Skip to main content

Mathematical Modeling Of Nitrification Processes

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

An understanding of the microbial cycling of nutrients in natural ecosystems requires knowledge of both the types and numbers of microorganisms involved and the nature of the processes they carry out. The study of microorganisms in natural environments is, however, notoriously difficult. In particular, the isolation, characterization, and enumeration of “typical,” “dominant,” or “significant” microbial populations is plagued by the lack of reliable in situ detection techniques, problems associated with nondestructive removal of cells, and choice of suitable media and cultural conditions for growth in the laboratory. These problems are exacerbated in studies of nitrifying bacteria. Autotrophic ammonia- and nitrite-oxidizing bacteria do not form visible colonies on solid medium, and although techniques that increase the apparent sizes of colonies of ammonia oxidizers are available (Soriano and Walker, 1973), the dilution plate technique is not convenient for routine use. Enumeration of viable cells therefore requires use of the most-probable-number (MPN) technique, which introduces an intrinsic statistical variability in addition to variability arising through cell extraction, experimental technique, and choice of suitable culture media. The length of incubation period is also critical; Matulewich et al. (1975) found that MPN counts of nitrite oxidizers had not reached a maximum after 100 days of incubation. Although the MPN technique has proved invaluable in many studies, the associated variability has led some workers to consider it qualitative rather than quantitative. Some of these problems have been overcome by use of fluorescent-antibody (FA) counting techniques (Belser, 1979), which currently provide the most accurate means of assessing total nitrifier populations in natural environments but suffer from problems of specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addiscott, T. M., 1983, Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories, J. Soil Sci. 34: 343.

    Article  CAS  Google Scholar 

  • Addiscott, T. M., and Whitmore, A. P., 1987, Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring, J. Agric. Sci. 109: 141.

    Article  Google Scholar 

  • Anthonisen, A., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G., 1976, Inhibition of nitrification by ammonia and nitrous acid, J. Water Pollut. Control Fed. 48: 835.

    PubMed  CAS  Google Scholar 

  • Argaman, Y., 1982, Single sludge nitrogen removal from industrial wastewater, Water Sci. Technol. 14: 7.

    CAS  Google Scholar 

  • Armstrong, E. F., and Prosser, J. I., 1988, Growth of Nitrosomonas europaea on ammonia-treated vermiculite, Soil Biol. Biochem. 20: 409.

    Article  CAS  Google Scholar 

  • Bazin, M. J., 1983, Mathematics in Microbiology, Academic Press, London.

    Google Scholar 

  • Bazin, M. J., and Saunders, P. T., 1973, Dynamics of nitrification in a continuous flow system, Soil Biol. Biochem. 5: 531.

    Article  CAS  Google Scholar 

  • Bazin, M. K., Saunders, P. T., and Prosser, J. I., 1976, Models of microbial interactions in the soil, CRC Crit. Rev. Microbiol. 5: 464.

    Google Scholar 

  • Beccari, M., Marani, D., and Ramadori, R. 1979, A critical analysis of nitrification alternatives, Water Res. 13: 185.

    Article  CAS  Google Scholar 

  • Beek, J., and Frissel, M. J., 1973, Simulation of Nitrogen Behaviour in Soils, Pudoc, Wageningen.

    Google Scholar 

  • Belser, L. W., 1979, Population ecology of nitrifying bacteria, Annu. Rev. Microbiol. 33: 309.

    Article  PubMed  CAS  Google Scholar 

  • Belser, L. W., 1984, Bicarbonate uptake by nitrifiers: Effects of growth rate, pH, substrate concentration and metabolic inhibitors, Appl. Environ. Microbiol. 48: 1100.

    PubMed  CAS  Google Scholar 

  • Belser, L. W., and Schmidt, E. L., 1980, Growth and oxidation kinetics of three genera of ammonia oxidisers. FEMS Microbiol. Lett. 7:213.

    Article  CAS  Google Scholar 

  • Benedict, A. H., and Carlson, D. A., 1974, Rational assessment of the Streeter-Phelps temperature coefficient, J. Water Pollut. Control Fed. 46: 1792.

    Google Scholar 

  • Benefield, L., and Molz, F., 1984, A model for the activated sludge process which considers wastewater characteristics, floc behavior, and microbial populations, Biotechnol. Bioeng. 26: 352.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, K. K. S., Flowers, T. H., and O’Callaghan, J. R., 1980, A model for the simulation of the fate of nitrogen in farm wastes on land application, J. Agric. Sci. 94: 183.

    Article  CAS  Google Scholar 

  • Bock, E., Koops, H.-P., and Harms, S. H., 1986, Cell biology of nitrifying bacteria, in Nitrification, (J. I. Prosser, ed.) pp. 17–38, IRL Press, Oxford.

    Google Scholar 

  • Boon, B., and Laudelout, H., 1962, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J. 85: 440.

    PubMed  CAS  Google Scholar 

  • Cameron, D. R., and Kowalenko, C. G., 1976, Modelling nitrogen processes in soil: Mathematical development and relationships, Can. J. Soil Sci. 56: 71.

    Article  CAS  Google Scholar 

  • Campbell, N. E., and Aleem, M. I. H., 1965, The effect of two-chloro, 6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria, Antonie van Leeuwenhoek J. Microbiol. Serol. 31: 124.

    Article  CAS  Google Scholar 

  • Castens, D. J., and Rozich, A. F., 1986, Analysis of batch nitrification using substrate inhibition kinetics, Biotechnol. Bioeng. 28: 461.

    Article  PubMed  CAS  Google Scholar 

  • Charley, R. C., Hooper, D. G., and McLee, A. G., 1980, Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations, Water Res. 14: 1387.

    Article  CAS  Google Scholar 

  • Christensen, J. P., and Rowe, G. T., 1984, Nitrification and oxygen consumption in north west Atlantic deep-sea sediments, J. Mar. Res. 42: 1099.

    Article  CAS  Google Scholar 

  • Cooper, A. B., 1983a, Effect of storm events on benthic nitrifying activity, Appl. Environ. Microbiol. 46: 957.

    PubMed  CAS  Google Scholar 

  • Cooper, A. B., 1983b, Population ecology of nitrifiers in a stream receiving geothermal inputs of ammonium, Appl. Environ. Microbiol. 45: 1170.

    PubMed  CAS  Google Scholar 

  • Cooper, A. B., 1984, Activities of benthic nitrifiers in streams and their role in oxygen consumption, Microb. Ecol. 10: 317.

    Article  CAS  Google Scholar 

  • Cooper, A. B., 1986, Developing management guidelines for river nitrogenous oxygen demand, J. Water Pollut. Control Fed. 58: 845.

    CAS  Google Scholar 

  • Darrah, P. R., White, R. A., and Nye, P. H., 1985, Simultaneous nitrification and diffusion in soil. I. The effects of addition of low levels of ammonium chloride, J. Soil Sci. 36: 281.

    Article  CAS  Google Scholar 

  • Darrah, P. R., White, R. A., and Nye, P. H., 1986a, Simultaneous nitrification and diffusion in soil. II. The effects at levels of ammonium chloride which inhibit nitrification. J. Soil Sci. 37: 41.

    Article  CAS  Google Scholar 

  • Darrah, P. R., White, R. A., and Nye, P. H., 1986b, Simultaneous nitrification and diffusion in soil. III. The effects of the addition of ammonium sulphate, J. Soil Sci. 37: 53.

    Article  CAS  Google Scholar 

  • Darrah, P. R., Nye, P. H., and White, R. E., 1986c, Simultaneous nitrification and diffusion in soil. V. The effects of pH change, following the addition of ammonium sulphate, on the activity of nitrifiers, J. Soil Sci. 37: 479.

    Article  CAS  Google Scholar 

  • Darrah, P. R., White, R. E., and Nye, P. H., 1987, A theoretical consideration of the implications of cell clustering for the prediction of nitrification in soil, Plant Soil 99: 387.

    Article  CAS  Google Scholar 

  • Duffy, J., Chung, C., Boast, C., and Franklin, M., 1975, A simulation model of biophysicochemical transformations of nitrogen in tile-drained corn belt soil, J. Environ. Qual. 4: 477.

    Article  CAS  Google Scholar 

  • Endelman, F. J., Box, G. E. P., Boyle, J. R., Hughes, R. R., Kenney, D. R., Northup, M. L., and Saffigna, P. G., 1974, The Mathematical Modelling of Soil-Water-Nitrogen Phenomena, I. B. P. Report EDFB-IBP-74-7, Oak Ridge National Laboratory, Oak Ridge, Term.

    Google Scholar 

  • Feigenbaum, S., and Hadas, A., 1980, Utilisation of fertiliser nitrogen-nitrogen-15 by field-grown alfafa, Soil Sci. Soc. Am. J. 44: 1006.

    Article  CAS  Google Scholar 

  • Gilmour, J. T., 1984, The effects of soil properties on nitrification and nitrification inhibition, Soil Sci. Soc. Am. J. 48: 1262.

    Article  CAS  Google Scholar 

  • Glover, H. E., 1982, Methylamine, an inhibitor of ammonium oxidation and chemoautotrophic growth in the marine nitrifying bacterium Nitrosococcus oceanus, Arch. Microbiol. 132: 37.

    Article  CAS  Google Scholar 

  • Glover, H. E., 1985, The relationship between inorganic and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria, Arch. Microbiol. 142: 45.

    Article  CAS  Google Scholar 

  • Goloway, F., and Bender, M., 1982, Diagenetic models of interstitial nitrate profiles in deep sea suboxic sediments, Limnol. Oceanogr. 27: 624.

    Article  CAS  Google Scholar 

  • Gonenc, E. I., and Harremoes, P., 1985, Nitrification in rotating disc systems. I. Criteria for transition from oxygen to ammonia rate limitation, Water Res. 19: 1119–1127.

    Article  CAS  Google Scholar 

  • Gromiec, M., Valve, M., and Liponkoskie, M., 1982, Nutrient Removal from Waste waters by Single Sludge Systems, Tech. Res. Cent. Finl. Research Report, pp. 1–126. Department of Water Management, Institute of Meteorology and Water Management, Warsaw, Poland.

    Google Scholar 

  • Gujer, W., and Boller, M., 1986, Design of a nitrifying tertiary trickling filter based on theoretical concepts, Water Res. 20: 1353.

    Article  CAS  Google Scholar 

  • Hadas, A., Feigenbaum, N., Feigin, A., and Portnoy, R., 1986, Nitrification rates in profiles of differently managed soil types, Soil Sci. Soc. Am. J. 50: 633.

    Article  Google Scholar 

  • Hall, E. R., and Murphy, K. L., 1980, Estimation of nitrifying biomass and kinetics in wastewater, Water Res. 14: 297.

    Article  CAS  Google Scholar 

  • Hall, G. H., 1986, Nitrification in lakes, in: Nitrification (J. I. Prosser, ed.), pp. 127–156, IRL Press, Oxford.

    Google Scholar 

  • Hirose, E., and Tateno, M., 1984, Soil nitrogen patterns induced by colonisation of Polygonum cuspidatum on Mt. Fuji, Oecologia (Berlin) 61: 128.

    Article  Google Scholar 

  • Hsieh, Y. P., Douglas, L. A., and Motto, H. L., 1981, Modelling sewage sludge decomposition in soil: II. Nitrogen transformations, J. Environ. Qual. 10: 59.

    Article  CAS  Google Scholar 

  • Jahnke, R. A., Emerson, S. R., and Murray, J. W., 1982, A model of oxygen reduction, denitrification, and organic matter mineralisation in marine sediments, Limnol. Oceanogr. 27: 610.

    Article  CAS  Google Scholar 

  • Keen, G. A., and Prosser, J. I., 1987a, Steady state and transient growth of autotrophic nitrifying bacteria, Arch. Microbiol. 147: 73.

    Article  CAS  Google Scholar 

  • Keen, G. A., and Prosser, J. I., 1987b, Interrelationship between pH and surface growth of Nitrobacter, Soil Biol. Biochem. 19: 665.

    Article  Google Scholar 

  • Keen, G. A., and Prosser, J. I., 1988, The surface growth and activity of Nitrobacter. Microb. Ecol. 15: 21.

    Article  Google Scholar 

  • Killham, K., 1986, Heterotrophic nitrification, in: Nitrification (J. I. Prosser, ed.), pp. 117–126, IRL Press, Oxford.

    Google Scholar 

  • Knowles, G., Downing, A. L., and Barrett, M. J., 1965, Determination of kinetics constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer, J. Gen. Microbiol. 38: 263.

    PubMed  CAS  Google Scholar 

  • Kuenen, J. G., and Robertson, L. A., 1987, Ecology of nitrification and denitrification, Symp. Soc. Gen. Microbiol. 42: 162.

    Google Scholar 

  • Laudelout, H., Lambert, R., Fripiat, J. L., and Pham, M. L., 1974, Effet de la temperature sur la vitesse d’oxydation de l’ammonium en nitrate par des culture mixtes de nitrifiants, Ann. Microbiol. Inst. Pasteur 125B: 75.

    CAS  Google Scholar 

  • Laudelout, H., Lambert, R., and Pham, M. L., 1976, Influence du pH et de la pression partielle d’oxygène sur la nitrification, Ann. Microbiol. Inst. Pasteur 127A: 367.

    CAS  Google Scholar 

  • Macdonald, R. M., 1979, Populations dynamics of the nitrifying bacterium, Nitrosolobus in soil, J. Appl. Ecol. 16: 529.

    Article  Google Scholar 

  • Malhi, S. S., and McGill, W. B., 1982, Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration, Soil Biol. Biochem. 14: 393.

    Article  CAS  Google Scholar 

  • Matulewich, V. A., Strom, P. F., and Finstein, M. S., 1975, Length of incubation for enumerating nitrifying bacteria present in various environments, Appl. Microbiol. 29: 265.

    PubMed  CAS  Google Scholar 

  • McMeekin, T. A., Olley, J., and Ratkowsky, D. A., 1988, Temperature effects on bacterial growth rates, in: Physiological Models in Microbiology (M. J. Bazin and J. I. Prosser, eds.), pp. 75–89, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Mehran, M., and Tanji, K. K., 1974, Computer modelling of nitrogen transformation in soils, J. Environ. Qual. 3: 391.

    Article  CAS  Google Scholar 

  • Meikle, R. W., 1979, Prediction of ammonium nitrogen fertiliser disappearance from soils in the presence and absence of N-serve nitrogen stabilisers, Soil Sci. 127: 292.

    Article  CAS  Google Scholar 

  • Molina, J. A. E., 1985, Components of rates of ammonium oxidation in soil, Soil Sci. Soc. Am. J. 49: 603.

    Article  CAS  Google Scholar 

  • Morrill, L. G., and Dawson, J. E., 1962, Growth rates of nitrifying chemoautotrophs in soil, J. Bacteriol. 83: 205.

    PubMed  CAS  Google Scholar 

  • Myrold, D. D., and Tiedje, J. M., 1986, Simultaneous estimation of several nitrogen cycle rates using 15N: Theory and application. Soil Biol. Biochem. 18: 559.

    Article  CAS  Google Scholar 

  • Neufeld, R., Greenfield, J., and Rieder, B., 1986, Temperature, cyanide and phenolic nitrification inhibition, Water Res. 20: 633.

    Article  CAS  Google Scholar 

  • Nihtila, M., and Virkkunen, J., 1977, Practical identifiability of growth and substrate consumption models, Biotechnol. Bioeng. 19: 1831.

    Article  PubMed  CAS  Google Scholar 

  • Novak, L. T., 1979, Role of agitation conditions in nitrification, Biotechnol. Bioeng. 21: 1457.

    Article  CAS  Google Scholar 

  • Oremland, R. S., and Capone, D. G., 1988, Use of “specific” inhibitors in biogeochemistry and microbial ecology, in: Advances in Microbial Ecology, Vol. 10 (K. C. Marshall, ed.), pp. 285–383, Plenum Press, New York.

    Chapter  Google Scholar 

  • Painter, H. A., 1986, Nitrification in the treatment of sewage and waste-waters, in: Nitrification (J. I. Prosser, ed.), pp. 185–211, IRL Press, Oxford.

    Google Scholar 

  • Poduska, R. A., and Andrews, J. F., 1975, Dynamics of nitrification in the activated sludge process, J. Water Pollut. Control Fed. 47: 2599.

    PubMed  CAS  Google Scholar 

  • Poon, C. P. C., Chin, H. K., Smith, E. D., and Mikaucki, W. J., 1981, Upgrading with rotating biological contactors for ammonia nitrogen removal, J. Water Pollut. Control Fed. 53: 1158–1165.

    CAS  Google Scholar 

  • Powell, S. J., and Prosser, J. I., 1985, The effect of nitrapyrin and chloropicolinic acid on ammonium oxdiation by Nitrosomonas europaea, FEMS Microbiol. Lett. 28: 51.

    Article  CAS  Google Scholar 

  • Powell, S. J., and Prosser, J. I., 1986a, Inhibition of ammonium oxidation by nitrapyrin in soil and liquid culture, Appl. Environ. Microbiol. 52: 782.

    PubMed  CAS  Google Scholar 

  • Powell, S. J., and Prosser, J. I., 1986b, The effect of copper on inhibition by nitrapyrin of growth of Nitrosomonas europaea, Curr. Microbiol. 14: 177.

    Article  CAS  Google Scholar 

  • Prosser, J. I., 1988, Mathematical modelling and computer simulation, in Computers in Microbiology—A Practical Approach (T. Bryant and J. W. T. Wimpenny, eds.), pp. 125–159, IRL Press, Oxford.

    Google Scholar 

  • Prosser, J. I., and Bazin, M. J., 1988, The use of packed column reactors to study microbial nitrogen transformations in the soil, in: Handbook of Laboratory Systems for Microbiol. Ecosystem Research (J. W. T. Wimpenny, ed.), pp. 31–49, CRC Press Inc., Boca Raton, Fla.

    Google Scholar 

  • Prosser, J. I., and Gray, T. R. G., 1977, Use of finite difference method to study a model system of nitrification at low substrate concentrations, J. Gen. Microbiol. 102: 119.

    Google Scholar 

  • Quinlan, A. V., 1980, The thermal sensitivity of nitrification as a function of the concentration of nitrogen substrate, Water Res. 14: 1501.

    Article  CAS  Google Scholar 

  • Quinlan, A. V., 1984, Prediction of the optimum pH for ammonia-N oxidation by Nitrosomonas europaea in well-aerated natural and domestic-waste waters, Water Res. 18: 561.

    Article  CAS  Google Scholar 

  • Randall, C. W., Benefield, L. D., and Buth, D., 1982, The effects of temperature on the biochemical reaction rates of the activated sludge process, Water Sci. Technol. 14: 413.

    CAS  Google Scholar 

  • Robinson, J. A., 1985, Determining microbial kinetic parameters using nonlinear regression analysis. Advantages and limitations in microbial ecology, in: Advances in Microbial Ecology, Vol. 8 (K. C. Marshall, ed.), pp. 61–114, Plenum Press, New York.

    Chapter  Google Scholar 

  • Roels, J. A., and Kossen, N. W. F., 1978, On the modelling of microbial metabolism, Prog. Ind. Microbiol. 14: 95.

    CAS  Google Scholar 

  • Rozich, A. F., and Castens, D. J., 1986, Inhibition kinetics of nitrification in continuous-flow reactors, J. Water Pollut. Control Fed. 58: 220.

    CAS  Google Scholar 

  • Saunders, P. T., and Bazin, M. J., 1973, Non steady state studies of nitrification in soil: Theoretical considerations, Soil Biol. Biochem. 5: 545.

    Article  CAS  Google Scholar 

  • Schmidt, E. L., 1982, Nitrification in soil, Agronomy 22: 253.

    CAS  Google Scholar 

  • Seifert, J., 1980, The effect of temperature on nitrification intensity in soil, Folia Microbiol. 25: 144.

    Article  CAS  Google Scholar 

  • Shah, D. B., and Coulman, G. A., 1978, Kinetics of nitrification and denitrification reactions, Biotechnol. Bioeng. 20: 43.

    Article  CAS  Google Scholar 

  • Sharma, B., and Ahlert, R. C., 1977, Nitrification and nitrogen removal, Water Res. 11: 897.

    Article  CAS  Google Scholar 

  • Shieh, W. K., and LaMotta, E. J., 1979, The intrinsic kinetics of nitrification in a continuous flow suspended growth reactor, Water Res. 13: 1273.

    Article  CAS  Google Scholar 

  • Skinner, F. A., and Walker, N., 1961, Growth of Nitrosomonas europaea in batch and continuous culture, Arch. Mikrobiol. 38: 339.

    Article  Google Scholar 

  • Soriano, S., and Walker, F., 1973, The nitrifying bacteria in soils from Rothamsted classical fields and elsewhere, J. Appl. Bacteriol. 36: 523.

    Article  Google Scholar 

  • Srinath, E. G., Loehr, R. C., and Prakasam, T. B. S., 1976, Nitrifying organism concentration and activity, J. Environ. Eng. Div. 102: 449–463.

    CAS  Google Scholar 

  • Suzuki, I., Dular, U., and Kwok, S. C., 1974, Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts, J. Bacteriol. 120: 556.

    PubMed  CAS  Google Scholar 

  • Tanaka, H., and Dunn, I. J., 1982, Kinetics of biofilm nitrification, Biotechnol. Bioeng. 24: 669.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Uzman, S., and Dunn, I. J., 1981, Kinetics of nitrification using a fluidised sand bed reactor with attached growth, Biotechnol. Bioeng. 23: 1683.

    Article  CAS  Google Scholar 

  • Tillotson, W. R., and Wagenet, R. J., 1982, Simulation of fertiliser nitrogen under cropped situations, Soil Sci. 133: 133.

    Article  CAS  Google Scholar 

  • Topiwala, H. H., and Sinclair, C. G., 1971, Temperature relationships in continuous culture, Biotechnol. Bioeng. 13: 795.

    Article  PubMed  CAS  Google Scholar 

  • Underhill, S. E., and Prosser, J. I., 1987, Inhibition and stimulation of nitrification by potassium ethyl xanthate, J. Gen. Microbiol. 133: 3237.

    CAS  Google Scholar 

  • Vanderborght, J.-P., and Billen, G., 1975, Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20: 953.

    Article  CAS  Google Scholar 

  • Vanderborght, J.-P., Wollast, R., and Billen, G., 1977, Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis, Limnol. Oceanogr. 22: 794.

    Article  CAS  Google Scholar 

  • van Veen, J. A., and Rissel, M. J., 1981, Simulation model of the behaviour of N in soil, in: Simulation of Nitrogen Behaviour of Soil-Plants Systems (M. J. Frissel and J. A. van Veen, eds.), pp. 126–144, Pudoc, Wageningen.

    Google Scholar 

  • Ward, B. B., 1986, Nitrification in marine environments, in: Nitrification (J. I. Prosser, ed.), pp. 157–184, IRL Press, Oxford.

    Google Scholar 

  • Ward, B. B., 1987, Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus, Arch. Microbiol. 147: 126.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Masuda, S., Nishidome, K., and Wantawin, C., 1984, Mathematical model of simultaneous organic oxidation, nitrification and denitrification in rotating biomass biological contactors, Water Sci. Technol. 17: 385–397.

    Google Scholar 

  • Wong-Chong, G. M., and Loehr, R. C., 1975, The kinetics of microbial nitrification, Water Res. 9: 1099.

    Article  CAS  Google Scholar 

  • Wong-Chong, G. M., and Loehr, R. C., 1978, Kinetics of microbial nitrification: Nitrite-nitrogen oxidation, Water Res. 12: 605.

    Article  CAS  Google Scholar 

  • Wood, P., 1986, Nitrification as a bacterial energy source, in: Nitrification (J. I. Prosser, ed.), pp. 39–62, IRL Press, Oxford.

    Google Scholar 

  • Yadvinder-Singh, and Beauchamp, E. G., 1985, Alternate method for characterising nitrifier activity in soil, Soil Sci. Soc. Am. J. 49: 1432.

    CAS  Google Scholar 

  • Yoshioka, T., Terai, H., and Saiyo, Y., 1982, Growth kinetic studies of nitrifying bacteria by the immunofluorescent counting method. J. Gen. Microbiol. 28: 169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Prosser, J.I. (1990). Mathematical Modeling Of Nitrification Processes. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics