Advertisement

The Ecology of Microbial Corrosion

  • Tim Ford
  • Ralph Mitchell
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

Corrosion reactions may be induced or enhanced by microbial activity. The classic corrosion reaction is electrochemical, resulting in the dissolution of metal from anodic sites with subsequent electron acceptance at cathodic sites. Consumption of electrons varies, depending on the redox potential of the surface. In an aerobic environment, oxygen is the electron acceptor, forming metal oxides and hydroxides. At low redox potentials, protons become the electron acceptors, yielding hydrogen gas and other highly reduced products. The process of corrosion is accelerated by removal of the end products of the chemical reactions.

Keywords

Hydrogen Permeation Microbial Corrosion Corrosion Engineer Microbial Film Ferrous Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absolom, D. R., Lamberti, F. W., Policova, Z., Zingg, W., Van Oss, D. J., and Neumann, A. W., 1983, Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol. 46: 90–97.PubMedGoogle Scholar
  2. Ahring, B. K., and Westermann, P., 1984, Isolation and characterization of a thermophilic, acetateutilizing methanogenic bacterium, FEMS Microbiol. Lett. 25: 47–52.Google Scholar
  3. Ahring, B. K., and Westermann, P., 1987a, Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria, Appl. Environ. Microbiol. 53: 429–433.PubMedGoogle Scholar
  4. Ahring, B. K., and Westermann, P., 1987b, Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture, Appl. Environ. Microbiol. 53: 434–439.PubMedGoogle Scholar
  5. Allen, L. A., Cairns, A., Eden, G. E., Wheatland, A. B., Wormwell, F., and Nurse, T. J., 1948, Microbiological problems in the manufacture of sugar from beet: Part 1. Corrosion in the diffusion battery and in the recirculation system, J. Soc. Chem. Ind. 67: 70–77.Google Scholar
  6. Baier, R. E., 1973, Influence of the initial surface condition of material on bioadhesion, in: Proceedings of the 3rd International Congress on Marine Corrosion and Fouling (R. F. Acker, ed.), pp. 15–48, Northwestern University Press, Evanston, Ill.Google Scholar
  7. Baier, R. E., 1984, Adhesion in the biologic environment, Biomater. Med. 12: 133–160.Google Scholar
  8. Baier, R. E., Meyer, A. E., Natiella, J. R., Natielia, R. R., and Carter, J. M., 1984, Surface properties determine bioadhesive outcomes: methods and results, J. Biomed. Mater. Res. 18: 337–355.Google Scholar
  9. Barry, S., and Houghton, D. R. (eds.), 1986, Biodeterioration 6, C.A.B. International, Slough, United Kingdom.Google Scholar
  10. Beguin, P., and Millet, J., 1986, Applied genetics of anaerobic thermophiles, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 179–195, John Wiley & Sons, Inc., New York.Google Scholar
  11. Belkin, S., Wirsen, C. O., and Jannasch, H. W., 1985, Biological and abiological sulfur reduction at high temperatures, Appl. Environ. Microbiol. 49: 1057–1061.PubMedGoogle Scholar
  12. Berk, S., Mitchell, R., Bobbie, R., Nickels, J., and White, D. C., 1981, Microfouling on metal surfaces exposed to seawater, Int. Biodeterior. Bull. 17: 29–37.Google Scholar
  13. Bernstein, I. M., and Thompson, A. W. (eds.), 1974, Hydrogen in Metals, Am. Society for Metals, Metals Park, Ohio.Google Scholar
  14. Beyer, R., Melton, L. D., and Kennedy, L. D., 1983, The structure of the neutral polysaccharide gum secreted by Rhizobium strain CB744, Carbohydr. Res. 122: 155–163.Google Scholar
  15. Bitton, G., and Freihofer, V., 1978, Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes, Microb. Ecol. 4: 119–125.Google Scholar
  16. Black, J. P., Ford, T. E., and Mitchell, R., 1988, Corrosion behaviour of metal-binding exopolymers from iron-and manganese-depositing bacteria, CORROSION/88, Paper 94, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  17. Boone, D. R., and Bryant, M. P., 1980, Propionate-degrading bacterium, Syntrophobacter wolinni sp. nov. gen. nov., from methanogenic ecosystems, Appl. Environ. Microbiol. 40: 626–632.PubMedGoogle Scholar
  18. Borenstein, S. W., 1988, Microbiologically influence corrosion failures of austenitic stainless steel welds, CORROSION/88, Paper 78, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  19. Borenstein, S. W., and Lindsay, P. B., 1988, Microbiologically influenced corrosion failure analyses, Mater. Perform. 27: 51–54.Google Scholar
  20. Boyle, C. D., and Reade, A. E., 1983, Characterization of two extracellular polysaccharides from marine bacteria, Appl. Environ. Microbiol. 46: 392–399.PubMedGoogle Scholar
  21. Brierley, J. A., and Brierley, C. L., 1986, Microbial mining using thermophilic microorganisms, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 279–305, John Wiley & Sons, Inc., New York.Google Scholar
  22. Brock, T. D., and Boylen, K. L., 1973, Presence of thermophilic bacteria in laundry and domestic hotwater heaters, Appl. Microbiol. 25: 72–76.PubMedGoogle Scholar
  23. Brock, T. D., and Freeze, H., 1969, Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile, J. Bacteriol. 98: 289–297.PubMedGoogle Scholar
  24. Brown, M. J., and Lester, J. N., 1979, Metal removal in activated sludge: the role of bacterial extracellular polymers, Water Res. 13: 817–837.Google Scholar
  25. Brown, M. J., and Lester, J. N., 1982a, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—I. Effects of metal concentration, Water Res. 16: 1539–1548.Google Scholar
  26. Brown, M. J., and Lester, J. N., 1982b, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—II. Effects of mean cell retention time, Water Res. 16: 1549–1560.Google Scholar
  27. Brown, L. R., and Pabst, G. S., 1975, Biodeterioration of stainless steel and aluminum alloys, in: Proceedings of the 3rd International Biodegradation Symposium (J. M. Sharpley and A. M. Kaplan eds.), Applied Science Publishers Ltd., London.Google Scholar
  28. Bryant, M. P., 1979, Microbial methane production—theoretical aspects, J. Anim. Sci. 48: 193–201.Google Scholar
  29. Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59: 20–31.PubMedGoogle Scholar
  30. Bryant, M. P., Campbell, L. L., Reddy, C. A., and Crabill, M. R., 1977, Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria, Appl. Environ. Microbiol. 33: 1162–1169.PubMedGoogle Scholar
  31. Caldwell, D. E., and Caldwell, S. J., 1980, Fine structure of in situ microbial iron deposits, Geomicrobiol. J. 2: 39–53.Google Scholar
  32. Chiong, M., Barra, R., Gonzalez, E., and Vasquez, C., 1988, Resistance of Thermus spp. to potassium tellurite, Appl. Environ. Microbiol. 54: 610–612.PubMedGoogle Scholar
  33. Christensen, B. E., Kjosbakken, J., and Smidsrod, O., 1985, Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic Pseudomonas sp. strain NCMB 2021, Appl. Environ. Microbiol. 50: 837–845.PubMedGoogle Scholar
  34. Coles, E. L., and Davies, R. L., 1956, The protection of cable sheathing: The “phenol corrosion” of lead, Chem. Ind. 39: 1030–1035.Google Scholar
  35. Congregado, F., Estanol, I., Espuny, M. J., Fuste, M. C., Manresa, M. A., Marques, A. M., Guinea, J., and Simon-Pujol, M. D., 1985, Preliminary studies on the production and composition of the extracellular polysaccharide synthesized by Pseudomonas sp. EPS-5028, Biotechnol. Lett. 7: 883–888.Google Scholar
  36. Cord-Ruwisch, R., and Widdel, F., 1986, Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria, Appl. Microbiol. Biotechnol. 25: 169–174.Google Scholar
  37. Costello, J. A., 1974, Cathodic depolarization by the sulphate-reducing bacteria, S. Afr. J. Sci. 70: 202–204.Google Scholar
  38. Costerton, J. W., Geesey, G. G., and Cheng, K.J., 1978, How bacteria stick, Sci. Am. 238: 86–95.PubMedGoogle Scholar
  39. Costerton, J. W., Irvin, R. T., and Cheng, K.-J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35: 299–324.PubMedGoogle Scholar
  40. Costerton, J. W, Cheng, K.J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol. 41: 435–464.PubMedGoogle Scholar
  41. Costerton, J. W., Geesey, G. G., and Jones, P. A., 1988, Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies, Mater. Perform 27: 49–53.Google Scholar
  42. Cowen, J. P., and Silver, M. W., 1984, The association of iron and manganese with bacteria on marine macroparticulate material, Science 224: 1340–1342.PubMedGoogle Scholar
  43. Crombie, D. J., Moody, G. J., and Thomas, J. D. R., 1980, Corrosion of iron by sulphate-reducing bacteria, Chem. Ind. 21: 500–504.Google Scholar
  44. Daniels, L., Belay, N., Rajagopal, B. S., and Weimer, P. J., 1987, Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons, Science 237: 509–511.PubMedGoogle Scholar
  45. Devanathan, M. A. V., and Stachurski, Z., 1962, Adsorption and diffusion of electrolytic hydrogen in palladium, Proc. R. Soc. Lond. A 270: 90–110.Google Scholar
  46. Dexter, S. C., Sullivan, J. D., Williams, J., and Watson, S. W., 1975, Influence of substrate wettability on the attachment of marine bacteria to various surfaces, Appl. Microbiol. 30: 298–308.PubMedGoogle Scholar
  47. Donham, J. E., Farquhar, G., Johnston, D., Junkin, E., Lane, D., Edwards, D., and Magnon, L., 1976, The Role of Bacteria in the Corrosion of Oil Field Equipment, TPC Publication 3, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  48. Dowling, N. J. E., Widdel, F., and White, D. C., 1986, Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria, J. Gen. Microbiol. 132: 1815–1825.Google Scholar
  49. Dowling, N. J. E., Guezennec, J., Lemoine, M. L., Tunlid, A., and White, D. C., 1988, Analysis of carbon steels affected by bacteria using electrochemical impedance and direct current techniques, Corrosion 44: 869–874.Google Scholar
  50. Edlund, A., Nichols, P. D., Roffey, R., and White, D. C., 1985, Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species, J. Lipid Res. 26: 982–988.PubMedGoogle Scholar
  51. Farrah, S. R., and Unz, R. F., 1976, Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge, Appl. Environ. Microbiol. 32: 33–37.PubMedGoogle Scholar
  52. Fischer, F., Zillig, W., Stetter, K. O., and Schreiber, G., 1983, Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria, Nature (London) 301: 511–513.Google Scholar
  53. Flatau, G. N., Clement, R. L., and Gauthier, M. J., 1985, Cadmium binding sites on cells of a marine pseudomonad, Chemosphere 14: 1409–1412.Google Scholar
  54. Fletcher, M., and Loeb, G. I., 1979, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37: 67–72.PubMedGoogle Scholar
  55. Ford, T. E., Maki, J. S., and Mitchell, R., 1987a, The role of metal-binding bacterial exopolymers in corrosion processes, CORROSION/87, Paper 380, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  56. Ford, T. E., Walch, M., and Mitchell, R., 1987b, Corrosion of metals by thermophilic microorganisms, Mater. Perform. 26: 35–39.Google Scholar
  57. Ford, T. E., Maki, J. S., and Mitchell, R., 1988, Involvement of bacterial exopolymers in biodeterioration of metals, in: Biodeterioration 7, (D. R. Houghton, R. N. Smith, and H. O. W. Eggins, eds.) pp. 378–384, Elsevier Applied Science, Barking, United Kingdom.Google Scholar
  58. Ford, T. E., Walch, M., Mitchell, R., Kaufman, M. J., Vestal, J. R., Ditner, S. A., and Lock, M. A., 1989, Microbial film formation on metals in an enriched arctic river, Biofouling 1: 301–311.Google Scholar
  59. Forrester, J. A., 1959, Destruction of concrete caused by sulfur bacteria in a purification plant, Surveyor 118: 881–884.Google Scholar
  60. Frankel, R. B., and Blakemore, R. P., 1984, Precipitation of Fe3O4 in magnetotactic bacteria, Phil. Trans. R. Soc. Lond. B 304: 567–574.Google Scholar
  61. Friedman, B. A., and Dugan, P. R., 1968, Concentration and accumulation of metallic ions by the bacterium Zoogloea, Dev. Ind. Microbiol. 9: 381–388.Google Scholar
  62. Gaines, R. H., 1910, Bacterial activity as a corrosive influence in the soil, Ind. J. Eng. Ind. Chem. 2: 128–135.Google Scholar
  63. Gaylarde, C., Johnston, J., 1986, Anaerobic metal corrosion in cultures of bacteria from estuarine sediments, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 137–143, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  64. Geesey, G. G., and Mittelman, M. W., 1985, The role of high-affinity, metal-binding exopolymers of adherent bacteria in microbial-enhanced corrosion, CORROSION/85, Paper 297, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  65. Geesey, G. G., Mittelman, M. W., Iwaoka, T., and Griffiths, P. R., 1986, Role of bacterial exopolymers in the deterioration of metallic copper surfaces, Mater. Perform. 25: 37–40.Google Scholar
  66. Geesey, G. G., Iwaoka, T., and Griffiths, P. R., 1987, Characterization of interfacial phenomena occurring during exposure of a thin copper film to an aqueous suspension of an acidic polysaccharide, J. Colloid Interface Sci. 120: 370–376.Google Scholar
  67. Geesey, G. G., Jang, L., Jolley, J. G., Hankins, M. R., Iwaoka, T., and Griffiths, P. R., 1988, Binding of metal ions by extracellular polymers of biofilm bacteria, Wat. Sci. Tech. 20: 161–165.Google Scholar
  68. Ghiorse, W. C., 1984, Biology of iron-and manganese-depositing bacteria, Annu. Rev. Microbiol. 38: 515–550.PubMedGoogle Scholar
  69. Gragnolino, G., and Tuovinen, O. H., 1984, The role of sulphate-reducing bacteria and sulphur oxidizing bacteria in the localized corrosion of iron-base alloy: A review, Int. Biodeterior. Bull. 20: 9–26.Google Scholar
  70. Griffin, R. B., Cornwell, L. R., Seitz, W., and Estes, E., 1988, Localized corrosion under biofouling, CORROSION/88, Paper 400, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  71. Hamilton, W. A., 1985, Sulphate-reducing bacteria and anaerobic corrosion, Annu. Rev. Microbiol. 39: 195–217.PubMedGoogle Scholar
  72. Hamilton, W. A., 1987, Biofilms: Microbial interactions and metabolic activities, in: Ecology of Microbial Communities, Society for General Microbiology Symposium 41 (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), pp. 361–387, Cambridge University Press, Cambridge.Google Scholar
  73. Hansen, D. J., Tighe-Ford, D. J., and George, G. C., 1981, Role of the mycelium in the corrosive activity of Cladosporium resinae in a dieso/water system, Int. Biodeterior. Bull. 17: 103–112.Google Scholar
  74. Hardy, J. A., 1983, Utilization of cathodic hydrogen by sulphate-reducing bacteria, Br. Corros. J. 18: 190–193.Google Scholar
  75. Hardy, J. A., and Bown, J. L., 1984, The corrosion of mild steel by biogenic sulfide films exposed to air, Corrosion 40: 650–654.Google Scholar
  76. Hendey, N. I., 1964, Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks, Trans. Br. Mycol. Soc. 47: 467–475.Google Scholar
  77. Hueck van der Plas, 1968, The micro-biological deterioration of porous building materials, Int. Bioderior. Bull. 4: 11–28.Google Scholar
  78. Imanaka, T., and Aiba, S., 1986, Applied genetics of aerobic thermophiles, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 159–178, John Wiley & Sons, Inc., New York.Google Scholar
  79. Iverson, W. P., 1974, Microbial corrosion of iron, in: Microbial Iron Metabolism (J. B. Neilands, ed.), pp. 475–512, Academic Press, New York.Google Scholar
  80. Iverson, W. P., 1981, An overview of the anaerobic corrosion of underground metallic structures, evidence for a new mechanism, in: Underground Corrosion (E. Escalante, ed.), pp. 33–52, Technical Publication 741, American Society for Testing and Materials, Philadelphia.Google Scholar
  81. Iverson, W. P., 1984, Mechanism of anaerobic corrosion of steel by sulfate reducing bacteria, Mater. Perform. 23: 28–30.Google Scholar
  82. Iverson, W. P., and Olson, G. J., 1983, Anaerobic corrosion by sulphate-reducing bacteria due to highly reactive volatile phosphorus compound, in: Microbial Corrosion, pp. 46–53, The Metal Society, London.Google Scholar
  83. Iverson, W. P., and Olson, G. J., 1984, Problems relating to sulphate-reducing bacteria in the petroleum industry, in: Petroleum Microbiology (R. M. Atlas, ed.), pp. 619–641, Macmillan, New York.Google Scholar
  84. Iverson, W. P., Olson, G. J., and Heverly, L. F., 1986, The role of phosphorus and hydrogen sulfide in the anaerobic corrosion of iron and the possible detection of this corrosion by an electrochemical noise technique, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 154–161, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  85. Johnson, H. H., 1974, Hydrogen gas embrittlement, in Hydrogen in Metals (I. M. Bernstein and A. W. Thompson, eds.), pp. 35–49, American Society for Metals, Metals Park, Ohio.Google Scholar
  86. Jolley, J. G., Geesey, G. G., Hankins, M. R., Wright, R. B., and Wichlacz, P. L., 1988, Auger electron spectroscopy and X-ray photoelectron spectroscopy of the biocorrosion of copper by gum arabic, bacterial culture supernatant and Pseudomonas atlantica exopolymer, J. Surf. Interface Anal. 11: 371–376.Google Scholar
  87. Jones, J. G., 1986, Iron transformations by freshwater bacteria, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), 149–185, Plenum Press, New York.Google Scholar
  88. Kasahara, K., and Kajiyama, F., 1986, Role of sulfate reducing bacteria in the localized corrosion of buried pipes, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 171–183, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  89. Kaspar, H. F., and Wurhmann, K., 1978, product inhibition in sludge digestion, Microb. Ecol. 4: 241–248.Google Scholar
  90. Kerger, B. D., Nichols, P. D., Sand, W., Bock, E., and White, D. C., 1987, Association of acid-producing thiobacilli with degradation of concrete: analysis by’ signature’ fatty acids from the polar lipids and lipopolysaccharide, J. Ind. Microbiol. 2: 63–69.Google Scholar
  91. King, R. A., and Miller, J. D. A., 1971, Corrosion by the sulphate-reducing bacteria, Nature (London) 233: 491–492.Google Scholar
  92. Kobrin, G., 1976, Corrosion by microbiological organisms in natural waters, Mater. Perform. 15: 38–43.Google Scholar
  93. Kushner, D. J. (ed.), 1978, Microbial Life in Extreme Environments, Academic Press, New York.Google Scholar
  94. Laanbroek, H., Abee, T., and Voogd, I. L., 1982, Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulphate and hydrogen, Arch. Microbiol. 133: 178–184.Google Scholar
  95. Lester, J. N., Sterrett, R. M., Rudd, T., and Brown, M. J., 1984, Assessment of the role of bacterial extracellular polymers in controlling metal removal in biological waste water treatment, in: Microbiological Methods for Environmental Biotechnology (J. M. Grainger and J. M. Lynch, eds.), pp. 197–217, Academic Press, London and Orlando.Google Scholar
  96. Little, B. J., Walch, M., Wagner, P., Gerchakov, S. M., and Mitchell, R., 1984, The impact of extreme obligate thermophilic bacteria on corrosion processes, in Proceedings of the 6th International Congress on Marine Corrosion and Fouling, pp. 511–520.Google Scholar
  97. Little, B., Wagner, P., and Gerchakov, S. M., 1986a, A quantitative investigation of mechanisms for microbial corrosion, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 209–214, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  98. Little, B., Wagner, P., Gerchakov, S. M., Walch, M., and Mitchell, R., 1986b, The involvement of a thermophilic bacterium in corrosion processes, Corrosion 42: 533–536.Google Scholar
  99. Little, B. J., Wagner, P., Maki, J. S., Walch, M., and Mitchell, R., 1986c, Factors influencing the adhesion of microorganisms to surfaces, J. Adhes. 20: 187–210.Google Scholar
  100. Little, B., Wagner, P., and Jacobus, J., 1988, The impact of sulfate-reducing bacteria on welded coppernickel seawater piping systems, CORROSION/88, Paper 81, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  101. Lutey, R., 1980, Microbiological corrosion, CORROSION/80, Paper 39, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  102. Maki, J. S., and Mitchell, R., 1988, L’adhesion microbienne aux surfaces et ses consequences, in: Microorganisms dans les Ecosystemes Oceaniques (A. Bianchi, D. Marty, J.-C. Bertrand, C. Caumette, and M. Gauthier, eds.), pp. 387–409, Masson, Paris.Google Scholar
  103. Marshall, K. C. (ed.), 1984, Microbial Adhesion and Aggregation, Dahlem Konferenzen, Springer-Verlag, Berlin.Google Scholar
  104. Marszalek, D. S., Gerchakov, S. M., and Udey, L. R., 1979, Influence of substrate composition on marine microfouling, Appl. Environ. Microbiol. 38: 987–995.PubMedGoogle Scholar
  105. Martin, J. P., 1971, Decomposition and binding action of polysaccharides in soil, Soil Biol. Biochem. 3: 33–41.Google Scholar
  106. Martin, J. P., Ervin, J. O., and Richards, S. J., 1972, Decomposition and binding action in soil of some mannose-containing microbial polysaccharides and their Fe, Al, Zn, and Cu complexes, Soil Sci. 113: 322–327.Google Scholar
  107. Mclnerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122: 129–135.Google Scholar
  108. Mclnerney, M. J., Mackie, R. I., and Bryant, M. P., 1981a, Syntrophic association of a butyratedegrading bacterium and Methanosarcina enriched from bovine rumen fluid, Appl. Environ. Microbiol. 41: 826–828.Google Scholar
  109. Mclnerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981b, Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41: 1029–1039.Google Scholar
  110. Miller, J. D. A. (ed.), 1970, Microbial Aspects of Metallurgy, American Elsevier, New York.Google Scholar
  111. Mittelman, M. W., and Geesey, G. G., 1985, Copper-binding characteristics of exopolymers from a freshwater sediment bacterium, Appl. Environ. Microbiol. 49: 846–851.PubMedGoogle Scholar
  112. Moosavi, A. N., Dawson, J. L., and King, R. A., 1986, The effect of sulphate-reducing bacteria on the corrosion of reinforced concrete, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 291–308, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  113. Mountfort, D. O., and Bryant, M. P., 1982, Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge, Arch. Microbiol. 133: 249–256.Google Scholar
  114. Mountford, D. O., Brulla, W. J., Krumholz, L. R., and Bryant, M. P., 1984, Syntrophus buswellii gen. now, sp. nov.: A benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacterial. 34: 216–217.Google Scholar
  115. Nakai, Y., Kurahashi, R, Totsuka, N., and Wesugi, Y., 1982, Effect of corrosive environment on hydrogen induced cracking, CORROSION/82, Paper 132, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  116. Nealson, K. H., 1983a, The microbial iron cycle, in: Microbial Geochemistry (W. E. Krumbein, ed.), pp. 159–190, Blackwell, Oxford.Google Scholar
  117. Nealson, K. H., 1983b, The microbial manganese cycle, in: Microbial Geochemistry (W. E. Krumbein, ed.), pp. 191–221, Blackwell, Oxford.Google Scholar
  118. Ng, T. K., and Kenealy, W. F., 1986, Industrial applications of thermostable enzymes, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 197–215, John Wiley & Sons, Inc., New York.Google Scholar
  119. Nichols, P. D., Guckert, J. B., and White, D. C., 1986, Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disolphide adduets, J. Microbiol. Methods 5: 49–55.Google Scholar
  120. Obuekwe, C., O., and Westlfake, D. W. S., 1982, Effect of reducible compounds (potential electron acceptors) on reduction of ferric iron by Pseudomonas species, Microbiol. Lett. 19: 57–62.Google Scholar
  121. Obuekwe, C. O., Westlake, D. W. S., and Cook, F. D., 1981a, Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil, Can. J. Microbial. 27: 692–697.Google Scholar
  122. Obuekwe, C. O., Westlake, D. W. S., Cook, F. D., and Costerton, J. W., 1981b, Surface changes in mild steel coupons from the action of corrosion-causing bacteria, Appl. Environ. Microbiol. 41: 766–774.PubMedGoogle Scholar
  123. Obuekwe, C. O., Westlake, D. W. S., Plambeck, I. A., and Cook, F. D., 1981c, Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. I. Polarization characteristics, Corrosion 37: 461–467.Google Scholar
  124. Obuekwe, C. O., Westlake, D. W. S., Plambeck, J. A., and Cook, F. D., 1981d, Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. II. Mechanism of anodic depolarization, Corrosion 37: 632–637.Google Scholar
  125. Obuekwe, C. O., Westlake, D. W. S., and Cook, F. D., 1983, Corrosion of Pembina crude oil pipeline: The origin and mode of formation of hydrogen sulfide, Eur. J. Appl. Microbiol. Biotechnol. 17: 173–177.Google Scholar
  126. Odom, J. M., and Peck, H. D., 1981, Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacteria, Desulfovibrio sp., FEMS Microbiol. Lett. 12: 47–50.Google Scholar
  127. Pankhama, I. P., 1988, Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion, Biofouting 1: 27–47.Google Scholar
  128. Pankhania, I. P., Moosavi, A. N., and Hamilton, W. A., 1986a, Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hidenborough), J. Gen. Microbiol. 132: 3357–3365.Google Scholar
  129. Pankhania, I. P., Gow, L. A., and Hamilton, W. A., 1986b, The effect of hydrogen, on the growth of Desulfovibrio vulgaris (Hidenborough) on lactate, J. Gen, Microbiol. 132: 3349–3356.Google Scholar
  130. Parker, C.D., 1945a, The corrosion of concrete. 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide, Aust. J. Exp. Biol. Med. Sci. 23: 81–90.Google Scholar
  131. Parker, C. D., 1945b, The corrosion of concrete. 2. The function of Thiohacillus concretivorus (nov. spec.) in the corrosion of concrete exposed to atmospheres containing hydrogen sulphide, Aust. J. Exp. Biol. Med. Sci. 23: 91–98.Google Scholar
  132. Platt, R. M., Geesey, G. G., Davis, J. D., and White, D. C., 1985, Isolation and partial chemical analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment bacterium, Can. J. Microbiol. 31: 675–680.PubMedGoogle Scholar
  133. Pope, D. H., Zintel, T. P., Kunuvilla, A. K., Sichert, O. W., 1988, Organic acid corrosion of carbon steel: A mechanism of microbiologically influenced corrosion, CORROSION/88, Paper 79, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  134. Postgate, J. R. (ed.), 1984, The Sulphate-Reducing Bacteria, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  135. Ramaley, R. E, and Hixon, J., 1970, Isolation of a non-pigmented, thermophilic bacterium similar to Thermus aquaticus, J. Bacteriol. 103: 527–528.PubMedGoogle Scholar
  136. Ridgway, H. F., and Olson, B. H., 1981, Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system, Appl. Environ. Microbiol. 41: 274–287.PubMedGoogle Scholar
  137. Rigdon, J. H., and Beardsley, C. W, 1958, Corrosion of concrete by autotrophs, Corrosion 14: 206–208.Google Scholar
  138. Rosanova, E. P., and Khudyakova, A. I., 1974, A new nonspore-forming thermophilic suifate-redueing organism, Desulfovtbrio thermophitus nov. sp., Microhiologiya 43: 1069–1075 (Engl trans pp. 908–912).Google Scholar
  139. Rudd, T., Sterritt, R. M., and Lester, J. N., 1984, Formation and conditional stability constants of complexes formed between heavy metal and bacterial extracellular polymers, Water Res. 18: 379–384.Google Scholar
  140. Salvarezza, R. C., de Mele, M. F. L., and Videla, H. A., 1983, Mechanisms of the microbial corrosion of aluminum alloys. Corrosion 39: 26–32.Google Scholar
  141. Sand, W., and Bock, E., 1984, Concrete corrosion in the Hamburg sewer system system, Environ Technol. Lett. 5: 517–528.Google Scholar
  142. Savage, D. C., and Fletcher, M. (eds.), 1985, Bacterial Adhesion, Plenum Press, New York.Google Scholar
  143. Schmitt, C. R., 1986, Anomalous microbiological tuberculation and aluminum pitting corrosion-case histories, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 69–75, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  144. Sempfe, K. M., and Westlake, D. W. S., 1987, Characterization of iron-reducing Aberomonas putrefadens strains from oil field fluids, Can. J. Microbiol. 3: 366–371.Google Scholar
  145. Sheifon, D. R., and Tiedje, I. M., 1984, Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid, Appl. Environ. Microbial. 48: 840–848.Google Scholar
  146. Shilo, M. (ed.), 1979, Strategies of Life in Extreme Environments, Dahlem Konferenzen, Verlag Chemie, Weinheim.Google Scholar
  147. Siporin, C., and Cooney, J. J., 1975, Extracellular lipids of Cladosporium (Amorphotheca) resinae grown on glucose or on n-alkanes, Appl. Microbial. 29: 604–609.Google Scholar
  148. Smith, J. S., and Miller, J. D. A., 1975, Nature of sulphides and their corrosive effects on ferrous metals: A review, Br. Corros. J. 10: 136–143.Google Scholar
  149. Staehle, R. W., Hochmann, J., McCright, R. D., and Slater, J. E. (eds.), 1977, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  150. Starkey, R. L., 1986, Anaerobic corrosion-perspectives about causes, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 3–7, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  151. Stetter, K. O., 1986, Diversity of extremely thermophilic archaebacteria, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.). pp. 39–74, John Wiley & Sons, Inc., New York.Google Scholar
  152. Stetter, K. O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Ziliig, W., Janecovic, D., Konig, H., Palm, P., and Wunderl, S., 1981, Methanothermus fervidus, a novel extremely thermophilic methanogen isolated from an Icelandic hot spring, Zbl. Bakt. Hyg. I Abt. Orig. 2: 166–178.Google Scholar
  153. Stetter, K. O., Konig, H., and Stackebrandt, E., 1983, Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebaeteria growing optimally at 105°C, Syst. Appl. Microbiol. 4: 535–551.Google Scholar
  154. Stieb, M., and Sehink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryamii sp. nov., a sporeformmg obligately syntrophie bacterium, Arch. Microbial. 140: 387–390.Google Scholar
  155. Stoecker, J. G., and Pope, D. H., 1986, Study of biological corrosion in high temperature demineralized water, Mater. Perform. 25: 51–56.Google Scholar
  156. Stoveland, S., and Lester, J. N., 1980, A study of the factors which influence metal removal in the activated sludge process, Sci. Total Environ. 16: 37–54.Google Scholar
  157. Stranger-Johannessen, M., 1986, Fungal corrosion of the steel interior of a ship’s holds, in: Biodeterioration 6 (S. Barry and D. R. Houghton, eds.), C.A.B. International, Slough, United Kingdom.Google Scholar
  158. Sutherland, I. W., 1972, Bacterial exopolysaccharides, Adv. Microb. Physiol. 8: 143–213.PubMedGoogle Scholar
  159. Sutherland, I. W., 1984, Enzymes in the assay of microbial polysaccharides, Proc. Biochem. 18: 19–24.Google Scholar
  160. Sutherland, I. W., 1985, Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides, Annu. Rev. Microbiol. 39: 243–270.PubMedGoogle Scholar
  161. Tago, Y., and Aida, K., 1977, Exocellular mucopolysaccharide closely related to bacterial floe formation, Appl. Environ. Microbiol. 34: 308–314.PubMedGoogle Scholar
  162. Tarasevich, M. R., 1979, Ways of using enzymes for acceleration of electrochemical reactions, J. Electroanal. Chem. 104: 587–597.Google Scholar
  163. Tatnall, R. E., 1981a, Fundamentals of bacteria-induced corrosion, Mater. Perform. 20: 32–38.Google Scholar
  164. Tatnall, R. E., 1981b, Case histories: Bacteria-induced corrosion, Mater. Perform. 20: 41–48.Google Scholar
  165. Tiller, A. K., 1982, Aspects of microbial corrosion, in: Corrosion Processes (R. N. Parkins ed.), pp. 115–159, Applied Science Publishers, London, New York.Google Scholar
  166. Tomei, F. A., and Mitchell, R., 1986, Development of an alternative method for studying the role of H2-consuming bacteria in the anaerobic oxidation of iron, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 309–320, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  167. Tomei, F. A., Maki, J. S., and Mitchell, R., 1985, Interactions in syntrophic associations of endosporeforming, butyrate-degrading bacteria and H2-consuming bacteria, Appl. Environ. Microbiol. 50: 1244–1250.PubMedGoogle Scholar
  168. Troiano, A. R., 1974, Introduction, in: Hydrogen in Metals (I. M. Bernstein and A. W. Thompson, eds.), pp. 3–15. American Society for Metals, Metals Park, Ohio.Google Scholar
  169. Tuovinen, O. H., and Mair, D. M., 1985, Corrosion of cast iron pipes and associated water quality effects in distribution systems, in: Biodeterioration 6 (S. Barry and D. R. Houghton, eds.), pp. 223–227, C.A.B. International, Slough, United Kingdom.Google Scholar
  170. Tuovinen, O. H., Button, K. S., Vuorinen, A., Carlson, L., Mair, D. M., and Yut, L. A., 1980, Bacterial, chemical, and mineralogical characteristics of tubercles in distribution pipelines, J. Am. Water Works Assoc. 72: 626–635.Google Scholar
  171. Tyler, P. A., and Marshall, K. C., 1967a, Hyphomicrobia—a significant factor in manganese problems, J. Am. Water Works Assoc. 59: 1043–1048.Google Scholar
  172. Tyler, P. A., and Marshall, K. C., 1967b, Microbial oxidation of manganese in hydrooelectric pipelines, Antonie van Leeuwenhoek J. Microbiol. Serol. 33: 171–183.Google Scholar
  173. Uhlinger, D. J., and White, D. C., 1983, Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica, Appl. Environ. Microbiol. 45: 64–70.PubMedGoogle Scholar
  174. Videla, H. A., Guiamet, P. S., and DoValle, S., 1988, Effects of fungal and bacterial contaminants of kerosene fuels on the corrosion of storage and distribution systems, CORROSION/88, Paper 91, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  175. von Wolzogen Kuhr, C. A. H., and van der Vlugt, L. S., 1934, Graphication of cast iron as an electrochemical process in anaerobic soils, Water 18: 147–165.Google Scholar
  176. Wagner, C., and Traud, W., 1938, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Z. Elektrochem. 44: 391–454.Google Scholar
  177. Wagner, P., and Little, B. J., 1986, Applications of a technique for the investigation of microbially induced corrosion, CORROSION/86, Paper 121, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  178. Walch, M., 1986, The Microbial Ecology of Metal Surfaces, Ph.D. thesis, Harvard University, Cambridge, Mass.Google Scholar
  179. Walch, M., and Mitchell, R., 1986, Microbial influence on hydrogen uptake by metals, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 201–208. National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  180. Weimer, P. J., 1986, Use of thermophiles for the production of fuels and chemicals, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 217–255, John Wiley & Sons, Inc., New York.Google Scholar
  181. Weimer, P. J., Van Kavelaar, M. J., Michel, C. B., and Ng, T. K., 1988, Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products on two-stage continuous cultures of Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 54: 386–396.PubMedGoogle Scholar
  182. Westlake, D. W. S., Semple, K. M., and Obuekwe, C.O., 1986, Corrosion by ferric iron-reducing bacteria isolated from oil production systems, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 193–200, National Association of Corrosion Engineers, Houston, Tex.Google Scholar
  183. White, D. C., 1983, Analysis of microorganisms in terms of quantity and activity in natural environments, in: Microbes in Their Natural Environments, Society for General Microbiology Symposium 34 (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 37–66, Society for General Microbiology, New York.Google Scholar
  184. White, D. C., 1984, Chemical characterization of films, in: Microbial Adhesion and Aggregation, Dahlem Konferenzen Life Sciences Research Report 31 (K. C. Marshall, ed.), pp. 159–176, Springer-Verlag, Berlin.Google Scholar
  185. Widdel, F., 1987, New types of acetate-oxidizing, sulphate-reducing Desulfobacter species, D., hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov., Arch. Microbiol. 148: 286–291.Google Scholar
  186. Widdel, F., and Pfennig, N., 1981, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov., Arch. Microbiol. 129: 395–400.PubMedGoogle Scholar
  187. Widdel, F., and Pfennig, N., 1982, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov., Arch. Microbiol. 131: 360–365.Google Scholar
  188. Widdel, F., Kohring, G. W., and Mayer, F., 1983, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov., Arch. Microbiol. 134: 286–294.Google Scholar
  189. Williams, A. G., and Wimpenny, J. W. T., 1977, Exopolysaccharide production by Pseudomonas NCIB11264 grown in batch culture, J. Gen. Microbiol. 102: 13–21.PubMedGoogle Scholar
  190. Winter, J., Lerp, C., Zabel, H.-P., Wildenauer, F. X., Konig, H., and Schindler, F., 1984, Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen, Syst. Appl. Microbiol. 5: 457–466.Google Scholar
  191. Wrangstadh, M., Conway, P. L., and Kjelleberg, S., 1986, The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion, Arch. Microbiol. 145: 220–227.PubMedGoogle Scholar
  192. Zehnder, A. J. B., 1978, Ecology of methane formation, in: Water Pollution Microbiology, Vol. 2 (R. Mitchell, ed.), John Wiley & Sons, Inc., New York.Google Scholar
  193. Zeikus, J. G., and Wolfe, R. S., 1972, Methanobacterium thermoautotrophicum sp. nov., an anaerobic, autotrophic extreme thermophile, J. Bacteriol. 109: 707–713.PubMedGoogle Scholar
  194. Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K., and Hatchikian, E. C., 1983, Microbial ecology of volcanic sulphidogenesis: Isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov., J. Gen. Microbiol. 129: 1159–1169.Google Scholar
  195. Zillig, W., Stetter, K. O., Schafer, W., Janekovic, D., Wunderl, S., Holz, I., and Palm, P., 1981, Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic Solfataras, Zbl. Bakt. Hyg. I Abt. Orig. 2: 205–227.Google Scholar
  196. Zillig, W., Stetter, K. O., Prangishvilli, D., Schafer, W., Wunderl, S., Janekovic, D., Holz, I., and Palm, P., 1982, Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales, Zbl. Bakt. Hyg. I Abt. Orig. 3: 304–317.Google Scholar
  197. Zinder, S. H., 1986, Thermophilic waste treatment systems, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 257–277, John Wiley & Sons, Inc., New York.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Tim Ford
    • 1
  • Ralph Mitchell
    • 1
  1. 1.Laboratory of Microbial Ecology, Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations