Advertisement

Enhanced Biological Phosphorus Removal in Activated Sludge Systems

  • D. F. Toerien
  • A. Gerber
  • L. H. Lötter
  • T. E. Cloete
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

Eutrophication is a worldwide water pollution problem which results in the overabundant growth of algae and/or macrophytes (Wetzel, 1983). Control of the access of phosphates (P) to the aquatic environment is widely used as a eutrophication control strategy (e.g., Lee et al., 1978), thus requiring its removal from effluents by chemical and/or biological means.

Keywords

Chemical Oxygen Demand Activate Sludge Phosphorus Removal Mixed Liquor Activate Sludge System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardern, E., and Lockett, W. T., 1914, Experiments on the oxidation of sewage without the aid of filters, J. Soc. Chem. Ind. 33: 523–539.Google Scholar
  2. Allen, L. A., 1944, The bacteriology of activated sludge, J. Hyg. 43: 424–431.Google Scholar
  3. Alper, R., Lundgren, D. G., Marchessault, R. H., and Cote, W. A., 1963, Properties of poly-β-hydroxybutyrate. 1. General considerations concerning the naturally occurring polymer. Biopolymers 1: 545–556.Google Scholar
  4. Andrews, J. H., and Harris, R. F., 1985, r- and K-selection and microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 99–48, Plenum, New York.Google Scholar
  5. Arvin, E., and Kristensen, G. H., 1985, Exchange of organics, phosphate and cations between sludge and water in biological phosphorus and nitrogen removal processes, Water Sci. Technol. 17: 147–162.Google Scholar
  6. Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030–4034.PubMedGoogle Scholar
  7. Banks, C. J., and Walker, I., 1977, Sonication of activated sludge flocs and the recovery of their bacteria on solid media, J. Gen. Microbiol. 98: 363–368.Google Scholar
  8. Barnard, J. L., 1973, Biological denitrification, Water Pollut. Control 72: 105–120.Google Scholar
  9. Barnard, J. L., 1974, Cut P and N without chemicals, Water Wastes Eng. 11: 33–44.Google Scholar
  10. Barnard, J. L., 1975, Nutrient removal in biological systems, Water Pollut. Control 74: 143–154.Google Scholar
  11. Barnard, J. L., 1976, A review of biological phosphorus removal in the activated sludge process, Water SA 2: 136–144.Google Scholar
  12. Barnard, J. L., 1982, The influence of nitrogen on phosphorus removal in activated sludge plants, Water Sci. Technol. 14: 31–45.Google Scholar
  13. Barnard, J. L., 1984, Activated primary tanks for phosphate removal, Water SA 10: 121–126.Google Scholar
  14. Baxter, M.I., and Jensen, T. H., 1980, Uptake of magnesium, strontium, barium and manganese by Plectonema boryanum (Cyanophyceae), Protoplasm 104: 81–89.Google Scholar
  15. Bell, E. J., and Herman, N. J., 1967, Effect of succinate and isocitrate lyase synthesis in Mima polymorpha, J. Bacteriol. 93: 2020–2021.PubMedGoogle Scholar
  16. Bennett, R. L., and Malamy, M. H., 1970, Arsenate resistant mutants of Escherichia coli and phosphate transport, Biochem. Biophys. Res. Commun. 40: 496–503.PubMedGoogle Scholar
  17. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.PubMedGoogle Scholar
  18. Blackbeard, J. R., Ekama, G. A., and Marais, G. v. R., 1986, A survey of filamentous bulking and foaming in activated sludge plants in South Africa, Water Pollut. Control 85: 90–100.Google Scholar
  19. Blackbeard, J. R., Gabb, D. M. D., Ekama, G. A., and Marais, G. v. R., 1987, Identification of filamentous organisms in nutrient removal activated sludge plants in South Africa, in: Proceedings of the Institute of Water Pollution Control (S A Branch) Biennial Conference, Port Elizabeth, Paper no. 10.Google Scholar
  20. Boyer, P. D., 1977, Coupling mechanisms in capture, transmission and use of energy, Annu. Rev. Biochem. 46: 957–966.Google Scholar
  21. Brodie, A. F., Hirata, H., Asano, A., Cohen, N. S., Hinds, T. R., Aithal, H. N., and Kalra, V. K., 1972, The relationship of bacterial membrane orientation to oxidative phosphorylation and active transport, in: Membrane Research (C. Fred Fox, ed.), pp. 445–472, Academic Press, New York.Google Scholar
  22. Brodisch, K. E. U., 1985, Interaction of different groups of microorganisms in biological phosphate removal, Water Sci. Technol. 17: 89–97.Google Scholar
  23. Brodisch, K. E. U., and Joyner, S. J., 1983, The role of microorganisms other than Acinetobacter in biological phosphate removal in the activated sludge process, Water Sci. Technol. 15: 117–125.Google Scholar
  24. Buchan, L., 1981, The location and nature of accumulated phosphorus in seven sludges from activated sludge plants which exhibited enhanced phosphorus removal, Water SA 7: 1–7.Google Scholar
  25. Buchan, L., 1983, Possible biological mechanism of phosphorus removal, Water Sci. Technol. 15: 87–103.Google Scholar
  26. Bundgaard, E., Kristensen, G. H., and Arvin, E., 1983, Full-scale experience with phosphorus removal in an alternating system, Water Sci. Technol. 15: 197–217.Google Scholar
  27. Burnell, J. N., John, P., and Whatley, F. R., 1975, Phosphate transport in membrane vesicles of Paracoccus denitrificans, FEBS Lett. 58: 215–218.PubMedGoogle Scholar
  28. Butterfield, C. T., 1935, Studies of sewage purification. II. A Zooglea-forming bacterium isolated from activated sludge, Public Health Rep. 50: 671–684.Google Scholar
  29. Chambers, B., 1982, Effect of longitudinal mixing and anoxic zones on settleability of activated sludge, in: Bulking of Activated Sludge: Preventative and Remedial Methods (B. Chambers and E. J. Tomlinson, eds.), pp. 166–186, Ellis Horwood Ltd., Chichester.Google Scholar
  30. Chen, M., 1974, Kinetics of phosphorus absorption by Corynebacterium bovis, Microb. Ecol. 1: 164–175.Google Scholar
  31. Christensen, M. H., and Harremoës, P., 1977, Biological denitrification of sewage: A literature review, Prog. Water Technol. 8: 509–555.Google Scholar
  32. Cloete, T. E., 1985, The detection of Acinetobacter in activated sludge and its possible role in biological phosphorus removal, D.Sc. thesis, University of Pretoria, Pretoria, South Africa.Google Scholar
  33. Cloete, T. E., and Steyn, P. L., 1987, A combined fluorescent antibody-membrane filter technique for enumerating Acinetobacter in activated sludge, in: Advances in Water Pollution Control, Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 335–338, Pergamon Press, Oxford.Google Scholar
  34. Cloete, T. E., Steyn, P. L., and Buchan, L., 1985, An aut-ecological study of Acinetobacter in activated sludge, Water Sci. Technol. 17: 139–146.Google Scholar
  35. Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K., 1985, Biochemical model for enhanced biological phosphorus removal, in: Proceedings of University of British Columbia Conference on New Directions and Research in Waste Treatment and Residuals Management, pp. 324–346, University of British Columbia, Vancouver, Canada.Google Scholar
  36. Comeau, Y., Hall, K. J., Hancock, R. E. W., and Oldham, W. K., 1986, Biochemical model for enhanced biological phosphorus removal, Water Res. 20: 1511–1521.Google Scholar
  37. Comeau, Y., Oldham, W. K., and Hall, K. J., 1987, Dynamics of carbon reserves in biological dephosphatation of wastewater, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 39–55, Pergamon Press, Oxford.Google Scholar
  38. Cuppoletti, J., and Segal, I. H., 1975, Kinetics of sulphate transport by Penicillium notatum. Interactions of sulphate, protons, and calcium, Biochemistry 14: 4712–4718.PubMedGoogle Scholar
  39. Davelaar, D., Davis, T. R., and Wiechers, S. G., 1978, The significance of an anaerobic zone for the biological removal of phosphate from wastewaters, Water SA 4: 54–60.Google Scholar
  40. Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers in microorganisms, Adv. Microb. Physiol. 10: 135–266.PubMedGoogle Scholar
  41. Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E., and Webers, H. A., 1980, The accumulation of polyphosphate in Acinetobacter spp., FEMS Microbiol. Lett. 9: 275–279.Google Scholar
  42. Deinema, M. H., Van Loosdrecht, M., and Scholten, A., 1985, Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate, Water Sci. Technol. 17: 119–125.Google Scholar
  43. Dias, F. F., and Bhat, J. V., 1964, Microbial ecology of activated sludge. I. Dominant bacteria, Appl. Microbiol. 12: 412–417.PubMedGoogle Scholar
  44. Dold, P. L., and Marais, G. v. R., 1986, Evaluation of the general activated sludge model proposed by the IAWPRC task group, Water Sci. Technol. 18: 63–89.Google Scholar
  45. Eigener, U., and Bock, E., 1972, Auf-und Abbau der Polyphosphat-fraktion in Zellen von Nitrobacter winogradskyi (Buch), Arch. Mikrobiol. 81: 367–378.PubMedGoogle Scholar
  46. Eikelboom, D. H,, and van Buijsen, H. J., 1981, Microscopic Sludge Investigation Manual, Report No. A94A of the TNO Instituut voor Milieu-hygiene en-gesondheidstechniek, Delft, The Netherlands.Google Scholar
  47. Ekama, G. A., and Marais, G. v. R., 1984a, Biological nitrogen removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 6-1–6-26, Water Research Commission, Pretoria, South Africa.Google Scholar
  48. Ekama, G. A., and Marais, G. v. R., 1984b, Carbonaceous material removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 4-1–4-20, Water Research Commission, Pretoria, South Africa.Google Scholar
  49. Ekama, G. A., and Marais, G. v. R., 1985, The implications of the IAWPRC hydrolysis hypothesis on low F/M bulking, Water Sci. Technol. 18: 11–19.Google Scholar
  50. Ekama, G. A., Siebritz, I. P., and Marais, G. v. R., 1983, Considerations in the process design of nutrient removal activated sludge processes, Water Sci. Technol. 15: 283–318.Google Scholar
  51. Ekama, G. A., Marais, G. v. R., and Siebritz, I. P., 1984, Biological excess phosphorus removal, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 7-1–7-32, Water Research Commission, Pretoria, South Africa.Google Scholar
  52. Friedberg, I., and Avigad, G. 1968, Structures containing polyphosphate in Micrococcus lysodeikticus, J. Bacteriol. 96: 544–553.PubMedGoogle Scholar
  53. Friedman, B. A., Dugan, P. R., Pfister, R. M., and Remsen, C. C., 1969, Structure of exocellular polymers and their relationship to bacterial flocculation, J. Bacteriol. 98: 1328–1334.PubMedGoogle Scholar
  54. Fuhs, G. W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater, Microb. Ecol. 2: 119–138.Google Scholar
  55. Fukase, T., Shibata, M., and Miyaji, Y., 1985, Factors affecting biological removal of phosphorus, Water Sci. Technol. 17: 187–198.Google Scholar
  56. Gerber, A., Mostert, E. S., Winter, C. T., and de Villiers, R. H., 1986, The effect of acetate and other short-chain carbon compounds on the kinetics of biological nutrient removal, Water SA 12: 7–12.Google Scholar
  57. Gerber, A., Mostert, E. S., Winter, C. T., and de Villiers, R. H., 1987a, Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes, Water Sci. Technol. 19: 183–194.Google Scholar
  58. Gerber, A., de Villiers, R. H., Mostert, E. S., and van Riet, C. J. J., 1987b, The phenomenon of simultaneous phosphate uptake and release, and its importance in biological nutrient removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 123–134, Pergamon Press, Oxford.Google Scholar
  59. Gersberg, R. M., and Allen, D. W., 1985, Phosphorus uptake by Klebsiella pneumoniae and Acineto-bacter calcoaceticus, Water Sci. Technol. 17: 113–118.Google Scholar
  60. Goldman, S., Shabtai, Y., Rubinovitz, C., Rosenberg, E., and Gutnick, D. L., 1982, Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of cell free and cell associated cross reacting material. Appl. Environ. Microbiol. 44: 165–170.PubMedGoogle Scholar
  61. Grady, C. P. L., and Lim, H. C., 1980, Biological Wastewater Treatment: Theory and Applications, Marcel Dekker, Inc., New York.Google Scholar
  62. Gutowski, S. J., and Rosenberg, H., 1975, Succinate uptake and related proton movements in Escherichia coli K12, Biochem. J. 152: 647–654.PubMedGoogle Scholar
  63. Harold, F. M., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes, J. Bacteriol. 86: 216–221.PubMedGoogle Scholar
  64. Harold, F. M., 1964, Enzymic and genetic control of polyphosphate accumulation in Aerobacter aerogenes, J. Gen. Microbiol. 35: 81–90.PubMedGoogle Scholar
  65. Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism, and function, Bacteriol. Rev. 30: 772–794.PubMedGoogle Scholar
  66. Harold, F. M., 1974, Chemiosmotic interpretation of active transport in bacteria, Ann. N.Y. Acad. Sci. 227: 297–311.PubMedGoogle Scholar
  67. Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg. 6: 83–149.Google Scholar
  68. Harold, F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphate in mutants of Aerobacter aerogenes, J. Bacteriol. 89: 1262–1270.PubMedGoogle Scholar
  69. Harold, F. M., and Papineau, D., 1972, Cation transport and electrogenesis by Streptococcus faecalis, J. Membr. Biol. 8: 45–62.PubMedGoogle Scholar
  70. Harold, F. M., and Spitz, E., 1975, Accumulation of arsenate, phosphate and aspartate by Streptococcus faecalis, J. Bacteriol. 122: 266–277.PubMedGoogle Scholar
  71. Harold, F. M., and Sylvan, S., 1963, Accumulation of inorganic polyphosphate in Aerobacter aerogenes, J. Bacteriol. 86: 222–231.PubMedGoogle Scholar
  72. Harold, F. M., Baarda, J. R., and Pavlasova, E., 1970, Extrusion of sodium and hydrogen ions as the primary process in potassium ion accumulation by Streptococcus faecalis, J. Bacteriol. 101: 152–159.PubMedGoogle Scholar
  73. Harris, E., 1957, Radiophosphorus metabolism in Zooplankton and micro-organisms, Can. J. Zool. 35: 769–782.Google Scholar
  74. Harris, R. H., and Mitchell, R., 1973, The role of polymers in microbial aggregation, Annu. Rev. Microbiol. 27: 27–50.PubMedGoogle Scholar
  75. Hascoet, M. C., and Florentz, M., 1985, Influence of nitrates on biological phosphorus removal from wastewater, Water SA 11: 1–8.Google Scholar
  76. Hascoet, M. C., Florentz, M., and Granger, P., 1985, Biochemical aspects of enhanced biological phosphorus removal from wastewater, Water Sci. Technol. 17: 23–41.Google Scholar
  77. Heefner, D. L., and Harold, F. M., 1982, ATP-driven sodium pump in Streptococcus faecalis, Proc. Natl. Acad. Sci. USA 79: 2798–2802.PubMedGoogle Scholar
  78. Herman, N. J., and Bell, E. J., 1970, Metabolic control in Acinetobacter sp. I: Effect of C4 versus C2 and C3 substrates on isocitrate lyase synthesis, Can. J. Microbiol. 16: 169–174.Google Scholar
  79. Heukelekian, H., and Littman, M. L., 1939, Carbon and nitrogen transformations in the purification of sewage by activated sludge process. II. Morphological and biochemical studies of zoogleal organisms, Sewage Works J. 11: 752–763.Google Scholar
  80. Hoffman, H., 1987, Influence of oxic and anoxic mixing zones in compartment systems on substrate removal and sludge characteristics in activated sludge plants, Water Sci. Technol. 19: 897–910.Google Scholar
  81. Hong, S.-N., Krichten, D. J., Kisenbauer, K. S., and Sell, R. L., 1982, A Biological Wastewater Treatment System for Nutrient Removal, presented at the EPA Workshop on Biological Phosphorus Removal in Municipal Wastewater Treatment, Annapolis, Md.Google Scholar
  82. Hungate, R. E., 1966, The Rumen and Its Microbes, Academic Press, New York.Google Scholar
  83. Iwema, A., and Meunier, A., 1985, Influence of nitrate on acetic acid induced biological phosphate removal, Water Sci. Technol. 17: 289–294.Google Scholar
  84. Jain, M., and Wagner, R. C., 1980, Passive facilitated diffusion, in: Introduction to Biological Membranes (M. Jain and R. C. Wagner, eds.), pp. 232–247, John Wiley and Sons, New York.Google Scholar
  85. Jenkins, D., Richard, M. G., and Neethling, J. B., 1984, Causes and control of activated sludge bulking, J. Water Pollut. Control Fed. 83: 455–472.Google Scholar
  86. Jenkins, S. H., and Lockert, W. T., 1943, Loss of phosphorus during sewage purification, Nature (London) 151: 306–307.Google Scholar
  87. Kaback, H. R., 1968, The role of the phosphoenol pyruvate-phosphotransferase system in the trans port of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 143: 3711–3724.Google Scholar
  88. Kaltwasser, H., 1962, Die Rolle der Polyphosphate im Phosphat-Stoffwechsel eines Knallgasbakteriums (Hydrogenomonas Stamm 20), Arch. Mikrobiol. 41: 282–306.PubMedGoogle Scholar
  89. Kaltwasser, H., Vogt, G., and Schlegel, H. G., 1962, Polyphosphat-synthese während der Nitrat-Atmung von Micrococcus denitrificans, Stamm 11, Arch. Mikrobiol. 44: 259–265.Google Scholar
  90. Kay, W. W., 1972, Genetic control of the metabolism of propionate by Escherichia coli, K12. Biochim. Biophys. Acta 264: 508–521.PubMedGoogle Scholar
  91. Kell, D. B., Peck, M. W., Rodger, G., and Morris, J. G., 1981, On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum, Biochim. Biophys. Res. Commun. 99: 81–88.Google Scholar
  92. Kobayashi, H., van Brunt, J., and Harold, F. M., 1978, ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis, J. Biol. Chem. 253: 2085–2092.PubMedGoogle Scholar
  93. Konings, W. N., Hellingwerf, K. J., and Robellard, G. T., 1981, Transport across bacterial membranes, in: Membrane Transport (S. L. Bonting and J. J. H. de Pont, eds.), pp. 257–283, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  94. Kornberg, A., Kornberg, S. R., and Simms, E. S., 1956, Metaphosphate synthesis by an enzyme from Escherichia coli, Biochim. Biophys. Acta 20: 215–227.PubMedGoogle Scholar
  95. Krebs, E. G., 1985, The phosphorylation of proteins: A major mechanism for biological regulation, Biochem. Soc. Trans. 13: 813–820.PubMedGoogle Scholar
  96. Kulaev, I. S., 1975, Biochemistry of inorganic polyphosphates, Rev. Physiol. Biochem. Pharmacol. 73: 131–158.PubMedGoogle Scholar
  97. Kulaev, I. S., 1985, Some aspects of environmental regulation of microbial phosphorus metabolism, FEMS Symp. 23: 1–25.Google Scholar
  98. Kulaev, I.S., and Vagabov, V. M., 1983, Polyphosphate metabolism in micro-organisms, Adv. Microb. Physiol 24: 83–171.PubMedGoogle Scholar
  99. Kulaev, I. S., Bobyk, M. A., Nikolaev, N. N., Sergeev, N. S., and Uryson, S. O., 1971, Polyphosphate synthesizing enzymes in some fungi and bacteria, Biokhimiya 36: 943–949.Google Scholar
  100. Laimins, L. A., Rhoads, D. B., Altendorf, K., and Epstein, W., 1978, Identification of the structured proteins of ATP-driven potassium transport system in Escherichia coli, Proc. Natl. Acad. Sci. USA 75: 3216–3219.PubMedGoogle Scholar
  101. Lee, G. F., Rast, W., and Jones, R. A., 1978, Eutrophication of water bodies: Insights for an age-old problem, Environ. Sci. Technol. 12: 900–908.Google Scholar
  102. Levin, G. V., 1964, Sewage Treatment Process, U.S. patent 3236766, applied for 31 March 1964.Google Scholar
  103. Levin, G. V., 1972, Nitrate Removal from Sewage, U.S. patent 3654147, applied for 16 March 1971, granted 4 April 1972.Google Scholar
  104. Levin, G. V., and Sala, II. D., 1987, Phostrip process—a viable answer to eutrophication of lakes and coastal sea waters in Italy, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 249–259, Pergamon Press, Oxford.Google Scholar
  105. Levin, G. V., and Shapiro, J., 1965, Metabolic uptake of phosphorus by wastewater organisms, J. Water Pollut. Control Fed. 37: 800–821.Google Scholar
  106. Levin, G. V., Topol, G. J., Tarnay, A. G., and Samworth, R. B., 1972, Pilot-plant tests of a phosphate removal process, J. Water Pollut. Control Fed. 44: 1940–1954.Google Scholar
  107. Levin, G. V., Topol, G. J., and Tarnay, A. G., 1975, Operation of full-scale biological phosphorus removal plant, J. Water Pollut. Control Fed. 47: 577–590.PubMedGoogle Scholar
  108. Levinson, S. L., Jacobs, L. H., Krulwich, T. A., and Li, H. C., 1975, Purification and characterization of a polyphosphate kinase from Arthrobacter atrocyaneus, J. Gen. Microbiol. 88: 65–74.Google Scholar
  109. Li, H. C., and Brown, G. G., 1973, Orthophosphate and histone dependent polyphosphate kinase from E. coli, Biochim. Biophys. Res. Commun. 53: 875–881.Google Scholar
  110. Lötter, L. H., 1985, The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process, Water Sci. Technol. 17: 127–138.Google Scholar
  111. Lötter, L. H., and Dubery, I. A., 1987, Metabolic control in polyphosphate accumulating bacteria and its role in enhanced biological phosphate removal, in: Advances Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 7–14, Pergamon Press, Oxford.Google Scholar
  112. Lötter, L. H., and Murphy, M., 1985, The identification of heterotrophic bacteria in an activated sludge plant with particular reference to polyphosphate accumulation, Water SA 11: 179–184.Google Scholar
  113. Ludzack, F. J., and Ettinger, M. B., 1962, Controlling operation to minimize activated sludge effluent nitrogen, J. Water Pollut. Control Fed. 34: 920–931.Google Scholar
  114. MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, N.J.Google Scholar
  115. Macrae, R. M., and Wilkinson, J. F., 1958, Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium, J. Gen. Microbiol. 19: 210–222.PubMedGoogle Scholar
  116. Madoni, P., 1986, Protozoa in Waste Treatment Systems, presented at the 4th International Symposium on Microbial Ecology, August 1986, Ljubljana, Yugoslavia.Google Scholar
  117. Mahler, H. R., and Cordes, E. H., 1971, Biological Chemistry, 2nd ed., Harper and Row, New York.Google Scholar
  118. Malnou, D., Meganck, M., Faup, G. M., and du Rostu, M., 1984, Biological phosphorus removal: Study of the main parameters, Water Sci. Technol. 16: 173–185.Google Scholar
  119. Maraeva, O. B., Kolot, M. N., Nesmeyanova, M. A., and Kulaev, I.S., 1979, Interrelationships between metabolic and genetic regulation of alkaline phosphatase and poly-and pyrophosphate, Biokhimiya 44: 715–719.Google Scholar
  120. Marais, G. v. R., 1987, The future of biological removal of phosphorus from wastewater, in: Proceedings of the Australian Waterand Wastewater Association, 1987 International Convention, Adelaide, K.18–K.27.Google Scholar
  121. Marais, G. v. R., Loewenthal, R. E., and Siebritz, I. P., 1983, Observations supporting phosphate removal by biological excess uptake—A review, Water Sci. Technol. 15: 15–41.Google Scholar
  122. McKinney, R. E., and Weichlein, R. G., 1953, Isolation of floe-producing bacteria from activated sludge, Appl. Microbiol. 1: 259–261.PubMedGoogle Scholar
  123. McLaren, A. R., and Wood, R. J., 1976, Effective phosphorus removal from sewage by biological means, Water SA 2: 47–50.Google Scholar
  124. Medveczky, N., and Rosenberg, H., 1971, Phosphate transport in Escherichia coli, Biochim. Biophys. Acta 241: 494–506.PubMedGoogle Scholar
  125. Menar, A. B., and Jenkins, D., 1969, Fate of phosphorus in waste treatment processes: The enhanced removal of phosphate by activated sludge, in: 24th Industrial Waste Treatment Conference, p. 655–674, Purdue University, Lafayette, Ind.Google Scholar
  126. Milbury, W. F., McCauley, D., and Hawthorne, C. H., 1971, Operation of conventional activated sludge for maximum phosphorus removal, J. Water Pollut. Control. Fed. 43: 1890–1901.Google Scholar
  127. Mino, T., Aran, V., Tsuzuki, Y., and Matsuo, T., 1987, Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R, Ramadori, ed.), pp. 27–38, Pergamon Press, Oxford.Google Scholar
  128. Mitchell, P., 1968, Chemiosmotic Coupling and Energy Transduction, Glyn Research Ltd., Bodmin, England.Google Scholar
  129. Mitchell, P., 1977, A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation, FEBS Lett. 78: 1–20.PubMedGoogle Scholar
  130. Miyamoto-Mills, J., Larson, J., Jenkins, D., and Owen, W., 1983, Design and operation of a pilot-scale biological phosphate removal plant at the Central Contra Costa Sanitary District, Wat. Sci. Tech. 15: 153–179.Google Scholar
  131. Mostert, E. S., Gerber, A., and van Riet, C. J. J., 1987, Fatty acid utilization by sludge from full-scale nutrient removal plants, with special reference to the role of nitrate, in: Proceedings of the Institute for Water Pollution Control (Southern African Branch) Biennial Conference, Port Elizabeth, Paper no. 23.Google Scholar
  132. Mudd, S., Yoshida, A., and Koike, M., 1958, Polyphosphate as accumulator of phosphorus and energy, J. Bacteriol. 75: 224–235.PubMedGoogle Scholar
  133. Muhammed, A., 1961, Studies on biosynthesis of polymetaphosphate by an enzyme from Corynebacterium xerosis, Biochim. Biophys. Acta 54: 121–132.PubMedGoogle Scholar
  134. Mühlradt, P. F., 1971, Synthesis of high molecular weight polyphosphate with a partially purified enzyme from Salmonella, J. Gen. Microbiol. 68: 115–122.PubMedGoogle Scholar
  135. Mulder, J. W., and Rensink, J. H., 1987, Introduction of biological phosphorus removal to an activated sludge plant with practical limitations, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 213–223, Pergamon Press, Oxford.Google Scholar
  136. Murata, K., Uchida, T., Tani, K., Kato, J., and Chibata, I., 1980, Metaphosphate: A new phosphoryl donor for NAD phosphorylation, Agr. Biol. Chem. 44: 61–68.Google Scholar
  137. Murphy, M., and Lötter, L. H., 1986, The effect of acetate and succinate on polyphosphate formation and degradation in activated sludge with particular reference to Acinetobacter calcoaceticus, Appl. Microbiol. Biotechnol. 24: 512–517.Google Scholar
  138. Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I.S., 1973, High molecular weight polyphosphates and enzymes of polyphosphate metabolism in the process of E. coli growth, Mikrobiologiya 42: 213–219.Google Scholar
  139. Nesmeyanova, M. A., Dmitriev, A. D., and Kulaev, I.S., 1974, Regulation of the enzymes of phosphorus metabolism and the level of polyphosphate in E. coli K-12 by exogenous o-PO4, Mikrobiologiya 43: 227–234.Google Scholar
  140. Nicholls, H. A., 1975, Full scale experimentation on the new Johannesburg extended aeration plants, Water SA 1: 121–132.Google Scholar
  141. Nicholls, H. A., 1978, Kinetics of phosphorus transformations in aerobic and anaerobic environments, Prog. Water Technol. 10(Suppl. 1): 89–102.Google Scholar
  142. Nicholls, H. A., and Osborn, D. W., 1979, Bacterial stress: A prerequisite for biological removal of phosphorus, J. Water Pollut. Control Fed. 51: 557–569.Google Scholar
  143. Nicholls, H. A., Pitman, A. R., and Osborn, D. W., 1985, The readily biodegradable fraction of sewage: Its influence on phosphorus removal and measurement, Water Sci. Technol. 17: 73–87.Google Scholar
  144. Nicholls, H. A., Osborn, D. W., and Pitman, A. R., 1986, Biological phosphorus removal at the Johannesburg Northern and Goudkoppies Wastewater Purification Plants, Water SA 12: 13–18.Google Scholar
  145. Nicholls, H. A., Osborn, D. W., and Pitman, A. R., 1987, Improvement to the stability of the biological phosphate removal process at the Johannesburg Northern Works, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 261–272, Pergamon Press, Oxford.Google Scholar
  146. Noegel, A., and Gotschlich, E. C., 1983, Isolation of a high molecular weight polyphosphate from Neisseria gonorrhoeae, J. Exp. Med. 157: 2049–2060.PubMedGoogle Scholar
  147. Ohtake, H., Takahashi, K., Tsuzuki, Y., and Toda, K., 1984, Phosphorus release from a pure culture of Acinetobacter calcoaceticus under anaerobic conditions, Environ. Technol. Lett. 5: 417–424.Google Scholar
  148. Okada, M., Murakami, A., and Sudo, R., 1987, Ecological selection of phosphorus-accumulating bacteria in sequencing batch reactor activated sludge processes for simultaneous removal of phosphorus, nitrogen and organic substances, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 147–154, Pergamon Press, Oxford.Google Scholar
  149. Oldham, W. K., 1985, Full-scale optimization of biological phosphorus removal at Kelowna, Canada, Water Sci. Technol. 17: 243–257.Google Scholar
  150. Osborn, D. W., and Nicholls, H. A., 1978, Optimization of the activated sludge process for the biological removal of phosphorus, Prog. Water Technol. 10: 261–277.Google Scholar
  151. Osborn, D. W., and Nicholls, H. A., 1985, Biological nutrient removal in South Africa, Water SA 12: 10–13.Google Scholar
  152. Osborn, D. W., Lötter, L. H., Pitman, A. R., and Nicholls, H. A., 1986, Enhancement of Biological Phosphate Removal by Altering Process Feed Composition, Report No. 137/1/86, Water Research Commission, Pretoria, South Africa.Google Scholar
  153. Oxender, D. L., 1972, Membrane transport, Annu. Rev. Biochem. 41: 777–814.PubMedGoogle Scholar
  154. Park, M. H., Wong, B. B., and Lusk, J. E., 1976, Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology, J. Bacteriol. 126: 1096–1103.PubMedGoogle Scholar
  155. Parker, M. G., and Weitzman, P. D. J., 1970, Regulation of NADP-linked isocitrate dehydrogenase activity in Acinetobacter, FEBS Lett. 7: 324–326.PubMedGoogle Scholar
  156. Pepin, C. A., and Wood, H. G., 1986, Polyphosphate glucokinase from Propionibacterium shermanii. Kinetics and demonstration that the mechanism involves both processive and nonprocessive type reactions. J. Biol. Chem. 261: 4476–4480.PubMedGoogle Scholar
  157. Pines, O., Bayer, E. A., and Gutnick, D. L., 1983, Localization of emulsan-like polymers associated with the cell surface of Acinetobacter calcoaceticus, J. Bacteriol. 154: 893–905.PubMedGoogle Scholar
  158. Pitman, A. R., 1984, Operation of biological nutrient removal plants, in: Theory, Design and Operation of Nutrient Removal Activated Sludge Processes, pp. 11-1–11-16, Water Research Commission, Pretoria, South Africa.Google Scholar
  159. Pitman, A. R., Venter, S. L. V., and Nicholls, H. A., 1983, Practical experience with biological phosphorus removal plants in Johannesburg, Water Sci. Technol. 15: 233–259.Google Scholar
  160. Pitman, A. R., Trim, B. C., and van Dalsen, L., 1988, Operating experience with biological nutrient removal at the Johannesburg Bushkoppie Works, Water Sci. Techol. 20: 51–62.Google Scholar
  161. Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate: sugar phosphotransferase system, Biochim. Biophys. Acta 457: 213–257.Google Scholar
  162. Prakasam, T. B. S., and Dondero, N. C., 1967a, Aerobic heterotrophic bacterial populations of sewage and activated sludge. I. Enumeration, Appl. Microbiol. 15: 461–467.PubMedGoogle Scholar
  163. Prakasam, T. B. S., and Dondero, N. C., 1967b, Aerobic heterotrophic bacterial populations of sewage and activated sludge. H. Method of characterization of activated sludge bacteria, Appl. Microbiol. 15: 1122–1127.PubMedGoogle Scholar
  164. Prakasam, T. B. S., and Dondero, N. C., 1970, Aerobic heterotrophic bacterial populations of sewage and activated sludge. V. Analysis of population structure and activity, Appl. Microbiol. 19: 671–680.PubMedGoogle Scholar
  165. Price, G. J., 1982, Use of an anoxic zone to improve activated sludge settleability, in: Bulking of Activated Sludge: Preventative and Remedial Methods (B. Chambers and E. J. Tomlinson, eds.), pp. 259–260, Ellis Horwood Ltd., Chichester.Google Scholar
  166. Rabinowitz, B., Koch, F. A., Vassos, T. D., and Oldham, W. K., 1987, A novel operational mode for a primary sludge fermenter for use with the enhanced biological phosphorus removal process, in: Advances in Water Pollution Control: Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 349–352, Pergamon Press, Oxford.Google Scholar
  167. Randall, C. W., Daigger, G. T., Morales, L., Waltrip, G. D., and Romm, E. D., 1987, High-rate economical biological removal of nitrogen and phosphorus, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 373–376, Pergamon Press, Oxford.Google Scholar
  168. Rao, N. N., Roberts, M. F., and Torriani, A., 1985, Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions, J. Bacteriol. 62: 242–247.Google Scholar
  169. Rensink, J. H., 1981, Biologische Defosfatering en procesbepalende Factoren, presented at the NVA Symposium, Amersfoort, The Netherlands.Google Scholar
  170. Rensink, J. H., and Donker, H. J. G. W., 1987, The influence of bulking sludge on enhanced biological phosphorus removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 369–372, Pergamon Press, Oxford.Google Scholar
  171. Ritchie, G. A. F., Senior, P. J., and Dawes, E. A., 1971, The purification and characterization of acetoacetyl-coenzyme A reductase from Azotobacter beijerinckii, Biochem. J. 121: 309–316.PubMedGoogle Scholar
  172. Robinson, N. A., and Wood, H. G., 1986, Polyphosphate kinase from Propionibacterium shermanii. Demonstration that the synthesis and utilization of polyphosphate is by a processive mechanism, J. Biol. Chem. 261: 4481–4485.PubMedGoogle Scholar
  173. Robinson, N. A., Goss, N. H., and Wood, H. C., 1984, Polyphosphate kinase from Propionibacterium shermanii: Formation of an enzymatically active insoluble complex with basic proteins and characterisation of synthesized polyphosphate, Biochem. Int. 8: 757–769.PubMedGoogle Scholar
  174. Rosen, B. P., and McClees, J. S., 1974, Active transport of calcium in inverted membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. USA 71: 5042–5046.PubMedGoogle Scholar
  175. Rosenberg, H., Medveczky, N., and La Nauze, J. M., 1969, Phosphate transport in Bacillus cereus, Biochim. Biophys. Acta 193: 159–167.PubMedGoogle Scholar
  176. Rosenberg, H., Gerdes, R. G., and Chegwidden, K., 1977, Two systems for the uptake of phosphate in Escherichia coli, J. Bacteriol. 131: 505–511.PubMedGoogle Scholar
  177. Roughgarden, J., 1971, Density-dependent natural selection, Ecology 52: 453–468.Google Scholar
  178. Salanitro, J. P., and Wegener, W. S., 1971, Growth of Escherichia coli on short-chain fatty acids: Nature of the uptake system, J. Bacteriol. 108: 893–901.PubMedGoogle Scholar
  179. Sar, N., and Rosenberg, E., 1983, Emulsifier production by Acinetobacter calcoaceticus strains, Curr. Microbiol. 9: 309–313.Google Scholar
  180. Schönberger, R., and Hegemann, W., 1987, Biological phosphorus removal with and without sidestream precipitation, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 165–176, Pergamon Press, Oxford.Google Scholar
  181. Schuldiner, S., and Fishkes, H., 1978, Sodium-proton antiport in isolated membrane vesicles of Escherichia coli, Biochemistry 17: 706–711.PubMedGoogle Scholar
  182. Senior, P. J., and Dawes, E. A., 1971, Poly-β-hydroxybutyrate and the regulation of glucose metabolism in Azotobacter beijerinckii, Biochem. J. 125: 55–66.PubMedGoogle Scholar
  183. Severin, A. I., Lusta, K. I., Nesmeyanova, M. A., and Kulaev, I.S., 1975, Membrane bound polyphosphatase of Escherichia coli, Biokhimiya 41: 357–362.Google Scholar
  184. Shapiro, J., 1967, Induced rapid release and uptake of phosphate by microorganisms, Science 155: 1269–1271.PubMedGoogle Scholar
  185. Shapiro, J., Levin, G. V. and Zea, G. H., 1967, Anoxically induced release of phosphate in wastewater treatment, J. Water Pollut. Control Fed. 39: 1810–1818.Google Scholar
  186. Sharma, B., and Ahlert, R. C., 1977, Nitrification and nitrogen removal, Water Res. 11: 897–925.Google Scholar
  187. Sheintuch, M., Lev, O., Einav, P., and Rubin, E., 1986, Role of exocellular polymer in the design of activated sludge, Biotechnol. Bioeng. 28: 1564–1576.PubMedGoogle Scholar
  188. Siebritz, I. P., Ekama, G. A., and Marais, G. v. R., 1983, A parametric model for biological excess phosphorus removal, Water Sci. Technol. 15: 127–152.Google Scholar
  189. Sierra, G., and Gibbons, N. E., 1963, Production of poly-β-hydroxybutyric acid granules in Micrococcus halodenitrificans, Can. J. Microbiol. 8: 249–253.Google Scholar
  190. Silver, S., 1978, Transport of cations and anions, in: Bacterial Transport (B. P. Rosen, ed.), Microbiology Ser. Vol. 4, pp. 221–324, Marcel Dekker Inc., New York.Google Scholar
  191. Simpkins, M. J., and McLaren, A. R., 1978, Consistent biological phosphate and nitrate removal in an activated sludge plant, Prog. Water Technol. 10: 433–441.Google Scholar
  192. Skulachev, V. P., 1977, Transmembrane electrochemical H+-potential as a convertible energy source for the living cell, FEBS Lett. 74: 1–9.PubMedGoogle Scholar
  193. Skulachev, V. P., 1978, Membrane-linked energy buffering as the biological function of Na+/K+ gradient, FEBS Lett. 87: 171–179.PubMedGoogle Scholar
  194. Somiya, I., Tsuno, H., and Nishikawa, M., 1987, Behaviour of phosphorus and metals in the anaerobicoxic activated sludge process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 321–324, Pergamon Press, Oxford.Google Scholar
  195. South African Inventions Development Corporation, 1973, S.A. patent 72/5371, filed 27 June 1973.Google Scholar
  196. Srinath, E. G., Sastry, C. A., and Pillai, S. C., 1959, Rapid removal of phosphorus from sewage by activated sludge, Water Waste Treat. 11: 410–415.Google Scholar
  197. Stephenson, T., 1987, Acinetobacter: Its role in biological phosphate removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 313–316, Pergamon Press, Oxford.Google Scholar
  198. Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1968, Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae, J. Bacteriol. 95: 1798–1803.PubMedGoogle Scholar
  199. Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M. F., and Halvorson, H. O., 1985, New strategies for the isolation of microorganisms responsible for phosphate accumulation, Water Sci. Technol. 17: 99–111.Google Scholar
  200. Suzuki, H., Kauko, T., and Ikeda, Y., 1972, Properties of polyphosphate kinase prepared from Mycobacterium smegmatis, Biochim. Biophys. Acta 268: 381–390.PubMedGoogle Scholar
  201. Swedes, J. S., Sedo, R. J., and Atkinson, D. E., 1975, Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli, J. Biol. Chem. 250: 6930–6938.PubMedGoogle Scholar
  202. Szymona, M., and Ostrowski, W., 1964, Inorganic polyphosphate glucokinase of Mycobacterium phlei, Biochim. Biophys. Acta 85: 283–295.PubMedGoogle Scholar
  203. Szymona, O., and Syzmona, M., 1979, Polyphosphate and ATP-glucose phosphotransferase activities in Nocardia minima, Acta Microbiol. Pol. 28: 153–160.PubMedGoogle Scholar
  204. Szymona, O., Uryson, S.O., and Kulaev, I.S., 1967, Detection of polyphosphate glucokinase in various microorganisms, Biokhimiya 32: 408–415.Google Scholar
  205. Tanaka, T., Kawakami, A., Yoneyama, Y., and Kobayashi, S., 1987, Study on the reduction of returned phosphorus from a sludge treatment process, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 201–211, Pergamon Press, Oxford.Google Scholar
  206. Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture; their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119–149, Cambridge University Press, Cambridge.Google Scholar
  207. Terry, K. R., and Hooper, A. B., 1970, Polyphosphate and orthophosphate content of Nitrosomonas europaea as a function of growth, J. Bacteriol. 103: 199–206.PubMedGoogle Scholar
  208. Toerien, D. F., and Gerber, A., 1986, Bacterial population structure of activated sludge systems, Letter to the editor, Water SA 12: 239.Google Scholar
  209. Toerien, D. F., Gerber, A., and Brodisch, K. E. U., 1986, Biological phosphate removal in activated sludge systems, in: Perspectives in Microbial Ecology (F. Megusar and M. Ganter, eds.), pp. 66–73, Slovene Society for Microbiology, Ljubljana, Yugoslavia.Google Scholar
  210. Tomlinson, E. J., and Chambers, B., 1979, Methods for prevention of bulking in activated sludge, Water Pollut. Control 78: 524–538.Google Scholar
  211. T’Seyen, J., Malnou, D., Block, J. C., and Faup, G., 1985, Polyphosphate kinase activity during phosphate uptake by bacteria, Water Sci. Technol. 17: 43–56.Google Scholar
  212. Tsuchiya, T., and Rosen, B. P., 1976, Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli, J. Biol. Chem. 250: 7687–7692.Google Scholar
  213. Vacker, D., Connell, C. H., and Wells, W. N., 1967, Phosphate removal through municipal wastewater treatment at San Antonio, Texas, J. Water Pollut. Control Fed. 39: 750–771.Google Scholar
  214. Vaillancourt, S., Beauchemin-Newhouse, N., and Cedergren, R. J., 1978, Polyphosphate-deficient mutants of Anacystis nidulans, Can. J. Microbiol. 24: 112–116.PubMedGoogle Scholar
  215. Van Gills, H. W., 1964, Bacteriology of Activated Sludge, Research Institute of Public Health Engineering, T.N.O., Delft, The Netherlands, Publ. 32.Google Scholar
  216. Van Groenestijn, J. W., and Deinema, M. H., 1985, Effects of cultural conditions on phosphate accumulation and release by Acinetobacter strain 210A, in: Proceedings of the International Conference on Management Strategies for Phosphorus in the Environment, pp. 405–410, Seeper Ltd., London.Google Scholar
  217. Venter, S. L. V., Halliday, J., and Pitman, A. R., 1978, Optimization of the Johannesburg Olifantsvlei extended aeration plant for phosphorus removal, Prog. Water Technol. 10: 279–292.Google Scholar
  218. Visser, A. S., and Postma, P. W., 1973, Permeability of Azotobacter vinelandii to cations and anions, Biochim. Biophys. Acta 298: 333–340.PubMedGoogle Scholar
  219. Voelz, H., Voelz, U., and Ortigoza, R. O., 1966, The polyphosphate overplus phenomenon in Myxococcus xanthus and its influence on the architecture of the cell, Arch. Mikrobiol. 53: 371–388.PubMedGoogle Scholar
  220. Wanner, J., Ottova, V., and Grau, P., 1987, Effect of an anaerobic zone on settleability of activated sludge, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 155–164, Pergamon Press, Oxford.Google Scholar
  221. Watanabe, A., Miya, A., and Matsuo, Y., 1984, Laboratory scale study on biological phosphate removal using synthetic waste water, Newsl. IAWPRC Study Group on Phosphate Removal in Biological Sewage Treatment Processes 2: 40–43.Google Scholar
  222. Water Research Commission, 1984, Theory, De sign and Operation of Nutrient Removal Activated Sludge Processes, Water Research Commission, Pretoria, South Africa.Google Scholar
  223. Weitzman, P. D. J., 1972, Regulation of α-ketoglutarate dehydrogenase activity in Acinetobacter, FEBS Lett. 22: 323–326.PubMedGoogle Scholar
  224. Weitzman, P. D. J., and Dunmore, P., 1969, Citrate synthases: Allosteric regulation and molecular size, Biochim. Biophys. Acta 171: 198–200.PubMedGoogle Scholar
  225. Weitzman, P. D. J., and Jones, D., 1968, Regulation of citrate synthase and microbial taxonomy, Nature (London) 219: 270–272.Google Scholar
  226. Wells, W. N., 1969, Differences in phosphate uptake rates exhibited by activated sludges, J. Water Pollut. Control Fed. 41: 765–771.Google Scholar
  227. Wentzel, M. C., Dold, P. L., Ekama, G. A., and Marais, G. v. R., 1985, Kinetics of biological phosphorus release, Water Sci. Technol. 17: 57–71.Google Scholar
  228. Wentzel, M. C., Lötter, L. H., Loewenthal, R. E., and Marais, G. v. R., 1986, Metabolic behaviour of Acinetobacter spp in enhanced biological phosphorus removal: A biochemical model, Water SA 12: 209–224.Google Scholar
  229. Wentzel, M. C., Dold, P. L., Loewenthal, R. E., Ekama, G. A., and Marais, G. v. R., 1987, Experiments towards establishing the kinetics of biological excess phosphorus removal, in: Advances in Water Pollution Control. Biological Phosphate Removal from Wastewaters (R. Ramadori, ed.), pp. 79–97, Pergamon Press, Oxford.Google Scholar
  230. West, I. C., and Mitchell, P., 1974, Proton/sodium ion antiport in Escherichia coli, Biochem. J. 144: 87–90.PubMedGoogle Scholar
  231. Wetzel, R. C., 1983, Limnology, 2nd ed., W. B. Saunders, Philadelphia.Google Scholar
  232. White, A., Handler, P., Smith, E. L., Hill, R. L., and Lehman, I. R., 1978, Principles of Biochemistry, McGraw-Hill, Kogakusha Ltd., Tokyo.Google Scholar
  233. Wilson, D. B., 1978, Cellular transport mechanisms, Annu. Rev. Biochem. 47: 933–965.PubMedGoogle Scholar
  234. Winder, F. G., and Denneny, J. M., 1957, The metabolism of inorganic polyphosphate in Mycobacteria, J. Gen. Microbiol. 17: 573–585.PubMedGoogle Scholar
  235. Wong, P. P., and Evans, H. J., 1971, Poly-β-hydroxybutyrate utilization by soybean (Glycine max. mer) nodules and assessment of its role in maintenance of nitrogenase activity, Plant Physiol. 47: 750–755.PubMedGoogle Scholar
  236. Wood, H. G., and Goss, N. H., 1985, Phosphorylation enzymes of the propionic acid bacteria and the roles of ATP, inorganic pyrophosphate and polyphosphates, Proc. Natl. Acad. Sci. USA 82: 312–315.PubMedGoogle Scholar
  237. Wuhrmann, K., 1957, Die dritte Reinigungsstufe: Wege und bisherige Erfolge in der Eliminierung eutrophierender Stoffe, Schweiz Z. Hydrol. 19: 409–427.Google Scholar
  238. Wuhrmann, K., 1960, Effects of oxygen tension on biochemical reactions in sewage treatment plants, in: Advances in Biological Waste Treatment. Proceedings of the 3rd Conference on Biological Waste Treatment (W. W. Eckenfelder and J. McCabe, eds.), Pergamon Press, New York, pp. 27–38.Google Scholar
  239. Yagil, E., 1975, Derepression of polyphosphatase in Escherichia coli by starvation for inorganic phosphate, FEBS Lett. 55: 124–127.PubMedGoogle Scholar
  240. Zaitseva, G. N., and Beiozerskii, A.N., 1960, Formation and utilisation of polyphosphates catalyzed by an enzyme isolated from Azotobacter vinelandii, Dokl. Akad. Nauk. SSR 132: 950–953.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. F. Toerien
    • 1
  • A. Gerber
    • 1
  • L. H. Lötter
    • 2
  • T. E. Cloete
    • 3
  1. 1.Division of Water TechnologyCSIRPretoriaSouth Africa
  2. 2.City Health DepartmentJohannesburgSouth Africa
  3. 3.Department of Microbiology and Plant PathologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations