Mathematical Modeling Of Nitrification Processes

  • J. I. Prosser
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


An understanding of the microbial cycling of nutrients in natural ecosystems requires knowledge of both the types and numbers of microorganisms involved and the nature of the processes they carry out. The study of microorganisms in natural environments is, however, notoriously difficult. In particular, the isolation, characterization, and enumeration of “typical,” “dominant,” or “significant” microbial populations is plagued by the lack of reliable in situ detection techniques, problems associated with nondestructive removal of cells, and choice of suitable media and cultural conditions for growth in the laboratory. These problems are exacerbated in studies of nitrifying bacteria. Autotrophic ammonia- and nitrite-oxidizing bacteria do not form visible colonies on solid medium, and although techniques that increase the apparent sizes of colonies of ammonia oxidizers are available (Soriano and Walker, 1973), the dilution plate technique is not convenient for routine use. Enumeration of viable cells therefore requires use of the most-probable-number (MPN) technique, which introduces an intrinsic statistical variability in addition to variability arising through cell extraction, experimental technique, and choice of suitable culture media. The length of incubation period is also critical; Matulewich et al. (1975) found that MPN counts of nitrite oxidizers had not reached a maximum after 100 days of incubation. Although the MPN technique has proved invaluable in many studies, the associated variability has led some workers to consider it qualitative rather than quantitative. Some of these problems have been overcome by use of fluorescent-antibody (FA) counting techniques (Belser, 1979), which currently provide the most accurate means of assessing total nitrifier populations in natural environments but suffer from problems of specificity.


Specific Growth Rate Nitrate Concentration Dilution Rate Nitrification Rate Ammonium Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addiscott, T. M., 1983, Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories, J. Soil Sci. 34: 343.CrossRefGoogle Scholar
  2. Addiscott, T. M., and Whitmore, A. P., 1987, Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring, J. Agric. Sci. 109: 141.CrossRefGoogle Scholar
  3. Anthonisen, A., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G., 1976, Inhibition of nitrification by ammonia and nitrous acid, J. Water Pollut. Control Fed. 48: 835.PubMedGoogle Scholar
  4. Argaman, Y., 1982, Single sludge nitrogen removal from industrial wastewater, Water Sci. Technol. 14: 7.Google Scholar
  5. Armstrong, E. F., and Prosser, J. I., 1988, Growth of Nitrosomonas europaea on ammonia-treated vermiculite, Soil Biol. Biochem. 20: 409.CrossRefGoogle Scholar
  6. Bazin, M. J., 1983, Mathematics in Microbiology, Academic Press, London.Google Scholar
  7. Bazin, M. J., and Saunders, P. T., 1973, Dynamics of nitrification in a continuous flow system, Soil Biol. Biochem. 5: 531.CrossRefGoogle Scholar
  8. Bazin, M. K., Saunders, P. T., and Prosser, J. I., 1976, Models of microbial interactions in the soil, CRC Crit. Rev. Microbiol. 5: 464.Google Scholar
  9. Beccari, M., Marani, D., and Ramadori, R. 1979, A critical analysis of nitrification alternatives, Water Res. 13: 185.CrossRefGoogle Scholar
  10. Beek, J., and Frissel, M. J., 1973, Simulation of Nitrogen Behaviour in Soils, Pudoc, Wageningen.Google Scholar
  11. Belser, L. W., 1979, Population ecology of nitrifying bacteria, Annu. Rev. Microbiol. 33: 309.PubMedCrossRefGoogle Scholar
  12. Belser, L. W., 1984, Bicarbonate uptake by nitrifiers: Effects of growth rate, pH, substrate concentration and metabolic inhibitors, Appl. Environ. Microbiol. 48: 1100.PubMedGoogle Scholar
  13. Belser, L. W., and Schmidt, E. L., 1980, Growth and oxidation kinetics of three genera of ammonia oxidisers. FEMS Microbiol. Lett. 7:213.CrossRefGoogle Scholar
  14. Benedict, A. H., and Carlson, D. A., 1974, Rational assessment of the Streeter-Phelps temperature coefficient, J. Water Pollut. Control Fed. 46: 1792.Google Scholar
  15. Benefield, L., and Molz, F., 1984, A model for the activated sludge process which considers wastewater characteristics, floc behavior, and microbial populations, Biotechnol. Bioeng. 26: 352.PubMedCrossRefGoogle Scholar
  16. Bhat, K. K. S., Flowers, T. H., and O’Callaghan, J. R., 1980, A model for the simulation of the fate of nitrogen in farm wastes on land application, J. Agric. Sci. 94: 183.CrossRefGoogle Scholar
  17. Bock, E., Koops, H.-P., and Harms, S. H., 1986, Cell biology of nitrifying bacteria, in Nitrification, (J. I. Prosser, ed.) pp. 17–38, IRL Press, Oxford.Google Scholar
  18. Boon, B., and Laudelout, H., 1962, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J. 85: 440.PubMedGoogle Scholar
  19. Cameron, D. R., and Kowalenko, C. G., 1976, Modelling nitrogen processes in soil: Mathematical development and relationships, Can. J. Soil Sci. 56: 71.CrossRefGoogle Scholar
  20. Campbell, N. E., and Aleem, M. I. H., 1965, The effect of two-chloro, 6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria, Antonie van Leeuwenhoek J. Microbiol. Serol. 31: 124.CrossRefGoogle Scholar
  21. Castens, D. J., and Rozich, A. F., 1986, Analysis of batch nitrification using substrate inhibition kinetics, Biotechnol. Bioeng. 28: 461.PubMedCrossRefGoogle Scholar
  22. Charley, R. C., Hooper, D. G., and McLee, A. G., 1980, Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations, Water Res. 14: 1387.CrossRefGoogle Scholar
  23. Christensen, J. P., and Rowe, G. T., 1984, Nitrification and oxygen consumption in north west Atlantic deep-sea sediments, J. Mar. Res. 42: 1099.CrossRefGoogle Scholar
  24. Cooper, A. B., 1983a, Effect of storm events on benthic nitrifying activity, Appl. Environ. Microbiol. 46: 957.PubMedGoogle Scholar
  25. Cooper, A. B., 1983b, Population ecology of nitrifiers in a stream receiving geothermal inputs of ammonium, Appl. Environ. Microbiol. 45: 1170.PubMedGoogle Scholar
  26. Cooper, A. B., 1984, Activities of benthic nitrifiers in streams and their role in oxygen consumption, Microb. Ecol. 10: 317.CrossRefGoogle Scholar
  27. Cooper, A. B., 1986, Developing management guidelines for river nitrogenous oxygen demand, J. Water Pollut. Control Fed. 58: 845.Google Scholar
  28. Darrah, P. R., White, R. A., and Nye, P. H., 1985, Simultaneous nitrification and diffusion in soil. I. The effects of addition of low levels of ammonium chloride, J. Soil Sci. 36: 281.CrossRefGoogle Scholar
  29. Darrah, P. R., White, R. A., and Nye, P. H., 1986a, Simultaneous nitrification and diffusion in soil. II. The effects at levels of ammonium chloride which inhibit nitrification. J. Soil Sci. 37: 41.CrossRefGoogle Scholar
  30. Darrah, P. R., White, R. A., and Nye, P. H., 1986b, Simultaneous nitrification and diffusion in soil. III. The effects of the addition of ammonium sulphate, J. Soil Sci. 37: 53.CrossRefGoogle Scholar
  31. Darrah, P. R., Nye, P. H., and White, R. E., 1986c, Simultaneous nitrification and diffusion in soil. V. The effects of pH change, following the addition of ammonium sulphate, on the activity of nitrifiers, J. Soil Sci. 37: 479.CrossRefGoogle Scholar
  32. Darrah, P. R., White, R. E., and Nye, P. H., 1987, A theoretical consideration of the implications of cell clustering for the prediction of nitrification in soil, Plant Soil 99: 387.CrossRefGoogle Scholar
  33. Duffy, J., Chung, C., Boast, C., and Franklin, M., 1975, A simulation model of biophysicochemical transformations of nitrogen in tile-drained corn belt soil, J. Environ. Qual. 4: 477.CrossRefGoogle Scholar
  34. Endelman, F. J., Box, G. E. P., Boyle, J. R., Hughes, R. R., Kenney, D. R., Northup, M. L., and Saffigna, P. G., 1974, The Mathematical Modelling of Soil-Water-Nitrogen Phenomena, I. B. P. Report EDFB-IBP-74-7, Oak Ridge National Laboratory, Oak Ridge, Term.Google Scholar
  35. Feigenbaum, S., and Hadas, A., 1980, Utilisation of fertiliser nitrogen-nitrogen-15 by field-grown alfafa, Soil Sci. Soc. Am. J. 44: 1006.CrossRefGoogle Scholar
  36. Gilmour, J. T., 1984, The effects of soil properties on nitrification and nitrification inhibition, Soil Sci. Soc. Am. J. 48: 1262.CrossRefGoogle Scholar
  37. Glover, H. E., 1982, Methylamine, an inhibitor of ammonium oxidation and chemoautotrophic growth in the marine nitrifying bacterium Nitrosococcus oceanus, Arch. Microbiol. 132: 37.CrossRefGoogle Scholar
  38. Glover, H. E., 1985, The relationship between inorganic and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria, Arch. Microbiol. 142: 45.CrossRefGoogle Scholar
  39. Goloway, F., and Bender, M., 1982, Diagenetic models of interstitial nitrate profiles in deep sea suboxic sediments, Limnol. Oceanogr. 27: 624.CrossRefGoogle Scholar
  40. Gonenc, E. I., and Harremoes, P., 1985, Nitrification in rotating disc systems. I. Criteria for transition from oxygen to ammonia rate limitation, Water Res. 19: 1119–1127.CrossRefGoogle Scholar
  41. Gromiec, M., Valve, M., and Liponkoskie, M., 1982, Nutrient Removal from Waste waters by Single Sludge Systems, Tech. Res. Cent. Finl. Research Report, pp. 1–126. Department of Water Management, Institute of Meteorology and Water Management, Warsaw, Poland.Google Scholar
  42. Gujer, W., and Boller, M., 1986, Design of a nitrifying tertiary trickling filter based on theoretical concepts, Water Res. 20: 1353.CrossRefGoogle Scholar
  43. Hadas, A., Feigenbaum, N., Feigin, A., and Portnoy, R., 1986, Nitrification rates in profiles of differently managed soil types, Soil Sci. Soc. Am. J. 50: 633.CrossRefGoogle Scholar
  44. Hall, E. R., and Murphy, K. L., 1980, Estimation of nitrifying biomass and kinetics in wastewater, Water Res. 14: 297.CrossRefGoogle Scholar
  45. Hall, G. H., 1986, Nitrification in lakes, in: Nitrification (J. I. Prosser, ed.), pp. 127–156, IRL Press, Oxford.Google Scholar
  46. Hirose, E., and Tateno, M., 1984, Soil nitrogen patterns induced by colonisation of Polygonum cuspidatum on Mt. Fuji, Oecologia (Berlin) 61: 128.CrossRefGoogle Scholar
  47. Hsieh, Y. P., Douglas, L. A., and Motto, H. L., 1981, Modelling sewage sludge decomposition in soil: II. Nitrogen transformations, J. Environ. Qual. 10: 59.CrossRefGoogle Scholar
  48. Jahnke, R. A., Emerson, S. R., and Murray, J. W., 1982, A model of oxygen reduction, denitrification, and organic matter mineralisation in marine sediments, Limnol. Oceanogr. 27: 610.CrossRefGoogle Scholar
  49. Keen, G. A., and Prosser, J. I., 1987a, Steady state and transient growth of autotrophic nitrifying bacteria, Arch. Microbiol. 147: 73.CrossRefGoogle Scholar
  50. Keen, G. A., and Prosser, J. I., 1987b, Interrelationship between pH and surface growth of Nitrobacter, Soil Biol. Biochem. 19: 665.CrossRefGoogle Scholar
  51. Keen, G. A., and Prosser, J. I., 1988, The surface growth and activity of Nitrobacter. Microb. Ecol. 15: 21.CrossRefGoogle Scholar
  52. Killham, K., 1986, Heterotrophic nitrification, in: Nitrification (J. I. Prosser, ed.), pp. 117–126, IRL Press, Oxford.Google Scholar
  53. Knowles, G., Downing, A. L., and Barrett, M. J., 1965, Determination of kinetics constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer, J. Gen. Microbiol. 38: 263.PubMedGoogle Scholar
  54. Kuenen, J. G., and Robertson, L. A., 1987, Ecology of nitrification and denitrification, Symp. Soc. Gen. Microbiol. 42: 162.Google Scholar
  55. Laudelout, H., Lambert, R., Fripiat, J. L., and Pham, M. L., 1974, Effet de la temperature sur la vitesse d’oxydation de l’ammonium en nitrate par des culture mixtes de nitrifiants, Ann. Microbiol. Inst. Pasteur 125B: 75.Google Scholar
  56. Laudelout, H., Lambert, R., and Pham, M. L., 1976, Influence du pH et de la pression partielle d’oxygène sur la nitrification, Ann. Microbiol. Inst. Pasteur 127A: 367.Google Scholar
  57. Macdonald, R. M., 1979, Populations dynamics of the nitrifying bacterium, Nitrosolobus in soil, J. Appl. Ecol. 16: 529.CrossRefGoogle Scholar
  58. Malhi, S. S., and McGill, W. B., 1982, Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration, Soil Biol. Biochem. 14: 393.CrossRefGoogle Scholar
  59. Matulewich, V. A., Strom, P. F., and Finstein, M. S., 1975, Length of incubation for enumerating nitrifying bacteria present in various environments, Appl. Microbiol. 29: 265.PubMedGoogle Scholar
  60. McMeekin, T. A., Olley, J., and Ratkowsky, D. A., 1988, Temperature effects on bacterial growth rates, in: Physiological Models in Microbiology (M. J. Bazin and J. I. Prosser, eds.), pp. 75–89, CRC Press, Boca Raton, Fla.Google Scholar
  61. Mehran, M., and Tanji, K. K., 1974, Computer modelling of nitrogen transformation in soils, J. Environ. Qual. 3: 391.CrossRefGoogle Scholar
  62. Meikle, R. W., 1979, Prediction of ammonium nitrogen fertiliser disappearance from soils in the presence and absence of N-serve nitrogen stabilisers, Soil Sci. 127: 292.CrossRefGoogle Scholar
  63. Molina, J. A. E., 1985, Components of rates of ammonium oxidation in soil, Soil Sci. Soc. Am. J. 49: 603.CrossRefGoogle Scholar
  64. Morrill, L. G., and Dawson, J. E., 1962, Growth rates of nitrifying chemoautotrophs in soil, J. Bacteriol. 83: 205.PubMedGoogle Scholar
  65. Myrold, D. D., and Tiedje, J. M., 1986, Simultaneous estimation of several nitrogen cycle rates using 15N: Theory and application. Soil Biol. Biochem. 18: 559.CrossRefGoogle Scholar
  66. Neufeld, R., Greenfield, J., and Rieder, B., 1986, Temperature, cyanide and phenolic nitrification inhibition, Water Res. 20: 633.CrossRefGoogle Scholar
  67. Nihtila, M., and Virkkunen, J., 1977, Practical identifiability of growth and substrate consumption models, Biotechnol. Bioeng. 19: 1831.PubMedCrossRefGoogle Scholar
  68. Novak, L. T., 1979, Role of agitation conditions in nitrification, Biotechnol. Bioeng. 21: 1457.CrossRefGoogle Scholar
  69. Oremland, R. S., and Capone, D. G., 1988, Use of “specific” inhibitors in biogeochemistry and microbial ecology, in: Advances in Microbial Ecology, Vol. 10 (K. C. Marshall, ed.), pp. 285–383, Plenum Press, New York.CrossRefGoogle Scholar
  70. Painter, H. A., 1986, Nitrification in the treatment of sewage and waste-waters, in: Nitrification (J. I. Prosser, ed.), pp. 185–211, IRL Press, Oxford.Google Scholar
  71. Poduska, R. A., and Andrews, J. F., 1975, Dynamics of nitrification in the activated sludge process, J. Water Pollut. Control Fed. 47: 2599.PubMedGoogle Scholar
  72. Poon, C. P. C., Chin, H. K., Smith, E. D., and Mikaucki, W. J., 1981, Upgrading with rotating biological contactors for ammonia nitrogen removal, J. Water Pollut. Control Fed. 53: 1158–1165.Google Scholar
  73. Powell, S. J., and Prosser, J. I., 1985, The effect of nitrapyrin and chloropicolinic acid on ammonium oxdiation by Nitrosomonas europaea, FEMS Microbiol. Lett. 28: 51.CrossRefGoogle Scholar
  74. Powell, S. J., and Prosser, J. I., 1986a, Inhibition of ammonium oxidation by nitrapyrin in soil and liquid culture, Appl. Environ. Microbiol. 52: 782.PubMedGoogle Scholar
  75. Powell, S. J., and Prosser, J. I., 1986b, The effect of copper on inhibition by nitrapyrin of growth of Nitrosomonas europaea, Curr. Microbiol. 14: 177.CrossRefGoogle Scholar
  76. Prosser, J. I., 1988, Mathematical modelling and computer simulation, in Computers in Microbiology—A Practical Approach (T. Bryant and J. W. T. Wimpenny, eds.), pp. 125–159, IRL Press, Oxford.Google Scholar
  77. Prosser, J. I., and Bazin, M. J., 1988, The use of packed column reactors to study microbial nitrogen transformations in the soil, in: Handbook of Laboratory Systems for Microbiol. Ecosystem Research (J. W. T. Wimpenny, ed.), pp. 31–49, CRC Press Inc., Boca Raton, Fla.Google Scholar
  78. Prosser, J. I., and Gray, T. R. G., 1977, Use of finite difference method to study a model system of nitrification at low substrate concentrations, J. Gen. Microbiol. 102: 119.Google Scholar
  79. Quinlan, A. V., 1980, The thermal sensitivity of nitrification as a function of the concentration of nitrogen substrate, Water Res. 14: 1501.CrossRefGoogle Scholar
  80. Quinlan, A. V., 1984, Prediction of the optimum pH for ammonia-N oxidation by Nitrosomonas europaea in well-aerated natural and domestic-waste waters, Water Res. 18: 561.CrossRefGoogle Scholar
  81. Randall, C. W., Benefield, L. D., and Buth, D., 1982, The effects of temperature on the biochemical reaction rates of the activated sludge process, Water Sci. Technol. 14: 413.Google Scholar
  82. Robinson, J. A., 1985, Determining microbial kinetic parameters using nonlinear regression analysis. Advantages and limitations in microbial ecology, in: Advances in Microbial Ecology, Vol. 8 (K. C. Marshall, ed.), pp. 61–114, Plenum Press, New York.CrossRefGoogle Scholar
  83. Roels, J. A., and Kossen, N. W. F., 1978, On the modelling of microbial metabolism, Prog. Ind. Microbiol. 14: 95.Google Scholar
  84. Rozich, A. F., and Castens, D. J., 1986, Inhibition kinetics of nitrification in continuous-flow reactors, J. Water Pollut. Control Fed. 58: 220.Google Scholar
  85. Saunders, P. T., and Bazin, M. J., 1973, Non steady state studies of nitrification in soil: Theoretical considerations, Soil Biol. Biochem. 5: 545.CrossRefGoogle Scholar
  86. Schmidt, E. L., 1982, Nitrification in soil, Agronomy 22: 253.Google Scholar
  87. Seifert, J., 1980, The effect of temperature on nitrification intensity in soil, Folia Microbiol. 25: 144.CrossRefGoogle Scholar
  88. Shah, D. B., and Coulman, G. A., 1978, Kinetics of nitrification and denitrification reactions, Biotechnol. Bioeng. 20: 43.CrossRefGoogle Scholar
  89. Sharma, B., and Ahlert, R. C., 1977, Nitrification and nitrogen removal, Water Res. 11: 897.CrossRefGoogle Scholar
  90. Shieh, W. K., and LaMotta, E. J., 1979, The intrinsic kinetics of nitrification in a continuous flow suspended growth reactor, Water Res. 13: 1273.CrossRefGoogle Scholar
  91. Skinner, F. A., and Walker, N., 1961, Growth of Nitrosomonas europaea in batch and continuous culture, Arch. Mikrobiol. 38: 339.CrossRefGoogle Scholar
  92. Soriano, S., and Walker, F., 1973, The nitrifying bacteria in soils from Rothamsted classical fields and elsewhere, J. Appl. Bacteriol. 36: 523.CrossRefGoogle Scholar
  93. Srinath, E. G., Loehr, R. C., and Prakasam, T. B. S., 1976, Nitrifying organism concentration and activity, J. Environ. Eng. Div. 102: 449–463.Google Scholar
  94. Suzuki, I., Dular, U., and Kwok, S. C., 1974, Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts, J. Bacteriol. 120: 556.PubMedGoogle Scholar
  95. Tanaka, H., and Dunn, I. J., 1982, Kinetics of biofilm nitrification, Biotechnol. Bioeng. 24: 669.PubMedCrossRefGoogle Scholar
  96. Tanaka, H., Uzman, S., and Dunn, I. J., 1981, Kinetics of nitrification using a fluidised sand bed reactor with attached growth, Biotechnol. Bioeng. 23: 1683.CrossRefGoogle Scholar
  97. Tillotson, W. R., and Wagenet, R. J., 1982, Simulation of fertiliser nitrogen under cropped situations, Soil Sci. 133: 133.CrossRefGoogle Scholar
  98. Topiwala, H. H., and Sinclair, C. G., 1971, Temperature relationships in continuous culture, Biotechnol. Bioeng. 13: 795.PubMedCrossRefGoogle Scholar
  99. Underhill, S. E., and Prosser, J. I., 1987, Inhibition and stimulation of nitrification by potassium ethyl xanthate, J. Gen. Microbiol. 133: 3237.Google Scholar
  100. Vanderborght, J.-P., and Billen, G., 1975, Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification, Limnol. Oceanogr. 20: 953.CrossRefGoogle Scholar
  101. Vanderborght, J.-P., Wollast, R., and Billen, G., 1977, Kinetic models of diagenesis in disturbed sediments. Part 2. Nitrogen diagenesis, Limnol. Oceanogr. 22: 794.CrossRefGoogle Scholar
  102. van Veen, J. A., and Rissel, M. J., 1981, Simulation model of the behaviour of N in soil, in: Simulation of Nitrogen Behaviour of Soil-Plants Systems (M. J. Frissel and J. A. van Veen, eds.), pp. 126–144, Pudoc, Wageningen.Google Scholar
  103. Ward, B. B., 1986, Nitrification in marine environments, in: Nitrification (J. I. Prosser, ed.), pp. 157–184, IRL Press, Oxford.Google Scholar
  104. Ward, B. B., 1987, Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus, Arch. Microbiol. 147: 126.CrossRefGoogle Scholar
  105. Watanabe, Y., Masuda, S., Nishidome, K., and Wantawin, C., 1984, Mathematical model of simultaneous organic oxidation, nitrification and denitrification in rotating biomass biological contactors, Water Sci. Technol. 17: 385–397.Google Scholar
  106. Wong-Chong, G. M., and Loehr, R. C., 1975, The kinetics of microbial nitrification, Water Res. 9: 1099.CrossRefGoogle Scholar
  107. Wong-Chong, G. M., and Loehr, R. C., 1978, Kinetics of microbial nitrification: Nitrite-nitrogen oxidation, Water Res. 12: 605.CrossRefGoogle Scholar
  108. Wood, P., 1986, Nitrification as a bacterial energy source, in: Nitrification (J. I. Prosser, ed.), pp. 39–62, IRL Press, Oxford.Google Scholar
  109. Yadvinder-Singh, and Beauchamp, E. G., 1985, Alternate method for characterising nitrifier activity in soil, Soil Sci. Soc. Am. J. 49: 1432.Google Scholar
  110. Yoshioka, T., Terai, H., and Saiyo, Y., 1982, Growth kinetic studies of nitrifying bacteria by the immunofluorescent counting method. J. Gen. Microbiol. 28: 169.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. I. Prosser
    • 1
  1. 1.Department of Genetics and Microbiology, Marischal CollegeUniversity of AberdeenAberdeenScotland

Personalised recommendations