The Microecology of Lactobacilli Inhabiting the Gastrointestinal Tract

  • Gerald W. Tannock
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


Microbiological interest in lactobacilli inhabiting the gastrointestinal tract of vertebrate animals dates, traditionally, from the publications of Metchnikoff originating more than 80 years ago. One can, at least, trace to that epoch the concept that lactobacilli, ingested as a dietary supplement in fermented milk products, have health-promoting effects. Metchnikoff, convinced that the human colon acted as a reservoir of proteolytic bacteria that generated substances toxic to the host’s tissues, advocated the consumption of milk products that had undergone a lactic fermentation. Milk fermented by lactic acid-producing bacteria, it had been observed, did not provide a suitable medium for proteolytic (putrefactive) microbes. Colonization of the colon by bacteria capable of producing a lactic acid fermentation, it was reasoned, would inhibit the proliferation of putrefactive microbes in that site, thus protecting the host from diseases caused by toxins generated by proteolytic bacteria. Fermented milk products which had long been a part of the diets of eastern Europeans became popular in the West (Metchnikoff, 1907; Tannock, 1981; Tannock, 1984).


Lactic Acid Bacterium Epithelial Surface Lactobacillus Strain Lactobacillus Acidophilus Lactobacillus Casei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alm, L., 1982, Effect of fermentation on lactose, glucose, and galactose content in milk and suitability of fermented milk products for lactose intolerant individuals, J. Dairy Sci. 65: 346–352.PubMedCrossRefGoogle Scholar
  2. Barefoot, S. F., and Klaenhammer, T. R., 1983, Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus, Appl. Environ. Microbiol. 45: 1808–1815.PubMedGoogle Scholar
  3. Barefoot, S. F., and Klaenhammer, T. R., 1984, Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B, Antimicrob. Agents Chemother. 26: 328–334.PubMedGoogle Scholar
  4. Barrow, P. A., Brooker, B. E., Fuller, R., and Newport, M. J., 1980, The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine, J. Appl. Bacteriol. 48: 147–154.PubMedCrossRefGoogle Scholar
  5. Berg, R. D., and Savage, D. C., 1975, Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms, Infect. Immun. 11: 320–329.PubMedGoogle Scholar
  6. Brockett, M., and Tannock, G. W., 1981, Dietary components influence tissue-associated lactobacilli in the mouse stomach, Can. J. Microbiol. 27: 452–455.PubMedCrossRefGoogle Scholar
  7. Brockett, M., and Tannock, G. W., 1982, Dietary influence on microbial activities in the caecum of mice, Can. J. Microbiol. 28: 493–499.PubMedCrossRefGoogle Scholar
  8. Brooker, B. E., and Fuller, R., 1975, Adhesion of lactobacilli to the chicken crop epithelium, J. Ultrastruct. Res. 52: 21–31.PubMedCrossRefGoogle Scholar
  9. Champ, M., Szylit, O., and Gallant, D. J., 1981, The influence of microflora on the breakdown of maize starch granules in the digestive tract of chicken, Poultry Sci. 60: 179–187.Google Scholar
  10. Chang, S., and Cohen, S. N., 1979, High frequency transformation of Bacillus subtilis protoplasts by Plasmid DNA, Mol. Gen. Genet. 168: 111–115.PubMedCrossRefGoogle Scholar
  11. Chassy, B. M., 1987, Prospects for the genetic manipulation of lactobacilli, FEMS Microbiol. Rev. 46: 297–312.CrossRefGoogle Scholar
  12. Chassy, B. M., and Flickinger, J. L., 1987, Transformation of Lactobacillus casei by electroporation, FEMS Microbiol. Lett., 44: 173–177.CrossRefGoogle Scholar
  13. Chassy, B. M., and Rokaw, E., 1981, Conjugal transfer of lactose plasmids in Lactobacillus casei, in: Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids (S. Levy, R. Clowes, and E. Koenig, eds.), pp. 590, Plenum Press, New York.Google Scholar
  14. Chassy, B. M., Gibson, E., and Giuffrida, A., 1976, Evidence for extrachromosomal elements in Lactobacillus, J. Bacteriol. 127: 1576–1578.PubMedGoogle Scholar
  15. Chassy, B. M., Gibson, E. M., and Giuffrida, A., 1978, Evidence for plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei, Curr. Microbiol. 1: 141–144.CrossRefGoogle Scholar
  16. Christensen, G. D., Simpson, W. A., and Beachey, E. H., 1985, Adhesion of bacteria to animal tissues: Complex mechanisms, in: Bacterial Adhesion, Mechanisms and Physiological Significance (D. C. Savage and M. Fletcher, eds.), pp. 279–305, Plenum Publishing Corp., New York.Google Scholar
  17. Clewell, D. B., Fitzgerald, G. F., Dempsey, L., Pearce, L. E., An, F. Y., White, B. A., Yagi, Y., and Gawron-Burke, C., 1985, Streptococcal conjugation: Plasmids, sex pheromones, and conjugative transposons, in: Molecular Basis of Oral Microbial Adhesion (S. E. Mergenhagen and B. Rosan, eds.), pp. 194–203, American Society for Microbiology, Washington, D.C.Google Scholar
  18. Cocconcelli, P. S., Morelli, L., Vescovo, M., and Botazzi, V., 1986, Intergeneric protoplast fusion in lactic acid bacteria, FEMS Microbiol. Lett. 35: 211–214.CrossRefGoogle Scholar
  19. Condon, S., 1987, Responses of lactic acid bacteria to oxygen, FEMS Microbiol. Rev. 46: 269–280.CrossRefGoogle Scholar
  20. Connell, H., Lemmon, J., and Tannock, G. W., 1988, Formation and regeneration of protoplasts and spheroplasts of gastrointestinal strains of lactobacilli, Appl. Environ. Microbiol. 54: 1615–1618.PubMedGoogle Scholar
  21. Conway, P. L., 1986, Some dietary effects on bacterial adhesion in the alimentary tract with emphasis on Lactobacillus, Ph.D. Thesis, University of New South Wales, Kensington, Australia.Google Scholar
  22. Conway, P. L., Gorbach, S. L., and Goldin, B. R., 1987, Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells, J. Dairy Sci. 70: 1–12.PubMedCrossRefGoogle Scholar
  23. Damiani, G., Romagnoli, S., Ferretti, L., Morelli, L., Bottazzi, V., and Sgaramella, V., 1987, Sequence and functional analysis of a divergent promoter from a cryptic plasmid of Lactobacillus acidophilus 168 S, Plasmid 17: 69–72.PubMedCrossRefGoogle Scholar
  24. De Klerk, H. C., and Coetzee, J. N., 1961, Antibiosis among lactobacilli, Nature (London) 192: 340–341.CrossRefGoogle Scholar
  25. Drasar, B. S., and Barrow, P. A., 1985, Intestinal Microbiology, American Society for Microbiology, Washington, D.C.Google Scholar
  26. Ducluzeau, R., Dubos, F., and Raibaud, P., 1971, Effet antagoniste d’une souche de Lactobacillus sur une souche de Ristella sp. dans le tube digestif de souris “gnotoxeniques” absorbant du lactose, Ann. Inst. Pasteur (Paris) 121: 777–794.Google Scholar
  27. Eyssen, H., Swaelen, E., Kowszyk-Gindifer, Z., and Parmentier, G., 1965, Nucleotide requirements of Lactobacillus acidophilus variants isolated from the crops of chicks, Antonie van Leeuwenhoek J. Microbiol. Serol. 31: 241–248.CrossRefGoogle Scholar
  28. Feighner, S.D., and Dashkevicz, M. P., 1987, Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholytaurine hydrolase activity, Appl. Environ. Microbiol. 53: 331–336.PubMedGoogle Scholar
  29. Finegold, S. M., Attebery, H. R., and Sutter, V. L., 1974, Effect of diet on human fecal flora: Comparison of Japanese and American diets, Am. J. Clin. Nutr. 27: 1456–1469.PubMedGoogle Scholar
  30. Finegold, S. M., Sutter, V. L., and Mathisen, G. E., 1983, Normal indigenous intestinal flora, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), pp. 3–31, Academic Press, New York.Google Scholar
  31. Fuller, R., 1973, Ecological studies on the lactobacillus flora associated with the crop epithelium of the fowl, J. Appl. Bacteriol. 36: 131–139.CrossRefGoogle Scholar
  32. Fuller, R., 1977, The importance of lactobacilli in maintaining normal microbial balance in the crop, Br. Poult. Sci. 18: 85–94.PubMedCrossRefGoogle Scholar
  33. Fuller, R., and Brooker, B. E., 1974, Lactobacilli which attach to the crop epithelium of the fowl, Am. J. Clin. Nutr. 27: 1305–1312.PubMedGoogle Scholar
  34. Fuller, R., and Turvey, A., 1971, Bacteria associated with the intestinal wall of the fowl (Gallus domesticus), J. Appl. Bacteriol. 34: 617–622.PubMedCrossRefGoogle Scholar
  35. Fuller, R., Barrow, P. A., and Brooker, B. E., 1978, Bacteria associated with the gastric epithelium of neonatal pigs, Appl. Environ. Microbiol. 35: 582–591.PubMedGoogle Scholar
  36. Gibson, E. M., Chace, N. M., London, S. B., and London, J., 1979, Transfer of plasmid-mediated antibiotic resistance from streptococci to lactobacilli, J. Bacteriol. 137: 614–619.PubMedGoogle Scholar
  37. Gilmore, M. S., 1985, Molecular cloning of genes encoding Gram-positive virulence factors, Curr. Top. Microbiol. Immunol. 118: 219–234.PubMedCrossRefGoogle Scholar
  38. Gracey, M., 1983, The contaminated small bowel syndrome, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), pp. 495–515, Academic Press, New York.Google Scholar
  39. Hill, C., Daly, C., and Fitzgerald, G. F., 1985, Conjugative transfer of the transposon Tn919 to lactic acid bacteria, FEMS Microbiol. Lett., 30: 115–119.CrossRefGoogle Scholar
  40. Ishiwa, H., and Iwata, S., 1980, Drug resistance plasmids in Lactobacillus fermentum, J. Gen. Appl. Microbiol., 26: 71–74.CrossRefGoogle Scholar
  41. Iwata, M., Mada, M., and Ishiwa, H., 1986, Protoplast fusion of Lactobacillus fermentum, Appl. Environ. Microbiol. 52: 392–393.PubMedGoogle Scholar
  42. Joerger, M. C., and Klaenhammer, T. R., 1986, Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481, J. Bacteriol. 167: 439–446.PubMedGoogle Scholar
  43. Kandier, O., and Weiss, N., 1986, Regular, nonsporing Gram-positive rods, in: Bergey’s Manual of Systematic Bacteriology, Vol. 2 (P. H. A. Sneath, ed.), pp. 1208–1234, Williams and Wilkins, Baltimore.Google Scholar
  44. Kaplan, H. M., Brewer, N. R., and Blair, W. H., 1983, Physiology, in: The Mouse in Biomedical Research (H. L. Foster, J. D. Small, and J. G. Fox, eds.), pp. 247–292, Academic Press, New York.Google Scholar
  45. Karube, I., Tamiya, E., and Matsuoka, H., 1985, Transformation of Saccharomyces cerevisiae spheroplasts by high electric pulse, FEBS Lett. 182: 90–94.CrossRefGoogle Scholar
  46. Kashket, E. R., 1987, Bioenergetics of lactic acid bacteria: Cytoplasmic pH and osmotolerance, FEMS Microbiol. Rev. 46: 233–244.CrossRefGoogle Scholar
  47. Kato, I., Kobayashi, S., Yokokura, T., and Mutai, M., 1981, Antitumor activity of Lactobacillus casei in mice, Gann 72: 517–523.PubMedGoogle Scholar
  48. Kato, I., Yokokura, T., and Mutai, M., 1983, Macrophage activation by Lactobacillus casei in mice, Microbiol. Immunol. 27: 611–618.PubMedGoogle Scholar
  49. Kawai, Y., and Morotomi, M., 1978, Intestinal enzyme activities in germfree, conventional, and gnotobiotic rats associated with indigenous microorganisms, Infect. Immun. 19: 771–778.PubMedGoogle Scholar
  50. Klaenhammer, T. R., 1984, A general method for plasmid isolation in lactobacilli, Curr. Microbiol. 10: 23–28.CrossRefGoogle Scholar
  51. Klaenhammer, T. R., and Sutherland, S. M., 1980, Detection of plasmid deoxyribonucleic acid in an isolate of Lactobacillus acidophilus, Appl. Environ. Microbiol. 39: 671–674.PubMedGoogle Scholar
  52. Kleeman, E. G., and Klaenhammer, T. R., 1982, Adherence of Lactobacillus species to human fetal intestinal cells, J. Dairy Sci. 65: 2063–2069.PubMedCrossRefGoogle Scholar
  53. Knox, K. W., and Wicken, A. J., 1973, Immunological properties of teichoic acids, Bacteriol. Rev. 37: 215–257.PubMedGoogle Scholar
  54. Kotarski, S. F., and Savage, D. C., 1979, Models for study of the specificity by which indigenous lactobacilli adhere to murine gastric epithelia, Infect. Immun. 26: 966–975.PubMedGoogle Scholar
  55. Lee, A., 1985, Neglected niches. The microbial ecology of the gastrointestinal tract, in: Advances in Microbial Ecology, Vol. 8 (K. C. Marshall, ed.), pp. 115–162, Plenum Press, New York.CrossRefGoogle Scholar
  56. Lee, L.-J., Hansen, J. B., Jagusztyn-Krynicka, E. K., and Chassy, B. M., 1982, Cloning and expression of the β-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei in Escherichia coli K-12, J. Bacteriol. 152: 1138–1146.PubMedGoogle Scholar
  57. Lee-Wickner, L.-J., and Chassy, B. M., 1984, The production and regeneration of Lactobacillus casei protoplasts, Appl. Environ. Microbiol. 48: 994–1000.PubMedGoogle Scholar
  58. Lee-Wickner, L.-J., and Chassy, B. M., 1985, Characterization and molecular cloning of cryptic plasmids isolated from Lactobacillus casei, Appl. Environ. Microbiol. 49: 1154–1161.PubMedGoogle Scholar
  59. Lin, J. H.-C., and Savage, D. C., 1984, Host specificity of the colonization of murine gastric epithelium by lactobacilli, FEMS Microbiol. Lett. 24: 67–71.CrossRefGoogle Scholar
  60. Lin, J. H.-C., and Savage, D. C., 1985, Cryptic plasmids in Lactobacillus strains isolated from the murine gastrointestinal tract, Appl. Environ. Microbiol. 49: 1004–1006.PubMedGoogle Scholar
  61. Lin, J. H.-C., and Savage, D. C., 1986, Genetic transformation of rifampicin resistance in Lactobacillus acidophilus, J. Gen. Microbiol. 132: 2107–2111.PubMedGoogle Scholar
  62. Mayra-Makinen, A., Manninen, M., and Gyllenberg, H., 1983, The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves, J. Appl. Bacteriol. 55: 241–245.PubMedCrossRefGoogle Scholar
  63. McCarthy, D. M., Jenq, W., and Savage, D. C., 1987, Mitochondrial DNA in Candida pintolopesii, a yeast indigenous to the surface of the secreting epithelium of the murine stomach, Appl. Environ. Microbiol. 53: 345–351.PubMedGoogle Scholar
  64. McCoraiick, E. L., and Savage, D. C., 1983, Characterization of Lactobacillus sp. strain 100-37 from the murine gastrointestinal tract: Ecology, plasmid content, and antagonistic activity toward Clostridium ramosum H1, Appl. Environ. Microbiol. 46: 1103–1112.Google Scholar
  65. Metchnikoff, E., 1907, The Prolongation of Life. Optimistic Studies, William Heinemann, London.Google Scholar
  66. Mikx, F. H. M., and De Jong, M. H., 1987, Keratinolytic activity of cutaneous and oral bacteria, Infect. Immun. 55: 621–625.PubMedGoogle Scholar
  67. Mitchell, I. De G., and Kenworthy, R., 1976, Investigations on a metabolite from Lactobacillus bulgaricus which neutralizes the effect of enterotoxin from Escherichia coli pathogenic for pigs, J. Appl. Bacteriol. 41: 163–174.PubMedCrossRefGoogle Scholar
  68. Moreau, M.-C., Thomasson, M., Ducluzeau, R., and Raibaud, P., 1986, Cinetique d’etablissement de la microflore digestive chez le nouveau-ne humain en fonction de la nature du lait, Reprod. Nutr. Dev. 26: 745–753.PubMedCrossRefGoogle Scholar
  69. Morelli, L., Cocconcelli, P. S., Bottazzi, V., Damiani, G., Ferretti, L., and Sgaramella, V., 1987, Lactobacillus protoplast transformation, Plasmid 17: 73–75.PubMedCrossRefGoogle Scholar
  70. Morishita, T., Fukada, T., Shirota, M., and Yura, T., 1974, Genetic basis of nutritional requirements in Lactobacillus casei, J. Bacteriol. 120: 1078–1084.PubMedGoogle Scholar
  71. Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T., and Yura, T., 1981, Multiple nutritional requirements of lactobacilli: Genetic lesions affecting amino acid biosynthetic pathways, J. Bacteriol. 148: 64–71.PubMedGoogle Scholar
  72. Muriana, P. M., and Klaenhammer, T. R., 1987, Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88, Appl. Environ. Microbiol. 53: 553–560.PubMedGoogle Scholar
  73. Nes, I. F., 1984, Plasmid profiles of ten strains of Lactobacillus plantarum, FEMS Microbiol. Lett. 21: 359–361.CrossRefGoogle Scholar
  74. Nugon-Baudon, L., Szylit, O., Chaigneau, M., Dierick, N., and Raibaud, P., 1985, Production of amines in monoxenic chicken inoculated with a lactobacillus strain isolated from holoxenic (conventional) cock crop, Prog. Clin. Biol. Res. 181: 119–122.Google Scholar
  75. Ofek, I., and Perry, A., 1985, Molecular basis of bacterial adherence to tissues, in: Molecular Basis of Oral Microbial Adhesion (S. E. Mergenhagen and B. Rosan, eds.), pp. 7–13, American Society for Microbiology, Washington, D.C.Google Scholar
  76. Ratcliffe, B., 1985, The influence of the gut microflora on the digestive processes, in: Digestive Physiology in the Pig (A. Just, H. Jorgensen, and J. A. Fernandez, eds.), pp. 245–267, National Institute of Animal Science, Copenhagen.Google Scholar
  77. Reddy, G. V., Shahani, K. M., Friend, B. A., and Chandan, R. C., 1984, Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. III. Production and partial purification of bulgarican from Lactobacillus bulgaricus, Cultured Dairy Prod. J. 19: 7–11.Google Scholar
  78. Rettger, L. F., Levy, M. N., Weinstein, L., and Weiss, J. E., 1935, Lactobacillus acidophilus and Its Therapeutic Application, Yale University Press, New Haven.Google Scholar
  79. Roach, S., and Tannock, G. W., 1980, Indigenous bacteria that influence the number of Salmonella typhimurium in the spleen of intravenously challenged mice, Can. J. Microbiol. 26: 408–411.PubMedCrossRefGoogle Scholar
  80. Roach, S., Savage, D. C., and Tannock, G. W., 1977, Lactobacilli isolated from the stomach of conventional mice, Appl. Environ. Microbiol. 33: 1197–1203.PubMedGoogle Scholar
  81. Rodwell, A. W., 1953, The occurrence and distribution of amino-acid decarboxylases within the genus Lactobacillus, J. Gen. Microbiol. 8: 224–232.PubMedGoogle Scholar
  82. Sarra, P. G., Vescovo, M., and Fulgoni, M., 1986, Study on crop adhesion genetic determinant in Lactobacillus reuteri, Microbiologica 9: 279–285.PubMedGoogle Scholar
  83. Savage, D. C., 1969, Microbial interference between indigenous yeast and lactobacilli in the rodent stomach, J. Bacteriol. 98: 1278–1283.PubMedGoogle Scholar
  84. Savage, D. C., 1977, Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol. 31: 107–133.PubMedCrossRefGoogle Scholar
  85. Savage, D. C., 1983, Morphological diversity among members of the gastrointestinal microflora, Int. Rev. Cytol. 82: 305–334.PubMedCrossRefGoogle Scholar
  86. Savage, D. C., and Blumershine, R. V. H., 1974, Surface-surface associations in microbial communities populating epithelial habitats in the murine gastrointestinal ecosystem: Scanning electron microscopy, Infect. Immun. 10: 240–250.PubMedGoogle Scholar
  87. Savage, D. C., Dubos, R., and Schaedler, R. W., 1968, The gastrointestinal epithelium and its autochthonous bacterial flora, J. Exp. Med. 127: 67–76.PubMedCrossRefGoogle Scholar
  88. Schaedler, R. W., Dubos, R., and Costello, R., 1965, Association of germfree mice with bacteria isolated from normal mice, J. Exp. Med. 122: 77–83.PubMedCrossRefGoogle Scholar
  89. Schleifer, K. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36: 407–477.PubMedGoogle Scholar
  90. Shahani, K. M., Vakil, J. R., and Kilara, A., 1977, Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. II. Isolation of acidophilin from L. acidophilus, Cultured Dairy Prod. J. 12: 8–11.Google Scholar
  91. Sherman, L. A., and Savage, D.C., 1986, Lipoteichoic acids in Lactobacillus strains that colonize the mouse gastric epithelium, Appl. Environ. Microbiol. 52: 302–304.PubMedGoogle Scholar
  92. Shimizu-Kadota, M., and Kudo, S., 1984, Liposome-mediated transfection of Lactobacillus casei spheroplasts, Agr. Biol. Chem. 48: 1105–1107.CrossRefGoogle Scholar
  93. Shrago, A. W., Chassy, B. M., and Dobrogosz, W. J., 1986, Conjugal plasmid transfer (pAMβ1) in Lactobacillus plantarum, Appl. Environ. Microbiol. 52: 574–576.PubMedGoogle Scholar
  94. Smiley, M., Maret, R., and Fryder, V., 1978a, Proteolytic activity, lactic acid production, N-acetyl-D-glucosamine fermentation and plasmids in Lactobacillus helveticus subsp. jugurti, Experientia 34: 955.Google Scholar
  95. Smiley, M. B., and Ryder, V., 1978b, Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation in Lactobacillus helveticus subsp. jugurti, Appl. Environ. Microbiol. 35: 777–781.PubMedGoogle Scholar
  96. Stark, P. L., and Lee, A., 1982, The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life, J. Med. Microbiol. 15: 189–203.PubMedCrossRefGoogle Scholar
  97. Stetter, K. O., 1977, Evidence for frequent lysogeny in lactobacilli: Temperate bacteriophages within the subgenus Streptobacterium, J. Virol. 24: 685–689.PubMedGoogle Scholar
  98. Stetter, K. O., Priess, H., and Delius, H., 1978, Lactobacillus casei phage PL-1. Molecular properties and first transcription studies in vivo and in vitro, Virology 87: 1–12.PubMedCrossRefGoogle Scholar
  99. Sozzi, T., Watanabe, K., Stetter, K., and Smiley, M., 1981, Bacteriophages of the genus Lactobacillus, Intervirology 16: 129–135.PubMedCrossRefGoogle Scholar
  100. Suegara, N., Morotomi, M., Watanabe, T., Kawai, Y., and Mutai, M., 1975, Behavior of microflora in the rat stomach: Adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach in vitro, Infect Immun. 12: 173–179.PubMedGoogle Scholar
  101. Tagg, J. R., Dajani, A. S., and Wannamaker, L. W., 1976, Bacteriocins of gram-positive bacteria, Bacteriol. Rev. 40: 722–756.PubMedGoogle Scholar
  102. Tannock, G. W., 1981, Microbial interference in the gastrointestinal tract, ASEAN J. Clin. Sci. 2: 2–34.Google Scholar
  103. Tannock, G. W., 1983a, Effect of dietary and environmental stress on the gastrointestinal microbiota, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), pp. 517–539, Academic Press, New York.Google Scholar
  104. Tannock, G. W., 1983b, Influence of host diet on gastrointestinal microbes, in: Fibre in Human and Animal Nutrition (G. Wallace and L. Bell, eds.), pp. 131–134, Royal Society of New Zealand, Wellington.Google Scholar
  105. Tannock, G. W., 1984, Control of gastrointestinal pathogens by normal flora, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 374–382, American Society for Microbiology, Washington, D.C.Google Scholar
  106. Tannock, G. W., 1987, Conjugal transfer of plasmid pAMβl in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis, Appl. Environ. Microbiol. 53: 2693–2695.PubMedGoogle Scholar
  107. Tannock, G. W., 1988a, The normal microflora: New concepts in health promotion, Microbiol. Sci. 5: 4–8.PubMedGoogle Scholar
  108. Tannock, G. W., 1988b, Molecular genetics: A new tool for investigating the microbial ecology of the gastrointestinal tract? Microb. Ecol. 15: 239–256.CrossRefGoogle Scholar
  109. Tannock, G. W., and Archibald, R. D., 1984, The derivation and use of mice which do not harbour lactobacilli in the gastrointestinal tract, Can. J. Microbiol. 30: 849–853.PubMedCrossRefGoogle Scholar
  110. Tannock, G., and Savage, D., 1985, Detection of plasmids in gastrointestinal strains of lactobacilli, Proc. Univ. Otago Med. Sch. 63: 29–30.Google Scholar
  111. Tannock, G. W., and Smith, J. M. B., 1970, The microflora of the pig stomach and its possible relationship to ulceration of the pars oesophagea, J. Comp. Pathol. 80: 359–367.PubMedCrossRefGoogle Scholar
  112. Tannock, G. W., Szylit, O., Duval, Y., and Raibaud, P., 1982, Colonization of tissue surfaces in the gastrointestinal tract of gnotobiotic animals by lactobacillis strains, Can. J. Microbiol. 28: 1196–1198.PubMedCrossRefGoogle Scholar
  113. Tannock, G., Blumershine, R., and Archibald, R., 1987, Demonstration of epithelium-associated microbes in the oesophagus of pigs, cattle, rats and deer, FEMS Microbiol. Ecol. 45: 199–203.CrossRefGoogle Scholar
  114. Thomas, T. D., and Pritchard, G. G., 1987, Proteolytic enzymes of dairy starter cultures, FEMS Microbiol. Rev. 46: 245–268.CrossRefGoogle Scholar
  115. Tissier, H., 1905, Repartition des microbes dans l’intestin du nourisson, Ann. Inst. Pasteur (Paris) 19: 109–123.Google Scholar
  116. Vescovo, M., Morelli, L., and Bottazzi, V., 1982, Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri, Appl. Environ. Microbiol. 43: 50–56.PubMedGoogle Scholar
  117. Vescovo, M., Morelli, L., Bottazzi, V., and Gasson, M. J., 1983, Conjugal transfer of broad-host-range plasmid pAMβ1 into enteric species of lactic acid bacteria, Appl. Environ. Microbiol. 46: 753–755.PubMedGoogle Scholar
  118. Vescovo, M., Morelli, L., Cocconcelli, P. S., and Bottazzi, V., 1984, Protoplast formation, regeneration and plasmid curing in Lactobacillus reuteri, FEMS Microbiol. Lett. 23: 333–334.CrossRefGoogle Scholar
  119. Visek, W. J., 1978, The mode of growth promotion by antibiotics, J. Anim. Sci. 46: 1447–1469.Google Scholar
  120. Watanabe, T., Morotomi, M., Kawai, Y., and Mutai, M., 1977, Reduction of population levels of some indigenous bacteria by lactobacilli in the gastrointestinal tract of gnotobiotic rats, Microbiol. Immunol. 21: 495–503.PubMedGoogle Scholar
  121. Wesney, E., and Tannock, G. W., 1979, Association of rat, pig and fowl biotypes of lactobacilli with the stomach of gnotobiotic mice, Microb. Ecol. 5: 35–42.CrossRefGoogle Scholar
  122. West, C. A., and Warner, P. J., 1985, Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacilus plantarum, Appl. Environ. Microbiol. 50: 1319–1321.PubMedGoogle Scholar
  123. Whitt, D. D., and Savage, D. C., 1987, Lactobacilli as effectors of host functions: No influence on the activities of enzymes in enterocytes of mice, Appl. Environ. Microbiol. 53: 325–330.PubMedGoogle Scholar
  124. Wicken, A. J., and Knox, K. W., 1975, Lipoteichoic acids: A new class of bacterial antigen, Science 187: 1161–1167.PubMedCrossRefGoogle Scholar
  125. Wicken, A. J., and Knox, K. W., 1980, Bacterial cell surface amphiphiles, Biochim. Biophys. Acta 604: 1–26.PubMedCrossRefGoogle Scholar
  126. Yokokura, T., Kodaira, S., Ishiwa, H., and Sakurai, T., 1974, Lysogeny in lactobacilli, J. Gen. Microbiol. 84: 277–284.PubMedGoogle Scholar
  127. Yokoyama, M. T., and Carlson, J. R., 1979, Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole, Am. J. Clin. Nutr. 32: 173–178.PubMedGoogle Scholar
  128. Yokoyama, M. T., and Carlson, J. R., 1981, Production of skatole and para-cresol by a rumen Lactobacillus sp., Appl. Environ. Microbiol. 41: 71–76.PubMedGoogle Scholar
  129. Yolton, D. P., and Savage, D. C., 1976, Influence of certain indigenous gastrointestinal microorganisms on duodenal alkaline phosphatase in mice, Appl. Environ. Microbiol. 31: 880–888.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gerald W. Tannock
    • 1
  1. 1.Department of MicrobiologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations