94. Maruyama, Y., Toga, N., and Matsuda, O., 1970, Distribution of nitrogen fixing bacteria in the central Pacific Ocean, J. Oceanogr. Soc. Jpn. 26: 360–366.Google Scholar
  95. McClung, C. R., and Patriquin, D. G., 1980, Isolation of a nitrogen fixing Campylobacter species from the roots of Spartina alterniflora Loisel, Can. J. Microbiol. 26: 881–886.PubMedGoogle Scholar
  96. Meeks, J. C., Enderlin, C. S., Joseph, C. M., Steinberg, N., and Weeden, Y. M., 1985, Use of 13N to study N2 fixation and assimilation by cyanobacterial-lower plant associations, in: Nitrogen Fixation Research Progress (H. J. Evans, P. J. Bottomley and W. E. Newton, eds.), pp. 301–307, Martinus Nyhoff, Dordrecht.Google Scholar
  97. Mitsui, A., Kumazana, S., Takahashi, A., Ikemoto, H., Cao, S., and Arai, T., 1987, Strategy by which nitrogen fixing unicellular cyanobacteria grow photoautotrophically, Nature (London) 323: 720–722.Google Scholar
  98. Murphy, T. O., Lean, D. R. S., and Nalewajko, C., 1976, Blue-green algae: Their excretion of ironselective chelators enables them to dominate other algae, Science 192: 900–902.PubMedGoogle Scholar
  99. Nalewajko, C., 1978, Release of organic substances, in: Handbook of Phycological Methods (J. A. Helebust and J. S. Cragie, eds.), pp. 389–398, Cambridge University Press, Cambridge.Google Scholar
  100. Neilands, J. B., 1967, Hydroxamic acids in nature, Science 156: 1443–1447.PubMedGoogle Scholar
  101. Niemi, A., 1979, Blue-green algal blooms and N: P ratio in the Baltic Sea, Acta Bot. Fenn. 110: 57–61.Google Scholar
  102. Paerl, H. W., 1978, Light-mediated recovery of N2 fixation in the blue-green algae Anabaena spp. in O2-supersaturated waters, Oecologia (Berlin) 32: 135–139.Google Scholar
  103. Paerl, H. W., 1982, Interactions with bacteria, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 441–462, Blackwell Scientific Publications, Oxford.Google Scholar
  104. Paerl, H. W., 1984, Alteration of microbial metabolic activities in association with detritus, Bull. Mar. Sci. 35: 393–408.Google Scholar
  105. Paerl, H. W., 1985, Mcrozone formation: Its role in the enhancement of aquatic N2 fixation, Limnol. Oceanogr. 30: 1246–1252.Google Scholar
  106. Paerl, H. W., 1988, Nuisance phytoplankton blooms in coastal, estuarine and inland waters, Limnol. Oceanogr. 33: 823–847.Google Scholar
  107. Paerl, H. W., and Bebout, B. M., 1988, Direct measurements of O2-depleted microzones in marine Oscillatoria (Trichodesmium): Relation to N2-fixation, Science 241: 442–445.PubMedGoogle Scholar
  108. Paerl, H. W., and Bland, P. T., 1982, Localized tetrazolium reduction in relation to N2 fixation, CO2 fixation, and H2 uptake in aquatic filamentous cyanobacteria, Appl. Environ. Microbiol. 43: 218–226.PubMedGoogle Scholar
  109. Paerl, H. W., and Carlton, R. G., 1988, Control of N2 fixation by oxygen depletion in surface-associated microzones, Nature (London) 332: 260–262.Google Scholar
  110. Paerl, H. W., and Gallucci, K. K., 1985, Role of Chemotaxis in establishing a specific nitrogen-fixing cyanobacterial-bacterial association. Science 227: 647–649.PubMedGoogle Scholar
  111. Paerl, H. W, and Kellar, P. E., 1978, Significance of bacterial (Cyanophyceae) Anabaena associations with respect to N2 fixation in freshwater. J. Phycol. 14: 254–260.Google Scholar
  112. Paerl, H. W., and Kellar, P. E., 1979, Study of the Importance of Nitrogen Fixation to the Growth of Myriophyllum spicatum, Report to National Water Research Institute, Burlington, Ontario, Canada.Google Scholar
  113. Paerl, H. W., and Prafert, L. E., 1987, Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters, Appl. Environ. Microbiol. 53: 1078–1087.PubMedGoogle Scholar
  114. Paerl, H. W., Webb, K. L., Baker, J., and Wiebe, W. J., 1981, Nitrogen fixation in waters, in Nitrogen Fixation, Vol. 1, Ecology (W. J. Broughton, ed.), Clarendon, New York.Google Scholar
  115. Paerl, H. W., Crocker, K. M., and Prufert, L. E., 1987, Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus and organic matter availability, Limnol. Oceanogr. 32: 525–536.Google Scholar
  116. Paerl, H. W., Bebout, B. M., and Prufert, L. E., 1989, Naturally occurring patterns of oxygenic photosynthesis and N2 fixation in a marine microbial mat: Physiological and ecological ramifications, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 326–341, American Society for Microbiology, Washington, D.C.Google Scholar
  117. Parsons, T. R., Takahashi, M., and Hargrave, B. T., 1977, Biological Oceanographic Processes, 2nd ed., Pergamon Press, Oxford.Google Scholar
  118. Pearsall, W. H., 1932, Phytoplankton in the English Lakes. 2. The composition of the phytoplankton in relation to dissolved substances, J. Ecol. 20: 241–262.Google Scholar
  119. Pearson, H. W., Malin, G., and Howsley, R., 1981, Physiological studies on in vitro nitrogenase activity by axenic cultures of Microcoleus chthonoplastes, Br. Phycol. J. 16: 139–143.Google Scholar
  120. Penhale, P., and Capone, D. G., 1981, Primary productivity and nitrogen fixation in two macroalgaecyanobacterial associations, Bull. Mar. Sci. 31: 164–169.Google Scholar
  121. Postgate, J. R., 1978, Nitrogen fixation, Studies in Biology No. 92, E. Arnold, London.Google Scholar
  122. Reuter, J. E., Loeb, S. L., and Goldman, C. R., 1986, Inorganic nitrogen uptake by epilithic periphyton in an N-deficient lake, Limnol. Oceanogr. 31: 149–160.Google Scholar
  123. Reynolds, C. S., and Walsby, A. E., 1975, Water blooms, Biol. Rev. 50: 437–481.Google Scholar
  124. Rice, D., Mazur, B. J., and Hazelkorn, R., 1982, Isolation and physical mapping of nitrogen fixing genes from the cyanobacterium Anabaena 7120, J. Biol. Chem. 257: 13157–13163.PubMedGoogle Scholar
  125. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y., 1979, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol. 111: 1–61.Google Scholar
  126. Rosenberg, G., and Paerl, H. W., 1980, Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticatum: Effects on ammonium uptake, Mar. Biol. 61: 151–158.Google Scholar
  127. Rozen, A., Schonfeld, M., and Telor, E., 1988, Fructose-enhanced development and growth of the N2-fixing cyanobiont Anabaena azollae, Z. Naturforsch. 43: 43–46.Google Scholar
  128. Rueter, J. G., 1982, Theoretical Fe limitations of microbial N2 fixation in the oceans, Eos 63: 495.Google Scholar
  129. Ryther, J. H., and Dunstan, W. M., 1971, Nitrogen, phosphorus and eutrophication in the coastal marine environment, Science 171: 1008–1012.PubMedGoogle Scholar
  130. Saussure, T. de, 1804, Recherches Chimiques sur la Vegetation, Paris.Google Scholar
  131. Schindler, D. W., Fee, E. J., and Ruszczynski, T., 1978, Phosphorus input and its consequences for phytoplankton standing crop and production in the Experimental Lakes Area and in similar lakes, J. Fish. Res. Bd. Can. 35: 190–196.Google Scholar
  132. Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, central Australia, J. Paleontol. 42: 651–688.Google Scholar
  133. Schopf, J. W., 1975, Precambrian paleobiology: Problems and perspectives, Ann. Rev. Earth Planet. Sci. 3: 213–249.Google Scholar
  134. Schopf, J. W., and Walter, M. R., 1982, Origin and early evolution of cyanobacteria: The geological evidence, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 543–564, Blackwell Scientific Publications, Oxford.Google Scholar
  135. Schultz-Lupitz, A., 1887, Landw. Jahrb. 10: 777–848.Google Scholar
  136. Seki, H., Takahashi, M., Hasa, Y., and Ichimura, S., 1980, Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura, Japan, Water Res. 14: 179–183.Google Scholar
  137. Smith, S. V., 1984, Phosphorus versus nitrogen limitation in the marine environment, Limnol. Oceanogr. 29: 1149–1160.Google Scholar
  138. Smith, V. H., 1983, Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton, Science 221: 669–671.PubMedGoogle Scholar
  139. Stal, L. J., and Krumbein, W. E., 1985, Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles, Arch. Microbiol. 143: 67–71.Google Scholar
  140. Stanier, R. Y., 1977, The position of cyanobacteria in the world of phototrophs, Carlsberg Res. Commun. 42: 77–98.Google Scholar
  141. Stewart, W. D. P., 1973, Nitrogen fixation by photosynthetic microorganisms, Annu. Rev. Microbiol. 27: 283–316.PubMedGoogle Scholar
  142. Stewart, W. D. P. (ed.), 1975, Nitrogen Fixation by Free-Living Microorganisms, Cambridge University Press, London.Google Scholar
  143. Stewart, W. D. P., and Alexander, G., 1971, Phosphorus availability and nitrogenase activity in aquatic blue-green algae, Freshwater Biol. 1: 389–401.Google Scholar
  144. Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H., 1967, In situ studies on N2 fixation using the acetylene reduction technique, Proc. Natl. Acad. Sci. USA 58: 2071–2078.PubMedGoogle Scholar
  145. Stewart, W. D. P., Rowell, P., and Rai, A. N., 1980, Symbiotic nitrogen-fixing cyanobacteria, in: Proceedings of an International Symposium on Nitrogen Fixation (W. D. P. Stewart and J. R. Gallon, eds.), pp. 239–277, Oxford University Press, Oxford.Google Scholar
  146. Stiefel, E. I., 1977, The mechanism of nitrogen fixation, in: Recent Developments in Nitrogen Fixation (W. Newton, J. R. Postgate, and C. Rodriguez-Barrueco, eds.), pp. 69–108, Academic Press, London.Google Scholar
  147. Stockner, J. G., 1988, Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33(4, part 2): 765–775.Google Scholar
  148. Stockner, J. G., and Antia, N. J., 1986, Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary approach, Can. J. Fish. Aquat. Sci. 43: 2472–2503.Google Scholar
  149. Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, 2nd ed., John Wiley & Sons, Inc., New York.Google Scholar
  150. Takahashi, M., and Hori, T., 1984, Abundance of picoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters, Mar. Biol. 79: 177–186.Google Scholar
  151. Urdaci, M. C., Stal, L. J., and Marchand, M., 1988, Occurrence of nitrogen fixation among Vibrio spp., Arch. Microbiol. 150: 224–229.Google Scholar
  152. Vanderhoef, L. N., Huang, C., and Musil, R., 1974, Nitrogen fixation (acetylene reduction) by phytoplankton in Green Bay, Lake Michigan, in relation to nutrient concentrations, Limnol. Oceanogr. 19: 119–125.Google Scholar
  153. Van Liere, L., and Walsby, A. E., 1982, Interactions of cyanobacteria with light, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 9–46, Blackwell Scientific Publications, Oxford.Google Scholar
  154. Vollenweider, R. A., 1976, Advances in defining crucial loading levels for phosphorus in lake eutrophication, Mem. Ist. Ital. Idrobiol. 33: 53–83.Google Scholar
  155. Walker, J. C. G., Klein, C., Schidlowski, M., Schopf, J. W., Stevenson, D. J., and Walter, M. R., 1982, Environmental evolution of the Archean-Early Proterozoic Earth, in: Origin and Evolution of Earth’s Earliest Biosphere (J. W. Schopf, ed.), Princeton University Press, Princeton, N.J.Google Scholar
  156. Walsby, A. E., 1972, Structure and function of gas vacuoles, Bacteriol. Rev. 36: 1–32.PubMedGoogle Scholar
  157. Waterbury, J. B., Watson, S. W. Guillard, R. R. L., and Brand, L. E., 1979, Widespread occurrence of a unicellular, marine, planktonic cyanobacterium, Nature (London) 277: 293–294.Google Scholar
  158. Wetzel, R. G., 1983, Limnology, 2nd ed., W. B. Saunders, Philadelphia.Google Scholar
  159. Whitton, B. A., and Potts, M., 1982, Marine littoral, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 515–542, Blackwell Scientific Publications, Oxford.Google Scholar
  160. Wiebe, W. J., Johannes, R. E., and Webb, K. L., 1975, Nitrogen fixation in a coral reef community, Science 188: 257–259.PubMedGoogle Scholar
  161. Wilson, P. W., and Burns, R. H., 1947, The mechanism of biological nitrogen fixation, Bacteriol. Rev. 11: 41–73.Google Scholar
  162. Wolk, C. P., 1968, Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica, J. Bacteriol. 96: 2138–2143.PubMedGoogle Scholar
  163. Wolk, C. P., 1982, Heterocysts, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 359–386, Blackwell Scientific Publications, Oxford.Google Scholar
  164. Wolk, C. P., and Simon, R. D., 1969, Pigment and lipids of heterocysts, Planta (Berlin) 86: 92–97.Google Scholar
  165. Wurtzbaugh, W. A., 1988, Iron, molybdenum and phosphorus limitation of N2 fixation maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, U.S.A.), Verh. Int. Verein. Limnol. 23: 121–130.Google Scholar
  166. Wurtzbaugh, W. A., and Horne, A. J., 1983, Iron in eutrophic Clear Lake, California: Its importance for algal nitrogen fixation and growth, Can. J. Fish. Aquat. Sci. 40: 1419–1429.Google Scholar
  167. Wynn-Williams, D. D., and Rhodes, M. E., 1974, Nitrogen fixation in seawater, J. Appl. Bacteriol. 37: 203–216.PubMedGoogle Scholar
  168. Yates, M. G., 1977, Physiological aspects of nitrogen fixation, in: Recent Developments in Nitrogen Fixation (W. Newton, J. R. Postgate, and C. Rodrigues-Barrueco, eds.), pp. 219–270, Academic Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hans W. Paerl
    • 1
  1. 1.Institute of Marine SciencesUniversity of North CarolinaChapel Hill, Morehead CityUSA

Personalised recommendations