Skip to main content

Enhanced Biological Phosphorus Removal in Activated Sludge Systems

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

Eutrophication is a worldwide water pollution problem which results in the overabundant growth of algae and/or macrophytes (Wetzel, 1983). Control of the access of phosphates (P) to the aquatic environment is widely used as a eutrophication control strategy (e.g., Lee et al., 1978), thus requiring its removal from effluents by chemical and/or biological means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardern, E., and Lockett, W. T., 1914, Experiments on the oxidation of sewage without the aid of filters, J. Soc. Chem. Ind. 33: 523–539.

    CAS  Google Scholar 

  • Allen, L. A., 1944, The bacteriology of activated sludge, J. Hyg. 43: 424–431.

    CAS  Google Scholar 

  • Alper, R., Lundgren, D. G., Marchessault, R. H., and Cote, W. A., 1963, Properties of poly-β-hydroxybutyrate. 1. General considerations concerning the naturally occurring polymer. Biopolymers 1: 545–556.

    CAS  Google Scholar 

  • Andrews, J. H., and Harris, R. F., 1985, r- and K-selection and microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 99–48, Plenum, New York.

    Google Scholar 

  • Arvin, E., and Kristensen, G. H., 1985, Exchange of organics, phosphate and cations between sludge and water in biological phosphorus and nitrogen removal processes, Water Sci. Technol. 17: 147–162.

    CAS  Google Scholar 

  • Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030–4034.

    PubMed  CAS  Google Scholar 

  • Banks, C. J., and Walker, I., 1977, Sonication of activated sludge flocs and the recovery of their bacteria on solid media, J. Gen. Microbiol. 98: 363–368.

    Google Scholar 

  • Barnard, J. L., 1973, Biological denitrification, Water Pollut. Control 72: 105–120.

    Google Scholar 

  • Barnard, J. L., 1974, Cut P and N without chemicals, Water Wastes Eng. 11: 33–44.

    CAS  Google Scholar 

  • Barnard, J. L., 1975, Nutrient removal in biological systems, Water Pollut. Control 74: 143–154.

    CAS  Google Scholar 

  • Barnard, J. L., 1976, A review of biological phosphorus removal in the activated sludge process, Water SA 2: 136–144.

    CAS  Google Scholar 

  • Barnard, J. L., 1982, The influence of nitrogen on phosphorus removal in activated sludge plants, Water Sci. Technol. 14: 31–45.

    CAS  Google Scholar 

  • Barnard, J. L., 1984, Activated primary tanks for phosphate removal, Water SA 10: 121–126.

    CAS  Google Scholar 

  • Baxter, M.I., and Jensen, T. H., 1980, Uptake of magnesium, strontium, barium and manganese by Plectonema boryanum (Cyanophyceae), Protoplasm 104: 81–89.

    CAS  Google Scholar 

  • Bell, E. J., and Herman, N. J., 1967, Effect of succinate and isocitrate lyase synthesis in Mima polymorpha, J. Bacteriol. 93: 2020–2021.

    PubMed  CAS  Google Scholar 

  • Bennett, R. L., and Malamy, M. H., 1970, Arsenate resistant mutants of Escherichia coli and phosphate transport, Biochem. Biophys. Res. Commun. 40: 496–503.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.

    PubMed  CAS  Google Scholar 

  • Blackbeard, J. R., Ekama, G. A., and Marais, G. v. R., 1986, A survey of filamentous bulking and foaming in activated sludge plants in South Africa, Water Pollut. Control 85: 90–100.

    CAS  Google Scholar 

  • Blackbeard, J. R., Gabb, D. M. D., Ekama, G. A., and Marais, G. v. R., 1987, Identification of filamentous organisms in nutrient removal activated sludge plants in South Africa, in: Proceedings of the Institute of Water Pollution Control (S A Branch) Biennial Conference, Port Elizabeth, Paper no. 10.

    Google Scholar 

  • Boyer, P. D., 1977, Coupling mechanisms in capture, transmission and use of energy, Annu. Rev. Biochem. 46: 957–966.

    CAS  Google Scholar 

  • Brodie, A. F., Hirata, H., Asano, A., Cohen, N. S., Hinds, T. R., Aithal, H. N., and Kalra, V. K., 1972, The relationship of bacterial membrane orientation to oxidative phosphorylation and active transport, in: Membrane Research (C. Fred Fox, ed.), pp. 445–472, Academic Press, New York.

    Google Scholar 

  • Brodisch, K. E. U., 1985, Interaction of different groups of microorganisms in biological phosphate removal, Water Sci. Technol. 17: 89–97.

    CAS  Google Scholar 

  • Brodisch, K. E. U., and Joyner, S. J., 1983, The role of microorganisms other than Acinetobacter in biological phosphate removal in the activated sludge process, Water Sci. Technol. 15: 117–125.

    CAS  Google Scholar 

  • Buchan, L., 1981, The location and nature of accumulated phosphorus in seven sludges from activated sludge plants which exhibited enhanced phosphorus removal, Water SA 7: 1–7.

    CAS  Google Scholar 

  • Buchan, L., 1983, Possible biological mechanism of phosphorus removal, Water Sci. Technol. 15: 87–103.

    CAS  Google Scholar 

  • Bundgaard, E., Kristensen, G. H., and Arvin, E., 1983, Full-scale experience with phosphorus removal in an alternating system, Water Sci. Technol. 15: 197–217.

    CAS  Google Scholar 

  • Burnell, J. N., John, P., and Whatley, F. R., 1975, Phosphate transport in membrane vesicles of Paracoccus denitrificans, FEBS Lett. 58: 215–218.

    PubMed  CAS  Google Scholar 

  • Butterfield, C. T., 1935, Studies of sewage purification. II. A Zooglea-forming bacterium isolated from activated sludge, Public Health Rep. 50: 671–684.

    Google Scholar 

  • Chambers, B., 1982, Effect of longitudinal mixing and anoxic zones on settleability of activated sludge, in: Bulking of Activated Sludge: Preventative and Remedial Methods (B. Chambers and E. J. Tomlinson, eds.), pp. 166–186, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Chen, M., 1974, Kinetics of phosphorus absorption by Corynebacterium bovis, Microb. Ecol. 1: 164–175.

    CAS  Google Scholar 

  • Christensen, M. H., and HarremoĂ«s, P., 1977, Biological denitrification of sewage: A literature review, Prog. Water Technol. 8: 509–555.

    CAS  Google Scholar 

  • Cloete, T. E., 1985, The detection of Acinetobacter in activated sludge and its possible role in biological phosphorus removal, D.Sc. thesis, University of Pretoria, Pretoria, South Africa.

    Google Scholar 

  • Cloete, T. E., and Steyn, P. L., 1987, A combined fluorescent antibody-membrane filter technique for enumerating Acinetobacter in activated sludge, in: Advances in Water Pollution Control, Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 335–338, Pergamon Press, Oxford.

    Google Scholar 

  • Cloete, T. E., Steyn, P. L., and Buchan, L., 1985, An aut-ecological study of Acinetobacter in activated sludge, Water Sci. Technol. 17: 139–146.

    CAS  Google Scholar 

  • Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K., 1985, Biochemical model for enhanced biological phosphorus removal, in: Proceedings of University of British Columbia Conference on New Directions and Research in Waste Treatment and Residuals Management, pp. 324–346, University of British Columbia, Vancouver, Canada.

    Google Scholar 

  • Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K., 1986, Biochemical model for enhanced biological phosphorus removal, Water Res. 20: 1511–1521.

    CAS  Google Scholar 

  • Comeau, Y., Oldham, W. K., and Hall, K. J., 1987, Dynamics of carbon reserves in biological dephosphatation of wastewater, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 39–55, Pergamon Press, Oxford.

    Google Scholar 

  • Cuppoletti, J., and Segal, I. H., 1975, Kinetics of sulphate transport by Penicillium notatum. Interactions of sulphate, protons, and calcium, Biochemistry 14: 4712–4718.

    PubMed  CAS  Google Scholar 

  • Davelaar, D., Davis, T. R., and Wiechers, S. G., 1978, The significance of an anaerobic zone for the biological removal of phosphate from wastewaters, Water SA 4: 54–60.

    CAS  Google Scholar 

  • Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers in microorganisms, Adv. Microb. Physiol. 10: 135–266.

    PubMed  CAS  Google Scholar 

  • Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E., and Webers, H. A., 1980, The accumulation of polyphosphate in Acinetobacter spp., FEMS Microbiol. Lett. 9: 275–279.

    CAS  Google Scholar 

  • Deinema, M. H., Van Loosdrecht, M., and Scholten, A., 1985, Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate, Water Sci. Technol. 17: 119–125.

    CAS  Google Scholar 

  • Dias, F. F., and Bhat, J. V., 1964, Microbial ecology of activated sludge. I. Dominant bacteria, Appl. Microbiol. 12: 412–417.

    PubMed  CAS  Google Scholar 

  • Dold, P. L., and Marais, G. v. R., 1986, Evaluation of the general activated sludge model proposed by the IAWPRC task group, Water Sci. Technol. 18: 63–89.

    CAS  Google Scholar 

  • Eigener, U., and Bock, E., 1972, Auf-und Abbau der Polyphosphat-fraktion in Zellen von Nitrobacter winogradskyi (Buch), Arch. Mikrobiol. 81: 367–378.

    PubMed  CAS  Google Scholar 

  • Eikelboom, D. H,, and van Buijsen, H. J., 1981, Microscopic Sludge Investigation Manual, Report No. A94A of the TNO Instituut voor Milieu-hygiene en-gesondheidstechniek, Delft, The Netherlands.

    Google Scholar 

  • Ekama, G. A., and Marais, G. v. R., 1984a, Biological nitrogen removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 6-1–6-26, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Ekama, G. A., and Marais, G. v. R., 1984b, Carbonaceous material removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 4-1–4-20, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Ekama, G. A., and Marais, G. v. R., 1985, The implications of the IAWPRC hydrolysis hypothesis on low F/M bulking, Water Sci. Technol. 18: 11–19.

    Google Scholar 

  • Ekama, G. A., Siebritz, I. P., and Marais, G. v. R., 1983, Considerations in the process design of nutrient removal activated sludge processes, Water Sci. Technol. 15: 283–318.

    CAS  Google Scholar 

  • Ekama, G. A., Marais, G. v. R., and Siebritz, I. P., 1984, Biological excess phosphorus removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 7-1–7-32, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Friedberg, I., and Avigad, G. 1968, Structures containing polyphosphate in Micrococcus lysodeikticus, J. Bacteriol. 96: 544–553.

    PubMed  CAS  Google Scholar 

  • Friedman, B. A., Dugan, P. R., Pfister, R. M., and Remsen, C. C., 1969, Structure of exocellular polymers and their relationship to bacterial flocculation, J. Bacteriol. 98: 1328–1334.

    PubMed  CAS  Google Scholar 

  • Fuhs, G. W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol. 2: 119–138.

    CAS  Google Scholar 

  • Fukase, T., Shibata, M., and Miyaji, Y., 1985, Factors affecting biological removal of phosphorus, Water Sci. Technol. 17: 187–198.

    CAS  Google Scholar 

  • Gerber, A., Mostert, E. S., Winter, C. T., and de Villiers, R. H., 1986, The effect of acetate and other short-chain carbon compounds on the kinetics of biological nutrient removal, Water SA 12: 7–12.

    CAS  Google Scholar 

  • Gerber, A., Mostert, E. S., Winter, C. T., and de Villiers, R. H., 1987a, Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes, Water Sci. Technol. 19: 183–194.

    CAS  Google Scholar 

  • Gerber, A., de Villiers, R. H., Mostert, E. S., and van Riet, C. J. J., 1987b, The phenomenon of simultaneous phosphate uptake and release, and its importance in biological nutrient removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 123–134, Pergamon Press, Oxford.

    Google Scholar 

  • Gersberg, R. M., and Allen, D. W., 1985, Phosphorus uptake by Klebsiella pneumoniae and Acineto-bacter calcoaceticus, Water Sci. Technol. 17: 113–118.

    CAS  Google Scholar 

  • Goldman, S., Shabtai, Y., Rubinovitz, C., Rosenberg, E., and Gutnick, D. L., 1982, Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of cell free and cell associated cross reacting material. Appl. Environ. Microbiol. 44: 165–170.

    PubMed  CAS  Google Scholar 

  • Grady, C. P. L., and Lim, H. C., 1980, Biological Wastewater Treatment: Theory and Applications, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Gutowski, S. J., and Rosenberg, H., 1975, Succinate uptake and related proton movements in Escherichia coli K12, Biochem. J. 152: 647–654.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes, J. Bacteriol. 86: 216–221.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1964, Enzymic and genetic control of polyphosphate accumulation in Aerobacter aerogenes, J. Gen. Microbiol. 35: 81–90.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30: 772–794.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1974, Chemiosmotic interpretation of active transport in bacteria, Ann. N.Y. Acad. Sci. 227: 297–311.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg. 6: 83–149.

    CAS  Google Scholar 

  • Harold, F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphate in mutants of Aerobacter aerogenes, J. Bacteriol. 89: 1262–1270.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., and Papineau, D., 1972, Cation transport and electrogenesis by Streptococcus faecalis, J. Membr. Biol. 8: 45–62.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., and Spitz, E., 1975, Accumulation of arsenate, phosphate and aspartate by Streptococcus faecalis, J. Bacteriol. 122: 266–277.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., and Sylvan, S., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes, J. Bacteriol. 86: 222–231.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., Baarda, J. R., and Pavlasova, E., 1970, Extrusion of sodium and hydrogen ions as the primary process in potassium ion accumulation by Streptococcus faecalis, J. Bacteriol. 101: 152–159.

    PubMed  CAS  Google Scholar 

  • Harris, E., 1957, Radiophosphorus metabolism in Zooplankton and micro-organisms, Can. J. Zool. 35: 769–782.

    CAS  Google Scholar 

  • Harris, R. H., and Mitchell, R., 1973, The role of polymers in microbial aggregation, Annu. Rev. Microbiol. 27: 27–50.

    PubMed  CAS  Google Scholar 

  • Hascoet, M. C., and Florentz, M., 1985, Influence of nitrates on biological phosphorus removal from wastewater, Water SA 11: 1–8.

    CAS  Google Scholar 

  • Hascoet, M. C., Florentz, M., and Granger, P., 1985, Biochemical aspects of enhanced biological phosphorus removal from wastewater, Water Sci. Technol. 17: 23–41.

    CAS  Google Scholar 

  • Heefner, D. L., and Harold, F. M., 1982, ATP-driven sodium pump in Streptococcus faecalis, Proc. Natl. Acad. Sci. USA 79: 2798–2802.

    PubMed  CAS  Google Scholar 

  • Herman, N. J., and Bell, E. J., 1970, Metabolic control in Acinetobacter sp. I: Effect of C4 versus C2 and C3 substrates on isocitrate lyase synthesis, Can. J. Microbiol. 16: 169–174.

    Google Scholar 

  • Heukelekian, H., and Littman, M. L., 1939, Carbon and nitrogen transformations in the purification of sewage by activated sludge process. II. Morphological and biochemical studies of zoogleal organisms, Sewage Works J. 11: 752–763.

    CAS  Google Scholar 

  • Hoffman, H., 1987, Influence of oxic and anoxic mixing zones in compartment systems on substrate removal and sludge characteristics in activated sludge plants, Water Sci. Technol. 19: 897–910.

    CAS  Google Scholar 

  • Hong, S.-N., Krichten, D. J., Kisenbauer, K. S., and Sell, R. L., 1982, A Biological Wastewater Treatment System for Nutrient Removal, presented at the EPA Workshop on Biological Phosphorus Removal in Municipal Wastewater Treatment, Annapolis, Md.

    Google Scholar 

  • Hungate, R. E., 1966, The Rumen and Its Microbes, Academic Press, New York.

    Google Scholar 

  • Iwema, A., and Meunier, A., 1985, Influence of nitrate on acetic acid induced biological phosphate removal, Water Sci. Technol. 17: 289–294.

    CAS  Google Scholar 

  • Jain, M., and Wagner, R. C., 1980, Passive facilitated diffusion, in: Introduction to Biological Membranes (M. Jain and R. C. Wagner, eds.), pp. 232–247, John Wiley and Sons, New York.

    Google Scholar 

  • Jenkins, D., Richard, M. G., and Neethling, J. B., 1984, Causes and control of activated sludge bulking, J. Water Pollut. Control Fed. 83: 455–472.

    CAS  Google Scholar 

  • Jenkins, S. H., and Lockert, W. T., 1943, Loss of phosphorus during sewage purification, Nature (London) 151: 306–307.

    CAS  Google Scholar 

  • Kaback, H. R., 1968, The role of the phosphoenol pyruvate-phosphotransferase system in the trans port of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 143: 3711–3724.

    Google Scholar 

  • Kaltwasser, H., 1962, Die Rolle der Polyphosphate im Phosphat-Stoffwechsel eines Knallgasbakteriums (Hydrogenomonas Stamm 20), Arch. Mikrobiol. 41: 282–306.

    PubMed  CAS  Google Scholar 

  • Kaltwasser, H., Vogt, G., and Schlegel, H. G., 1962, Polyphosphat-synthese während der Nitrat-Atmung von Micrococcus denitrificans, Stamm 11, Arch. Mikrobiol. 44: 259–265.

    CAS  Google Scholar 

  • Kay, W. W., 1972, Genetic control of the metabolism of propionate by Escherichia coli, K12. Biochim. Biophys. Acta 264: 508–521.

    PubMed  CAS  Google Scholar 

  • Kell, D. B., Peck, M. W., Rodger, G., and Morris, J. G., 1981, On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum, Biochim. Biophys. Res. Commun. 99: 81–88.

    CAS  Google Scholar 

  • Kobayashi, H., van Brunt, J., and Harold, F. M., 1978, ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis, J. Biol. Chem. 253: 2085–2092.

    PubMed  CAS  Google Scholar 

  • Konings, W. N., Hellingwerf, K. J., and Robellard, G. T., 1981, Transport across bacterial membranes, in: Membrane Transport (S. L. Bonting and J. J. H. de Pont, eds.), pp. 257–283, Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Kornberg, A., Kornberg, S. R., and Simms, E. S., 1956, Metaphosphate synthesis by an enzyme from Escherichia coli, Biochim. Biophys. Acta 20: 215–227.

    PubMed  CAS  Google Scholar 

  • Krebs, E. G., 1985, The phosphorylation of proteins: A major mechanism for biological regulation, Biochem. Soc. Trans. 13: 813–820.

    PubMed  CAS  Google Scholar 

  • Kulaev, I. S., 1975, Biochemistry of inorganic polyphosphates, Rev. Physiol. Biochem. Pharmacol. 73: 131–158.

    PubMed  CAS  Google Scholar 

  • Kulaev, I. S., 1985, Some aspects of environmental regulation of microbial phosphorus metabolism, FEMS Symp. 23: 1–25.

    CAS  Google Scholar 

  • Kulaev, I.S., and Vagabov, V. M., 1983, Polyphosphate metabolism in micro-organisms, Adv. Microb. Physiol 24: 83–171.

    PubMed  CAS  Google Scholar 

  • Kulaev, I. S., Bobyk, M. A., Nikolaev, N. N., Sergeev, N. S., and Uryson, S. O., 1971, Polyphosphate synthesizing enzymes in some fungi and bacteria, Biokhimiya 36: 943–949.

    CAS  Google Scholar 

  • Laimins, L. A., Rhoads, D. B., Altendorf, K., and Epstein, W., 1978, Identification of the structured proteins of ATP-driven potassium transport system in Escherichia coli, Proc. Natl. Acad. Sci. USA 75: 3216–3219.

    PubMed  CAS  Google Scholar 

  • Lee, G. F., Rast, W., and Jones, R. A., 1978, Eutrophication of water bodies: Insights for an age-old problem, Environ. Sci. Technol. 12: 900–908.

    Google Scholar 

  • Levin, G. V., 1964, Sewage Treatment Process, U.S. patent 3236766, applied for 31 March 1964.

    Google Scholar 

  • Levin, G. V., 1972, Nitrate Removal from Sewage, U.S. patent 3654147, applied for 16 March 1971, granted 4 April 1972.

    Google Scholar 

  • Levin, G. V., and Sala, II. D., 1987, Phostrip process—a viable answer to eutrophication of lakes and coastal sea waters in Italy, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 249–259, Pergamon Press, Oxford.

    Google Scholar 

  • Levin, G. V., and Shapiro, J., 1965, Metabolic uptake of phosphorus by wastewater organisms, J. Water Pollut. Control Fed. 37: 800–821.

    CAS  Google Scholar 

  • Levin, G. V., Topol, G. J., Tarnay, A. G., and Samworth, R. B., 1972, Pilot-plant tests of a phosphate removal process, J. Water Pollut. Control Fed. 44: 1940–1954.

    CAS  Google Scholar 

  • Levin, G. V., Topol, G. J., and Tarnay, A. G., 1975, Operation of full-scale biological phosphorus removal plant, J. Water Pollut. Control Fed. 47: 577–590.

    PubMed  CAS  Google Scholar 

  • Levinson, S. L., Jacobs, L. H., Krulwich, T. A., and Li, H. C., 1975, Purification and characterization of a polyphosphate kinase from Arthrobacter atrocyaneus, J. Gen. Microbiol. 88: 65–74.

    Google Scholar 

  • Li, H. C., and Brown, G. G., 1973, Orthophosphate and histone dependent polyphosphate kinase from E. coli, Biochim. Biophys. Res. Commun. 53: 875–881.

    CAS  Google Scholar 

  • Lötter, L. H., 1985, The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process, Water Sci. Technol. 17: 127–138.

    Google Scholar 

  • Lötter, L. H., and Dubery, I. A., 1987, Metabolic control in polyphosphate accumulating bacteria and its role in enhanced biological phosphate removal, in: Advances Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 7–14, Pergamon Press, Oxford.

    Google Scholar 

  • Lötter, L. H., and Murphy, M., 1985, The identification of heterotrophic bacteria in an activated sludge plant with particular reference to polyphosphate accumulation, Water SA 11: 179–184.

    Google Scholar 

  • Ludzack, F. J., and Ettinger, M. B., 1962, Controlling operation to minimize activated sludge effluent nitrogen, J. Water Pollut. Control Fed. 34: 920–931.

    CAS  Google Scholar 

  • MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Macrae, R. M., and Wilkinson, J. F., 1958, Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium, J. Gen. Microbiol. 19: 210–222.

    PubMed  CAS  Google Scholar 

  • Madoni, P., 1986, Protozoa in Waste Treatment Systems, presented at the 4th International Symposium on Microbial Ecology, August 1986, Ljubljana, Yugoslavia.

    Google Scholar 

  • Mahler, H. R., and Cordes, E. H., 1971, Biological Chemistry, 2nd ed., Harper and Row, New York.

    Google Scholar 

  • Malnou, D., Meganck, M., Faup, G. M., and du Rostu, M., 1984, Biological phosphorus removal: Study of the main parameters, Water Sci. Technol. 16: 173–185.

    CAS  Google Scholar 

  • Maraeva, O. B., Kolot, M. N., Nesmeyanova, M. A., and Kulaev, I.S., 1979, Interrelationships between metabolic and genetic regulation of alkaline phosphatase and poly-and pyrophosphate, Biokhimiya 44: 715–719.

    CAS  Google Scholar 

  • Marais, G. v. R., 1987, The future of biological removal of phosphorus from wastewater, in: Proceedings of the Australian Waterand Wastewater Association, 1987 International Convention, Adelaide, K.18–K.27.

    Google Scholar 

  • Marais, G. v. R., Loewenthal, R. E., and Siebritz, I. P., 1983, Observations supporting phosphate removal by biological excess uptake—A review, Water Sci. Technol. 15: 15–41.

    CAS  Google Scholar 

  • McKinney, R. E., and Weichlein, R. G., 1953, Isolation of floe-producing bacteria from activated sludge, Appl. Microbiol. 1: 259–261.

    PubMed  CAS  Google Scholar 

  • McLaren, A. R., and Wood, R. J., 1976, Effective phosphorus removal from sewage by biological means, Water SA 2: 47–50.

    CAS  Google Scholar 

  • Medveczky, N., and Rosenberg, H., 1971, Phosphate transport in Escherichia coli, Biochim. Biophys. Acta 241: 494–506.

    PubMed  CAS  Google Scholar 

  • Menar, A. B., and Jenkins, D., 1969, Fate of phosphorus in waste treatment processes: The enhanced removal of phosphate by activated sludge, in: 24th Industrial Waste Treatment Conference, p. 655–674, Purdue University, Lafayette, Ind.

    Google Scholar 

  • Milbury, W. F., McCauley, D., and Hawthorne, C. H., 1971, Operation of conventional activated sludge for maximum phosphorus removal, J. Water Pollut. Control. Fed. 43: 1890–1901.

    CAS  Google Scholar 

  • Mino, T., Aran, V., Tsuzuki, Y., and Matsuo, T., 1987, Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R, Ramadori, ed.), pp. 27–38, Pergamon Press, Oxford.

    Google Scholar 

  • Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glyn Research Ltd., Bodmin, England.

    Google Scholar 

  • Mitchell, P., 1977, A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation, FEBS Lett. 78: 1–20.

    PubMed  CAS  Google Scholar 

  • Miyamoto-Mills, J., Larson, J., Jenkins, D., and Owen, W., 1983, Design and operation of a pilot-scale biological phosphate removal plant at the Central Contra Costa Sanitary District, Wat. Sci. Tech. 15: 153–179.

    CAS  Google Scholar 

  • Mostert, E. S., Gerber, A., and van Riet, C. J. J., 1987, Fatty acid utilization by sludge from full-scale nutrient removal plants, with special reference to the role of nitrate, in: Proceedings of the Institute for Water Pollution Control (Southern African Branch) Biennial Conference, Port Elizabeth, Paper no. 23.

    Google Scholar 

  • Mudd, S., Yoshida, A., and Koike, M., 1958, Polyphosphate as accumulator of phosphorus and energy, J. Bacteriol. 75: 224–235.

    PubMed  CAS  Google Scholar 

  • Muhammed, A., 1961, Studies on biosynthesis of polymetaphosphate by an enzyme from Corynebacterium xerosis, Biochim. Biophys. Acta 54: 121–132.

    PubMed  CAS  Google Scholar 

  • MĂĽhlradt, P. F., 1971, Synthesis of high molecular weight polyphosphate with a partially purified enzyme from Salmonella, J. Gen. Microbiol. 68: 115–122.

    PubMed  Google Scholar 

  • Mulder, J. W., and Rensink, J. H., 1987, Introduction of biological phosphorus removal to an activated sludge plant with practical limitations, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 213–223, Pergamon Press, Oxford.

    Google Scholar 

  • Murata, K., Uchida, T., Tani, K., Kato, J., and Chibata, I., 1980, Metaphosphate: A new phosphoryl donor for NAD phosphorylation, Agr. Biol. Chem. 44: 61–68.

    CAS  Google Scholar 

  • Murphy, M., and Lötter, L. H., 1986, The effect of acetate and succinate on polyphosphate formation and degradation in activated sludge with particular reference to Acinetobacter calcoaceticus, Appl. Microbiol. Biotechnol. 24: 512–517.

    CAS  Google Scholar 

  • Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I.S., 1973, High molecular weight polyphosphates and enzymes of polyphosphate metabolism in the process of E. coli growth, Mikrobiologiya 42: 213–219.

    CAS  Google Scholar 

  • Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I.S., 1974, Regulation of the enzymes of phosphorus metabolism and the level of polyphosphate in E. coli K-12 by exogenous o-PO4, Mikrobiologiya 43: 227–234.

    CAS  Google Scholar 

  • Nicholls, H. A., 1975, Full scale experimentation on the new Johannesburg extended aeration plants, Water SA 1: 121–132.

    CAS  Google Scholar 

  • Nicholls, H. A., 1978, Kinetics of phosphorus transformations in aerobic and anaerobic environments, Prog. Water Technol. 10(Suppl. 1): 89–102.

    Google Scholar 

  • Nicholls, H. A., and Osborn, D. W., 1979, Bacterial stress: A prerequisite for biological removal of phosphorus, J. Water Pollut. Control Fed. 51: 557–569.

    CAS  Google Scholar 

  • Nicholls, H. A., Pitman, A. R., and Osborn, D. W., 1985, The readily biodegradable fraction of sewage: Its influence on phosphorus removal and measurement, Water Sci. Technol. 17: 73–87.

    CAS  Google Scholar 

  • Nicholls, H. A., Osborn, D. W., and Pitman, A. R., 1986, Biological phosphorus removal at the Johannesburg Northern and Goudkoppies Wastewater Purification Plants, Water SA 12: 13–18.

    CAS  Google Scholar 

  • Nicholls, H. A., Osborn, D. W., and Pitman, A. R., 1987, Improvement to the stability of the biological phosphate removal process at the Johannesburg Northern Works, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 261–272, Pergamon Press, Oxford.

    Google Scholar 

  • Noegel, A., and Gotschlich, E. C., 1983, Isolation of a high molecular weight polyphosphate from Neisseria gonorrhoeae, J. Exp. Med. 157: 2049–2060.

    PubMed  CAS  Google Scholar 

  • Ohtake, H., Takahashi, K., Tsuzuki, Y., and Toda, K., 1984, Phosphorus release from a pure culture of Acinetobacter calcoaceticus under anaerobic conditions, Environ. Technol. Lett. 5: 417–424.

    CAS  Google Scholar 

  • Okada, M., Murakami, A., and Sudo, R., 1987, Ecological selection of phosphorus-accumulating bacteria in sequencing batch reactor activated sludge processes for simultaneous removal of phosphorus, nitrogen and organic substances, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 147–154, Pergamon Press, Oxford.

    Google Scholar 

  • Oldham, W. K., 1985, Full-scale optimization of biological phosphorus removal at Kelowna, Canada, Water Sci. Technol. 17: 243–257.

    CAS  Google Scholar 

  • Osborn, D. W., and Nicholls, H. A., 1978, Optimization of the activated sludge process for the biological removal of phosphorus, Prog. Water Technol. 10: 261–277.

    CAS  Google Scholar 

  • Osborn, D. W., and Nicholls, H. A., 1985, Biological nutrient removal in South Africa, Water SA 12: 10–13.

    CAS  Google Scholar 

  • Osborn, D. W., Lötter, L. H., Pitman, A. R., and Nicholls, H. A., 1986, Enhancement of Biological Phosphate Removal by Altering Process Feed Composition, Report No. 137/1/86, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Oxender, D. L., 1972, Membrane transport, Annu. Rev. Biochem. 41: 777–814.

    PubMed  CAS  Google Scholar 

  • Park, M. H., Wong, B. B., and Lusk, J. E., 1976, Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology, J. Bacteriol. 126: 1096–1103.

    PubMed  CAS  Google Scholar 

  • Parker, M. G., and Weitzman, P. D. J., 1970, Regulation of NADP-linked isocitrate dehydrogenase activity in Acinetobacter, FEBS Lett. 7: 324–326.

    PubMed  CAS  Google Scholar 

  • Pepin, C. A., and Wood, H. G., 1986, Polyphosphate glucokinase from Propionibacterium shermanii. Kinetics and demonstration that the mechanism involves both processive and nonprocessive type reactions. J. Biol. Chem. 261: 4476–4480.

    PubMed  CAS  Google Scholar 

  • Pines, O., Bayer, E. A., and Gutnick, D. L., 1983, Localization of emulsan-like polymers associated with the cell surface of Acinetobacter calcoaceticus, J. Bacteriol. 154: 893–905.

    PubMed  CAS  Google Scholar 

  • Pitman, A. R., 1984, Operation of biological nutrient removal plants, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 11-1–11-16, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Pitman, A. R., Venter, S. L. V., and Nicholls, H. A., 1983, Practical experience with biological phosphorus removal plants in Johannesburg, Water Sci. Technol. 15: 233–259.

    CAS  Google Scholar 

  • Pitman, A. R., Trim, B. C., and van Dalsen, L., 1988, Operating experience with biological nutrient removal at the Johannesburg Bushkoppie Works, Water Sci. Techol. 20: 51–62.

    CAS  Google Scholar 

  • Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate: sugar phosphotransferase system, Biochim. Biophys. Acta 457: 213–257.

    CAS  Google Scholar 

  • Prakasam, T. B. S., and Dondero, N. C., 1967a, Aerobic heterotrophic bacterial populations of sewage and activated sludge. I. Enumeration, Appl. Microbiol. 15: 461–467.

    PubMed  CAS  Google Scholar 

  • Prakasam, T. B. S., and Dondero, N. C., 1967b, Aerobic heterotrophic bacterial populations of sewage and activated sludge. H. Method of characterization of activated sludge bacteria, Appl. Microbiol. 15: 1122–1127.

    PubMed  CAS  Google Scholar 

  • Prakasam, T. B. S., and Dondero, N. C., 1970, Aerobic heterotrophic bacterial populations of sewage and activated sludge. V. Analysis of population structure and activity, Appl. Microbiol. 19: 671–680.

    PubMed  CAS  Google Scholar 

  • Price, G. J., 1982, Use of an anoxic zone to improve activated sludge settleability, in: Bulking of Activated Sludge: Preventative and Remedial Methods (B. Chambers and E. J. Tomlinson, eds.), pp. 259–260, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  • Rabinowitz, B., Koch, F. A., Vassos, T. D., and Oldham, W. K., 1987, A novel operational mode for a primary sludge fermenter for use with the enhanced biological phosphorus removal process, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 349–352, Pergamon Press, Oxford.

    Google Scholar 

  • Randall, C. W., Daigger, G. T., Morales, L., Waltrip, G. D., and Romm, E. D., 1987, High-rate economical biological removal of nitrogen and phosphorus, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 373–376, Pergamon Press, Oxford.

    Google Scholar 

  • Rao, N. N., Roberts, M. F., and Torriani, A., 1985, Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions, J. Bacteriol. 62: 242–247.

    Google Scholar 

  • Rensink, J. H., 1981, Biologische Defosfatering en procesbepalende Factoren, presented at the NVA Symposium, Amersfoort, The Netherlands.

    Google Scholar 

  • Rensink, J. H., and Donker, H. J. G. W., 1987, The influence of bulking sludge on enhanced biological phosphorus removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 369–372, Pergamon Press, Oxford.

    Google Scholar 

  • Ritchie, G. A. F., Senior, P. J., and Dawes, E. A., 1971, The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii, Biochem. J. 121: 309–316.

    PubMed  CAS  Google Scholar 

  • Robinson, N. A., and Wood, H. G., 1986, Polyphosphate kinase from Propionibacterium shermanii. Demonstration that the synthesis and utilization of polyphosphate is by a processive mechanism, J. Biol. Chem. 261: 4481–4485.

    PubMed  CAS  Google Scholar 

  • Robinson, N. A., Goss, N. H., and Wood, H. C., 1984, Polyphosphate kinase from Propionibacterium shermanii: Formation of an enzymatically active insoluble complex with basic proteins and characterisation of synthesized polyphosphate, Biochem. Int. 8: 757–769.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., and McClees, J. S., 1974, Active transport of calcium in inverted membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. USA 71: 5042–5046.

    PubMed  CAS  Google Scholar 

  • Rosenberg, H., Medveczky, N., and La Nauze, J. M., 1969, Phosphate transport in Bacillus cereus, Biochim. Biophys. Acta 193: 159–167.

    PubMed  CAS  Google Scholar 

  • Rosenberg, H., Gerdes, R. G., and Chegwidden, K., 1977, Two systems for the uptake of phosphate in Escherichia coli, J. Bacteriol. 131: 505–511.

    PubMed  CAS  Google Scholar 

  • Roughgarden, J., 1971, Density-dependent natural selection, Ecology 52: 453–468.

    Google Scholar 

  • Salanitro, J. P., and Wegener, W. S., 1971, Growth of Escherichia coli on short-chain fatty acids: Nature of the uptake system, J. Bacteriol. 108: 893–901.

    PubMed  CAS  Google Scholar 

  • Sar, N., and Rosenberg, E., 1983, Emulsifier production by Acinetobacter calcoaceticus strains, Curr. Microbiol. 9: 309–313.

    CAS  Google Scholar 

  • Schönberger, R., and Hegemann, W., 1987, Biological phosphorus removal with and without sidestream precipitation, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 165–176, Pergamon Press, Oxford.

    Google Scholar 

  • Schuldiner, S., and Fishkes, H., 1978, Sodium-proton antiport in isolated membrane vesicles of Escherichia coli, Biochemistry 17: 706–711.

    PubMed  CAS  Google Scholar 

  • Senior, P. J., and Dawes, E. A., 1971, Poly-β-hydroxybutyrate and the regulation of glucose metabolism in Azotobacter beijerinckii, Biochem. J. 125: 55–66.

    PubMed  CAS  Google Scholar 

  • Severin, A. I., Lusta, K. I., Nesmeyanova, M. A., and Kulaev, I.S., 1975, Membrane bound polyphosphatase of Escherichia coli, Biokhimiya 41: 357–362.

    Google Scholar 

  • Shapiro, J., 1967, Induced rapid release and uptake of phosphate by microorganisms, Science 155: 1269–1271.

    PubMed  CAS  Google Scholar 

  • Shapiro, J., Levin, G. V. and Zea, G. H., 1967, Anoxically induced release of phosphate in wastewater treatment, J. Water Pollut. Control Fed. 39: 1810–1818.

    CAS  Google Scholar 

  • Sharma, B., and Ahlert, R. C., 1977, Nitrification and nitrogen removal, Water Res. 11: 897–925.

    CAS  Google Scholar 

  • Sheintuch, M., Lev, O., Einav, P., and Rubin, E., 1986, Role of exocellular polymer in the design of activated sludge, Biotechnol. Bioeng. 28: 1564–1576.

    PubMed  CAS  Google Scholar 

  • Siebritz, I. P., Ekama, G. A., and Marais, G. v. R., 1983, A parametric model for biological excess phosphorus removal, Water Sci. Technol. 15: 127–152.

    CAS  Google Scholar 

  • Sierra, G., and Gibbons, N. E., 1963, Production of poly-β-hydroxybutyric acid granules in Micrococcus halodenitrificans, Can. J. Microbiol. 8: 249–253.

    Google Scholar 

  • Silver, S., 1978, Transport of cations and anions, in: Bacterial Transport (B. P. Rosen, ed.), Microbiology Ser. Vol. 4, pp. 221–324, Marcel Dekker Inc., New York.

    Google Scholar 

  • Simpkins, M. J., and McLaren, A. R., 1978, Consistent biological phosphate and nitrate removal in an activated sludge plant, Prog. Water Technol. 10: 433–441.

    CAS  Google Scholar 

  • Skulachev, V. P., 1977, Transmembrane electrochemical H+-potential as a convertible energy source for the living cell, FEBS Lett. 74: 1–9.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P., 1978, Membrane-linked energy buffering as the biological function of Na+/K+ gradient, FEBS Lett. 87: 171–179.

    PubMed  CAS  Google Scholar 

  • Somiya, I., Tsuno, H., and Nishikawa, M., 1987, Behaviour of phosphorus and metals in the anaerobicoxic activated sludge process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 321–324, Pergamon Press, Oxford.

    Google Scholar 

  • South African Inventions Development Corporation, 1973, S.A. patent 72/5371, filed 27 June 1973.

    Google Scholar 

  • Srinath, E. G., Sastry, C. A., and Pillai, S. C., 1959, Rapid removal of phosphorus from sewage by activated sludge, Water Waste Treat. 11: 410–415.

    Google Scholar 

  • Stephenson, T., 1987, Acinetobacter: Its role in biological phosphate removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 313–316, Pergamon Press, Oxford.

    Google Scholar 

  • Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1968, Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae, J. Bacteriol. 95: 1798–1803.

    PubMed  CAS  Google Scholar 

  • Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M. F., and Halvorson, H. O., 1985, New strategies for the isolation of microorganisms responsible for phosphate accumulation, Water Sci. Technol. 17: 99–111.

    CAS  Google Scholar 

  • Suzuki, H., Kauko, T., and Ikeda, Y., 1972, Properties of polyphosphate kinase prepared from Mycobacterium smegmatis, Biochim. Biophys. Acta 268: 381–390.

    PubMed  CAS  Google Scholar 

  • Swedes, J. S., Sedo, R. J., and Atkinson, D. E., 1975, Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli, J. Biol. Chem. 250: 6930–6938.

    PubMed  CAS  Google Scholar 

  • Szymona, M., and Ostrowski, W., 1964, Inorganic polyphosphate glucokinase of Mycobacterium phlei, Biochim. Biophys. Acta 85: 283–295.

    PubMed  CAS  Google Scholar 

  • Szymona, O., and Syzmona, M., 1979, Polyphosphate and ATP-glucose phosphotransferase activities in Nocardia minima, Acta Microbiol. Pol. 28: 153–160.

    PubMed  CAS  Google Scholar 

  • Szymona, O., Uryson, S.O., and Kulaev, I.S., 1967, Detection of polyphosphate glucokinase in various microorganisms, Biokhimiya 32: 408–415.

    Google Scholar 

  • Tanaka, T., Kawakami, A., Yoneyama, Y., and Kobayashi, S., 1987, Study on the reduction of returned phosphorus from a sludge treatment process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 201–211, Pergamon Press, Oxford.

    Google Scholar 

  • Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture; their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119–149, Cambridge University Press, Cambridge.

    Google Scholar 

  • Terry, K. R., and Hooper, A. B., 1970, Polyphosphate and orthophosphate content of Nitrosomonas europaea as a function of growth, J. Bacteriol. 103: 199–206.

    PubMed  CAS  Google Scholar 

  • Toerien, D. F., and Gerber, A., 1986, Bacterial population structure of activated sludge systems, Letter to the editor, Water SA 12: 239.

    Google Scholar 

  • Toerien, D. F., Gerber, A., and Brodisch, K. E. U., 1986, Biological phosphate removal in activated sludge systems, in: Perspectives in Microbial Ecology (F. Megusar and M. Ganter, eds.), pp. 66–73, Slovene Society for Microbiology, Ljubljana, Yugoslavia.

    Google Scholar 

  • Tomlinson, E. J., and Chambers, B., 1979, Methods for prevention of bulking in activated sludge, Water Pollut. Control 78: 524–538.

    CAS  Google Scholar 

  • T’Seyen, J., Malnou, D., Block, J. C., and Faup, G., 1985, Polyphosphate kinase activity during phosphate uptake by bacteria, Water Sci. Technol. 17: 43–56.

    Google Scholar 

  • Tsuchiya, T., and Rosen, B. P., 1976, Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli, J. Biol. Chem. 250: 7687–7692.

    Google Scholar 

  • Vacker, D., Connell, C. H., and Wells, W. N., 1967, Phosphate removal through municipal wastewater treatment at San Antonio, Texas, J. Water Pollut. Control Fed. 39: 750–771.

    CAS  Google Scholar 

  • Vaillancourt, S., Beauchemin-Newhouse, N., and Cedergren, R. J., 1978, Polyphosphate-deficient mutants of Anacystis nidulans, Can. J. Microbiol. 24: 112–116.

    PubMed  CAS  Google Scholar 

  • Van Gills, H. W., 1964, Bacteriology of Activated Sludge, Research Institute of Public Health Engineering, T.N.O., Delft, The Netherlands, Publ. 32.

    Google Scholar 

  • Van Groenestijn, J. W., and Deinema, M. H., 1985, Effects of cultural conditions on phosphate accumulation and release by Acinetobacter strain 210A, in: Proceedings of the International Conference on Management Strategies for Phosphorus in the Environment, pp. 405–410, Seeper Ltd., London.

    Google Scholar 

  • Venter, S. L. V., Halliday, J., and Pitman, A. R., 1978, Optimization of the Johannesburg Olifantsvlei extended aeration plant for phosphorus removal, Prog. Water Technol. 10: 279–292.

    CAS  Google Scholar 

  • Visser, A. S., and Postma, P. W., 1973, Permeability of Azotobacter vinelandii to cations and anions, Biochim. Biophys. Acta 298: 333–340.

    PubMed  CAS  Google Scholar 

  • Voelz, H., Voelz, U., and Ortigoza, R. O., 1966, The polyphosphate overplus phenomenon in Myxococcus xanthus and its influence on the architecture of the cell, Arch. Mikrobiol. 53: 371–388.

    PubMed  CAS  Google Scholar 

  • Wanner, J., Ottova, V., and Grau, P., 1987, Effect of an anaerobic zone on settleability of activated sludge, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 155–164, Pergamon Press, Oxford.

    Google Scholar 

  • Watanabe, A., Miya, A., and Matsuo, Y., 1984, Laboratory scale study on biological phosphate removal using synthetic waste water, Newsl. IAWPRC Study Group on Phosphate Removal in Biological Sewage Treatment Processes 2: 40–43.

    Google Scholar 

  • Water Research Commission, 1984, Theory, De sign and Operation of Nutrient Removal Activated Sludge Processes, Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Weitzman, P. D. J., 1972, Regulation of α-ketoglutarate dehydrogenase activity in Acinetobacter, FEBS Lett. 22: 323–326.

    PubMed  CAS  Google Scholar 

  • Weitzman, P. D. J., and Dunmore, P., 1969, Citrate synthases: Allosteric regulation and molecular size, Biochim. Biophys. Acta 171: 198–200.

    PubMed  CAS  Google Scholar 

  • Weitzman, P. D. J., and Jones, D., 1968, Regulation of citrate synthase and microbial taxonomy, Nature (London) 219: 270–272.

    CAS  Google Scholar 

  • Wells, W. N., 1969, Differences in phosphate uptake rates exhibited by activated sludges, J. Water Pollut. Control Fed. 41: 765–771.

    CAS  Google Scholar 

  • Wentzel, M. C., Dold, P. L., Ekama, G. A., and Marais, G. v. R., 1985, Kinetics of biological phosphorus release, Water Sci. Technol. 17: 57–71.

    CAS  Google Scholar 

  • Wentzel, M. C., Lötter, L. H., Loewenthal, R. E., and Marais, G. v. R., 1986, Metabolic behaviour of Acinetobacter spp in enhanced biological phosphorus removal: A biochemical model, Water SA 12: 209–224.

    CAS  Google Scholar 

  • Wentzel, M. C., Dold, P. L., Loewenthal, R. E., Ekama, G. A., and Marais, G. v. R., 1987, Experiments towards establishing the kinetics of biological excess phosphorus removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 79–97, Pergamon Press, Oxford.

    Google Scholar 

  • West, I. C., and Mitchell, P., 1974, Proton/sodium ion antiport in Escherichia coli, Biochem. J. 144: 87–90.

    PubMed  CAS  Google Scholar 

  • Wetzel, R. C., 1983, Limnology, 2nd ed., W. B. Saunders, Philadelphia.

    Google Scholar 

  • White, A., Handler, P., Smith, E. L., Hill, R. L., and Lehman, I. R., 1978, Principles of Biochemistry, McGraw-Hill, Kogakusha Ltd., Tokyo.

    Google Scholar 

  • Wilson, D. B., 1978, Cellular transport mechanisms, Annu. Rev. Biochem. 47: 933–965.

    PubMed  CAS  Google Scholar 

  • Winder, F. G., and Denneny, J. M., 1957, The metabolism of inorganic polyphosphate in Mycobacteria, J. Gen. Microbiol. 17: 573–585.

    PubMed  CAS  Google Scholar 

  • Wong, P. P., and Evans, H. J., 1971, Poly-β-hydroxybutyrate utilization by soybean (Glycine max. mer) nodules and assessment of its role in maintenance of nitrogenase activity, Plant Physiol. 47: 750–755.

    PubMed  CAS  Google Scholar 

  • Wood, H. G., and Goss, N. H., 1985, Phosphorylation enzymes of the propionic acid bacteria and the roles of ATP, inorganic pyrophosphate and polyphosphates, Proc. Natl. Acad. Sci. USA 82: 312–315.

    PubMed  CAS  Google Scholar 

  • Wuhrmann, K., 1957, Die dritte Reinigungsstufe: Wege und bisherige Erfolge in der Eliminierung eutrophierender Stoffe, Schweiz Z. Hydrol. 19: 409–427.

    CAS  Google Scholar 

  • Wuhrmann, K., 1960, Effects of oxygen tension on biochemical reactions in sewage treatment plants, in: Advances in Biological Waste Treatment. Proceedings of the 3rd Conference on Biological Waste Treatment (W. W. Eckenfelder and J. McCabe, eds.), Pergamon Press, New York, pp. 27–38.

    Google Scholar 

  • Yagil, E., 1975, Derepression of polyphosphatase in Escherichia coli by starvation for inorganic phosphate, FEBS Lett. 55: 124–127.

    PubMed  CAS  Google Scholar 

  • Zaitseva, G. N., and Beiozerskii, A.N., 1960, Formation and utilisation of polyphosphates catalyzed by an enzyme isolated from Azotobacter vinelandii, Dokl. Akad. Nauk. SSR 132: 950–953.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Toerien, D.F., Gerber, A., Lötter, L.H., Cloete, T.E. (1990). Enhanced Biological Phosphorus Removal in Activated Sludge Systems. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics