Advertisement

Ecological Aspects of Antarctic Microbiology

  • David D. Wynn-Williams
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

If the science of microbiology is approaching maturity, then Antarctic microbiology is only just emerging from its infancy. The early expeditions of the 20th century used classical medical methodology to isolate and identify bacteria, yeasts, and fungi from sea water, soil, snow, air, and animals (Ekelöf, 1908; Tsiklinsky, 1908; Gazert, 1912; McLean, 1918, 1919). The initial emphasis was on survey and taxonomy, although Gazert (1912) noted the influence of marine bacteria on nutrient cycling during the German Antarctic Expedition of 1901–03. However, it is Ekelöf of the Swedish National Antarctic Expedition 1901–03 who may be regarded as the father of Antarctic microbial ecology. Between February 1902 and November 1903, he made a seasonal study of the soil and air microbiota at Snow Hill Island (64° 30′S) off the east coast of the Antarctic Peninsula (Fig. 1). Using rich medical media, he monitored viable bacteria, yeasts, and other microfungi but made no mention of the organisms resembling cyanobacteria and microalgae which are frequently the dominant primary producers in terrestrial Antarctic ecosystems (Ekelöf, 1908).

Keywords

Cold Desert Katabatic Wind Antarctic Soil Antarctic Lake South Orkney Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov, S. S., Bobin, N. E., and Kudryashov, B. B., 1982, Quantitative analysis of microorganisms during the microbiological investigation of Antarctic glaciers, Biol. Bull. Acad. Sci. USSR 9: 558–564.Google Scholar
  2. Ackley, S. F., Buck, K. R., and Taguchi, S., 1979, Standing crop of algae in the sea ice of the Weddell Sea region, Deep Sea Res. 26A: 269–281.Google Scholar
  3. Adamson, D. A., and Pickard, J., 1986, Cainozoic history of the Vestfold Hills, in: Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills (J. Pickard, ed.), pp. 63–98, Academic Press, North Ryde, Australia.Google Scholar
  4. Aksenov, S. I., Babyeva, I. P., and Golubev, V. I., 1973, On the mechanism of adaptation of microorganisms to conditions of extreme low humidity, Life Sci. Space Res. 11: 55–61.PubMedGoogle Scholar
  5. Allen, S. E., Grimshaw, M., Parkinson, J. A., and Quarmby, C., 1974, Chemical Analysis of Ecological Methods, Blackwell Scientific Publications, London.Google Scholar
  6. Allnutt, F. C. T., Parker, B. C., Seaburg, K. G., and Simmons, G. M. Jr., 1981, In situ nitrogen (C2H2) fixation in lakes of southern Victoria Land, Antarctica, Hydrol. Bull. 15: 99–109.Google Scholar
  7. Armitage, K. B., and House, H. B., 1962, A limnological reconnaissance in the area of McMurdo Sound, Antarctica, Limnol. Oceanogr. 7: 36–41.Google Scholar
  8. Atlas, R. M., Di Menna, M. E., and Cameron, R. E., 1978, Ecological investigations of yeasts in Antarctic soils, Antarct. Res. Ser. Wash. 30: 27–34.Google Scholar
  9. Baharaeen, S., Melcher, U., and Vishniac, H. S., 1983. Complementary DNA-25S ribosomal RNA hybridization: An improved method for phylogenetic studies, Can. J. Microbiol. 29: 546–551.PubMedGoogle Scholar
  10. Baharaeen, S., and Vishniac, H. S., 1984, 25S ribosomal RNA homologies of basidiomycetous yeasts: taxonomic and phylogenetic implications, Can. J. Microbiol. 30: 613–621.PubMedGoogle Scholar
  11. Bailey, A. D., and Wynn-Williams, D. D., 1982, Soil microbiological studies at Signy Island, South Orkney Islands, Br. Antarct. Surv. Bull. 51: 167–191.Google Scholar
  12. Baker, J. H., 1970a, Quantitative study of yeasts and bacteria in a Signy Island peat, Br. Antarct. Surv. Bull. 23: 51–55.Google Scholar
  13. Baker, J. H., 1970b, Yeasts, moulds and bacteria from an acid peat on Signy Island, in: Antarctic Ecology, Vol. 2 (R. M. Laws, ed.), pp. 717–722, Academic Press, London.Google Scholar
  14. Barghoorn, E. S., and Nichols, R. L., 1961, Sulfate-reducing bacteria and pyritic sediments in Antarctica, Science 134: 190.PubMedGoogle Scholar
  15. Becker, E. W., 1982, Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures, Polar Biol. 1: 99–104.Google Scholar
  16. Benoit, R. E., and Hall, C. L., 1970, The microbiology of some Dry Valley soils of Victoria Land, Antarctica, in: Antarctic Ecology (M. Holdgate, ed.), pp. 697–701, Academic Press, London.Google Scholar
  17. Berg, T. E., and Black, R. F., 1966, Preliminary measurements of growth of nonsorted polygons, Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 8: 61–108.Google Scholar
  18. Bhakoo, M., and Herbert, R. A., 1980, Fatty acid and phospholipid composition of five psychotropic Pseudomonas spp. grown at different temperatures, Arch. Microbiol. 126: 51–56.PubMedGoogle Scholar
  19. Bjørnsen, P. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microbiol. 51: 1199–1204.PubMedGoogle Scholar
  20. Block, W., 1980, Survival strategies in polar terrestrial arthropods, Biol. J. Linn. Soc. 14: 29–38.Google Scholar
  21. Block, W., 1984, Terrestrial microbiology, invertebrates and ecosystems, in: Antarctic Ecology, Vol. 1 (R. M. Laws, ed.), pp. 163–236, Academic Press, London.Google Scholar
  22. Block, W., and Sømme, L., 1982, Cold hardiness of terrestrial mites at Signy Island, maritime Antarctic, Oikos 38: 157–167.Google Scholar
  23. Boyd, W. L., 1962, Comparison of soil bacteria and their metabolic activities in Arctic and Antarctic regions, Polar Rec. 11: 319.Google Scholar
  24. Boyd, W. L., and Boyd, J. W., 1962, Presence of Azotobacter species in polar regions, J. Bacteriol. 83: 429–430.PubMedGoogle Scholar
  25. Boyd, W. L., and Boyd, J. W., 1963, Viability of coliform bacteria in Antarctic soils, J. Bacteriol. 85: 1121–1123.PubMedGoogle Scholar
  26. Boyd, W. L., Staley, J. T., and Boyd, J. W., 1966, Ecology of soil microorganisms of Antarctica, Antarct. Res. Ser. Wash. 8: 125–159.Google Scholar
  27. Broady, P. A., 1979a, Wind dispersal of terrestrial algae at Signy Island, South Orkney Islands, Br. Antarct. Surv. Bull. 48: 99–102.Google Scholar
  28. Broady, P. A., 1979b, The terrestrial algae of Signy Island, South Orkney Islands, Br. Antarct. Surv. Sci. Rep. 98: 1–117.Google Scholar
  29. Broady, P. A., 1981a, The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica, Br. Phycol. J. 16: 231–240.Google Scholar
  30. Broady, P. A., 1981b, The ecology of chasmolithic algae at coastal locations of Antarctica, Phycologia 20: 259–272.Google Scholar
  31. Broady, P. A., 1981c, Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and MacRobertson Land, Antarctica, Br. Phycol. J. 16: 257–266.Google Scholar
  32. Broady, P. A., 1982, Ecology of non-marine algae at Mawson Rock, Antarctica, Nova Hedw. 36: 209–229.Google Scholar
  33. Broady, P. A., 1984, Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Island, Antarctica, Phycologia 23: 257–271.Google Scholar
  34. Broady, P. A., 1986a, A floristic survey of algae at four locations in northern Victoria Land, N.Z. Antarct. Rec. 7: 8–19.Google Scholar
  35. Broady, P. A., 1986b, Ecology and taxonomy of the terrestrial algae of the Vestfold Hills, in: The Vestfold Hills: An Antarctic Oasis (J. Pickard, ed.), pp. 165–202, Academic Press, Sydney.Google Scholar
  36. Broady, P. A., 1987, Protection of terrestrial plants and animals in the Ross Sea regions, N. Z. Antarct Rec. 8: 18–41.Google Scholar
  37. Broady, P. A., Garrick, R., and Anderson, G., 1984, Culture studies on the morphology of ten strains of Antarctic Oscillatoriaceae (Cyanobacteria), Polar Biol. 2: 233–244.Google Scholar
  38. Broady, P. A., Given, D., Greenfield, L. G., and Thompson, K., 1987, The biota and environment of fumaroles on Mount Melbourne, northern Victoria Land, Polar Biol. 7: 97–113.Google Scholar
  39. Brown, A. D., 1978, Compatible solutes and extreme water stress in eukaryotic micro-organisms, Adv. Microb. Physiol. 17: 181–242.PubMedGoogle Scholar
  40. Bryant, H. M., 1945, Biology at East Base, Antarctic Peninsula, Antarctica, Proc. Am. Phil. Soc. 89: 256–269.Google Scholar
  41. Bunt, J. S., 1964, Primary productivity under sea-ice in Antarctic waters. 1. Concentrations and photosynthetic activities of microalgae in the waters of McMurdo Sound, Antarctica, Antarct. Res. Ser. Wash. 1: 13–26.Google Scholar
  42. Bunt, J. S., 1968, Some characteristics of microalgae isolated from Antarctic sea-ice, Antarct. Res. Ser. Wash. 11: 1–13.Google Scholar
  43. Bunt, J. S., and Lee, C. C., 1970, Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967, J. Mar. Res. 28: 304–320.Google Scholar
  44. Burch, M. D., and Marchant, H. J., 1983, Motility and microtubule stability of Antarctic algae at subzero temperatures, Protoplasma 115: 240–250.Google Scholar
  45. Burn, A. J., 1984, Energy partitioning in the Antarctic collembolan Cryptopygus antarcticus, Ecol. Entomol. 9: 11–21.Google Scholar
  46. Burton, H. R., 1981, Chemistry, physics and evolution of Antarctic saline lakes—a review, Hydrobiologia 83: 339–362.Google Scholar
  47. Burton, H. R., and Barker, R. J., 1979, Sulfur chemistry and microbiological fractionation of sulfur isotopes in a saline Antarctic lake, Geomicrobiol. J. 1: 329–340.Google Scholar
  48. Caldwell, J. R., 1981, Biomass and respiration of nematode populations in two moss communities at Signy Island, Oikos 37: 160–166.Google Scholar
  49. Cameron, R. E., 1969, Cold desert characteristics and problems relevant to other arid lands, in: Arid Lands in Perspective (W. G. McGinnies and B. J. Goldman, eds.), pp. 167–205, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  50. Cameron, R. E., 1971, Antarctic soil microbial investigations, in: Research in the Antarctic (L. O. Quam and H. D. Porter, eds.), pp. 137–189, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  51. Cameron, R. E., 1972a, Pollution and conservation of the Antarctic terrestrial ecosystem, in: Proceedings, Colloquium on Conservation Problems in Antarctica (B. C. Parker, ed.), pp. 267–308, Allen Press, Lawrence, Kans.Google Scholar
  52. Cameron, R. E., 1972b, Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 20: 195–260.Google Scholar
  53. Cameron, R. E., 1972c, Farthest South algae and associated bacteria, Phycologia 11: 133–139.Google Scholar
  54. Cameron, R. E., 1974, Application of low latitude microbial ecology to high latitude deserts, in: Polar Deserts and Modern Man (T. L. Smiley and J. H. Zumberge, eds.), pp. 71–90, University of Arizona Press, Tucson.Google Scholar
  55. Cameron, R. E., and Benoit, R. E., 1970, Microbial and ecological investigations of recent cinder cones, Deception Island—A preliminary report, Ecology 51: 802–809.Google Scholar
  56. Cameron, R. E., and Blank, G. B., 1967, Desert soil algae survival at extremely low temperatures. Cryogenic Technol. 3: 151–156.Google Scholar
  57. Cameron, R. E., and Conrow, H. P., 1969, Soil moisture, relative humidity, and microbial abundance in dry valleys of Southern Victoria Land, Antarct. J. U.S. 4: 23–28.Google Scholar
  58. Cameron, R. E., and Devaney, J. R., 1970, Antarctic soil algal crusts. A scanning electron and optical microscope study, Trans. Am. Microsc. Soc. 80: 264–273.Google Scholar
  59. Cameron, R. E., and Ford, A. B., 1974, Baseline analyses of soils from the Pensacola Mountains, Antarct. J. U.S. 9: 116–119.Google Scholar
  60. Cameron, R. E., and Morelli, F. A., 1974, Viable microorganisms from ancient Ross Island and Taylor Valley drill cores, Antarct. J. U.S. 9: 113–115.Google Scholar
  61. Cameron, R. E., David, C. N., and King, J., 1968, Soil toxicity in Antarctic dry valleys, Antarct. J. U.S. 3: 164–166.Google Scholar
  62. Cameron, R. E., Hanson, R. B., Lacy, G. L., and Morelli, F. A., 1970a, Soil microbial and ecological investigations in the Antarctic interior, Antarct. J. U.S. 5: 87–88.Google Scholar
  63. Cameron, R. E., King, J., and David, C. N., 1970b, Microbial ecology and micro-climatology of soil sites in Dry Valleys of southern Victoria Land, Antarctica, in: Antarctica Ecology, Vol. 1 (M. W. Holdgate, ed.), pp. 702–716, Academic Press, London.Google Scholar
  64. Cameron, R. E., King, J., and David, C. N., 1970c, Soil microbial ecology of Wheeler Valley, Antarctica, Soil Sci. 109: 110–120.Google Scholar
  65. Cameron, R. E., Morelli, F. A., and Randall, L. P., 1972, Aerial aquatic and soil microbiology of Don Juan Pond, Antarctica, Antarct. J. U.S. 7: 254–258.Google Scholar
  66. Cameron, R. E., Morelli, F. A., and Johnson, R. M., 1973, Aerobiological monitoring of dry valley drilling sites, Antarct. J. U.S. 8: 211–214.Google Scholar
  67. Cameron, R. E., Morelli, F. A., Donlan, R., Guilfoyle, J., Markley, B., and Smith, R., 1974, Dry Valley Drilling Project environmental monitoring, Antarct. J. U.S. 9: 141–144.Google Scholar
  68. Cameron, R. E., Honour, R. C., and Morelli, F. A., 1976, Antarctic microbiology—preparation for Mars life detection, quarantine, and back contamination, in: Extreme Environments; Mechanisms of Microbial Adaptation (M. R. Heinrich, ed.), pp. 57–82, Academic Press, New York.Google Scholar
  69. Cameron, R. E., Honour, R. C., and Morelli, F. A., 1977, Environmental impact studies of Antarctic sites, in: Adaptations within Antarctic Ecosystems, Proc. 3rd SCAR Symp. Antarct. Biol. (G. A. Llano, ed.), pp. 1157–1176, Gulf Publishing Co., Houston.Google Scholar
  70. Campbell, P. J., 1978, Primary productivity of a hypersaline Antarctic lake, Aust. J. Mar. Freshwater Res. 29: 717–724.Google Scholar
  71. Campbell, S. E., 1982, Precambrian endoliths discovered, Nature (London) 299: 429–431.Google Scholar
  72. Cannon, R. J. C., and Block, W., 1988, Cold tolerance of microarthropods, Biol. Rev. 63: 23–77.Google Scholar
  73. Castrelos, O. D., Ikonicoff, S. I., Del Prete, L., Milano, O. C., and Margni, R. A., 1977, Microbiologia de la Antartida, Inst. Antart. Argent. Publ. 209: 4–25.Google Scholar
  74. Cathey, D. D., Parker, B.C., Simmons, G. M. Jr., and Yongue, W. H., Jr., 1981, Artificial substrates in southern Victoria Land lakes of Antarctica, Hydrobiologia 85: 3–16.Google Scholar
  75. Chambers, M. J. G., 1967, Investigations of patterned ground at Signy Island, South Orkney Islands. III. Miniature patterns, frost heaving and general conclusions, Br. Antarct. Surv. Bull. 12: 1–22.Google Scholar
  76. Chinn, T. J. H., 1981, Hydrology and climate of the Ross Sea area, J. R. Soc. N.Z. 11: 373–386.Google Scholar
  77. Christie, P., 1987a, Nitrogen in two contrasting Antarctic bryophyte communities, J. Ecol. 75: 73–94.Google Scholar
  78. Christie, P., 1987b, C-to-N ratios in two contrasting Antarctic peat profiles, Soil Biol. Biochem. 19: 777–778.Google Scholar
  79. Clarke, D. B., and Ackley, S. F., 1984, Sea ice structure and biological activity in the Antarctic marginal ice zone, J. Geophys. Res. 89: 2087–2097.Google Scholar
  80. Cohen-Bazire, G., and Bryant, D. A., 1982, Phycobilisomes: Composition and structure, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 143–190, Blackwell Scientific Publications, Oxford.Google Scholar
  81. Collins, N. J., Baker, J. H., and Tilbrook, P. J., 1975, Signy Island, maritime Antarctic, in: Structure and Function of Tundra Ecosystems (T. Rosswall and O. W. Heal, eds.), Ecol. Bull. (Stockholm) 20: 345–374.Google Scholar
  82. Colwell, R. R., MacDonell, M. T., Friedman, I., and Vestal, J. R., 1987, Identification of Antarctic endolithic microorganisms by 5S rRNA sequence analysis, Abstracts, Modern Approaches in the Biology of Terrestrial Microorganisms and Plants in the Antarctic, Institut für Polarokologie, Kiel, September 1987.Google Scholar
  83. Corte, A., and Daglio, C. A. N., 1963, Micromicetes aislados en el Antartico, Inst. Antart. Argent. Publ. 74: 1–27.Google Scholar
  84. Craig, K. R., Fortner, R. D., and Weand, B. L., 1974, Halite and hydrohalite from Lake Bonney, Taylor Valley, Antarctica, Geology 2: 389–390.Google Scholar
  85. Darling, C. A., and Siple, P. A., 1941, Bacteria of Antarctica, J. Bacteriol. 42: 83–98.PubMedGoogle Scholar
  86. Davis, R. C., 1981, Structure and function of two Antarctic terrestrial moss communities, Ecol. Monogr. 5: 125–143.Google Scholar
  87. Davis, R. C., 1986, Environmental factors influencing decomposition rates in two Antarctic moss communities, Polar Biol. 5: 95–104.Google Scholar
  88. Dawson, M. P., Humphrey, B., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6: 195–198.Google Scholar
  89. Deacon, G. E. R., 1964, A discussion on the physical and biological changes across the Antarctic Convergence. Introduction, Proc. R. Soc. Ser. A 281: 1–6.Google Scholar
  90. di Menna, M. E., 1960, Yeasts from Antarctica, J. Gen. Microbiol. 23: 295–300.PubMedGoogle Scholar
  91. Dort, W., 1981, The mummified seals of Southern Victoria Land, Antarctica, Antarct. Res. Ser. Wash. 30: 123–154.Google Scholar
  92. Downes, M. T., Howard-Williams, C., and Vincent, W. F., 1986, Sources of organic nitrogen, phosphorus and carbon in Antarctic streams, Hydrobiologia 134: 215–225.Google Scholar
  93. Drouet, F., 1961, A brief review of the freshwater algae of Antarctica, in: Science in Antarctica, Part 1, Report by the Committee on Polar Research, pp. 10–12, National Academy of Sciences, Washington, D.C.Google Scholar
  94. Drouet, F., 1962, The Oscillatoriaceae and their distribution in Antarctica, Polar Rec. 11: 320–321.Google Scholar
  95. Ekelöf, E., 1908, Bakteriologische Studien während der Schwedischen Südpolar-Expedition 1901–1903, in: Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903 (O. Nordenskjøld, ed.), Lithogr. Inst. Generalstabs, Stockholm.Google Scholar
  96. Elliot, D. H., 1985, Physical geography—Geological evolution, in: Key Environments—Antarctica (W. N. Bonner and D. W. H. Walton, eds.), pp. 39–61, Pergamon Press, Oxford.Google Scholar
  97. Ellis-Evans, J. C., 1981a, Freshwater microbiology in the Antarctic—I. Microbial numbers and activity in oligotrophic Moss Lake, Br. Antarct. Surv. Bull. 54: 85–104.Google Scholar
  98. Ellis-Evans, J. C., 1981b, Freshwater microbiology in the Antarctic—II. Microbial numbers and activity in mesotrophic Heywood Lake, Br. Antarct. Surv. Bull. 54: 105–121.Google Scholar
  99. Ellis-Evans, J. C., 1982, Seasonal microbial activity in Antarctic freshwater lake sediments, Polar Biol. 1: 129–140.Google Scholar
  100. Ellis-Evans, J. C., 1984, Methane in maritime Antarctic freshwater lakes, Polar Biol. 3: 63–72.Google Scholar
  101. Ellis-Evans, J. C., 1985a, Interactions of bacterio-and phytoplankton in nutrient cycling with eutrophic Heywood Lake, Signy Island, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 261–264, Springer-Verlag, Berlin.Google Scholar
  102. Ellis-Evans, J. C., 1985b, Decomposition processes in maritime Antarctic lakes, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 253–260, Springer-Verlag, Berlin.Google Scholar
  103. Ellis-Evans, J. C., and Sanders, M. W., 1988, Observations on microbial activity in a seasonally anoxic, nutrient enriched maritime Antarctic lake, Polar Biol. 8: 311–318.Google Scholar
  104. Ellis-Evans, J. C., and Wynn-Williams, D.D., 1985, The interaction of soil and lake microflora at Signy Island, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 662–668, Springer-Verlag, Berlin.Google Scholar
  105. Estep, K. W., Maclntyre, F., Hjörleifsson, E., and Sieburth, J. McN., 1986, Maclmage: A user-friendly image-analysis system for accurate mensuration of marine organisms, Mar. Ecol. Prog. Ser. 33: 243–253.Google Scholar
  106. Fletcher, L. D., Kerry, E. J., and Weste, G. M., 1985, Microfungi of Mac.Robertson and Enderby Lands, Antarctica, Polar Biol. 4: 81–88.Google Scholar
  107. Fletcher, M., and Marshall, K. C., 1982, Are solid surfaces of ecological significance to aquatic bacteria?, In: Advances in Microbial Ecology, Vol. 6 (K. C. Marshall, ed.), pp. 199–236, Plenum Press, New York.Google Scholar
  108. Flint, E. A., and Stout, J. D., 1960, Microbiology of some soils of Antarctica, Nature (London) 188: 767–768.Google Scholar
  109. Foster, T. D., 1984, The marine environment, in: Antarctic Ecology (R. M. Laws, ed.), pp. 345–372, Academic Press, London.Google Scholar
  110. Friedmann, E. I., 1971, Light and scanning electron microscopy of the endolithic desert habitat, Phycologia 10: 411–428.Google Scholar
  111. Friedmann, E. I., 1977, Microorganisms in Antarctic desert rocks from Dry Valleys and Dufek Massif, Antarct. J. U.S. 12: 26–29.Google Scholar
  112. Friedmann, E. I., 1978, Melting snow in the Dry Valleys is a source of water for endolithic microorganisms, Antarct. J. U.S. 13: 162–163.Google Scholar
  113. Friedmann, E. I., 1980, Endolithic microbial life in hot and cold deserts, Orig. Life 10: 233–245.Google Scholar
  114. Friedmann, E. I., 1982, Endolithic microorganisms in the Antarctic cold desert, Science 215: 1045–1053.PubMedGoogle Scholar
  115. Friedmann, E. I., 1986, The Antarctic cold desert and the search for life on Mars, Adv. Space Res. 6: 12: 265–268.PubMedGoogle Scholar
  116. Friedmann, E. I., and Kibler, A. P., 1980, Nitrogen economy of endolithic microbial communities in hot and cold deserts, Microb. Ecol. 6: 95–108.Google Scholar
  117. Friedmann, E. I., and McKay, C. P., 1985, Methods for the continuous monitoring of snow: Application to the cryptoendolithic microbial community of Antarctica, Antarct. J. U.S. 20: 179–181.Google Scholar
  118. Friedmann, E. I., and Ocampo, R., 1976, Endolithic blue-green algae in the Dry Valleys. Primary producers in the Antarctic desert ecosystem, Science 193: 1247–1249.PubMedGoogle Scholar
  119. Friedmann, E. I., and Ocampo-Riedmann, R., 1984a, Endolithic microoorganisms in extreme dry environments: Analysis of a lithobiontic microbial habitat, in: Current Perspectives in Microbiology (M. J. Klug and C.A. Reddy, eds.), pp. 177–185, American Society for Microbiology, Washington, D.C.Google Scholar
  120. Friedmann, E. I., and Ocampo-Friedmann, R., 1984b, The Antarctic cryptoendolithic ecosystem. Relevance to exobiology, Orig. Life 14: 771–776.PubMedGoogle Scholar
  121. Friedmann, E. I., and Weed, R., 1987, Trace-fossil formation in modern microbial communities: Biogenous and abiotic weathering in the Antarctic cold desert, Science 236: 703–705.PubMedGoogle Scholar
  122. Friedmann, E. I., La Rock, P., and Brunson, J. O., 1980, Adenosine triphosphate (ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and adjacent soils in the Dry Valleys of S. Victoria Land, Antarct. J. U.S. 15: 164–166.Google Scholar
  123. Friedmann, E. I., Riedmann, R. O., and McKay, C. P., 1982, Adaptation of cryptoendolithic lichens in the Antarctic desert, Comm. Natl. Francais Res. Antarct. Rep. 51: 65–72.Google Scholar
  124. Friedmann, E. I., McKay, C. P., and Nienow, J. A., 1987, The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Continuous nanoclimate data, 1984 to 1986, Polar Biol. 7: 273–287.PubMedGoogle Scholar
  125. Fritsch, F. E., 1912, Natural History, Vol. 6, “Freshwater Algae, National Antarctic Expedition 1901–1904, British Museum (Natural History), London.Google Scholar
  126. Fry, J. C., 1988, Determination of biomass, in: Methods in Aquatic Bacteriology (B. Austin, ed.), pp. 27–72, Wiley, London.Google Scholar
  127. Garrison, D. L., Buck, K. R., and Silver, M.W., 1982, Ice algal communities in the Weddell Sea, Antarct. J. U.S. 17: 157–159.Google Scholar
  128. Garrison, D. L., Buck, K. R., and Silver, M. W., 1983, Studies of ice-algal communities in the Weddell Sea, Antarct. J. U.S. 18: 179–181.Google Scholar
  129. Garrison, D. L., Sullivan, C. W., and Ackley, S. F., 1986, Sea ice microbial communities in Antarctica, BioScience 36: 243–250.Google Scholar
  130. Gazert, H., 1912, Untersuchungen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel in Meere, in: Deutsche Südpolar Expedition, 1901–1903, G. Reimes, Berlin, Vol. 7, pp. 268–296.Google Scholar
  131. Gibson, E. K., Wentworth, S. J., and McKay, D. S., 1983, Chemical weathering and diagenesis of a cold desert soil from Wright Valley: An analog of Martian Weathering processes, J. Geophys. Res. 88 (Suppl.): A912–A928.Google Scholar
  132. Giggenbach, W. F., Kyle, P. R., and Lyon, G. G., 1973, Present volcanic activity on Mount Erebus, Ross Island, Antarctic, Geology 1: 135–136.Google Scholar
  133. Golubic, S., Friedmann, E. I., and Schneider, J., 1981, Lithobiontic ecological niche, with special reference to microorganisms, J. Sedim. Petrol. 51: 475–478.Google Scholar
  134. Gordon, A. L., 1981, Seasonality of Southern Ocean sea-ice, J. Geophys. Res. 86: 4193–4197.Google Scholar
  135. Gow, A. J., Weeks, W. F., Goroni, J. W., and Ackley, S. F., 1981, Physical and structural characteristics of sea-ice in McMurdo Sound, Antarct. J. U.S. 16: 94–95.Google Scholar
  136. Greenfield, L. G., 1989, Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica, Polarforschung 58: 211–218.Google Scholar
  137. Gregory, P. H., 1966, Dispersal, in: The Fungi, an Advanced Treatise, Vol. II (G. C. Ainsworth and A. S. Sussman, eds.), pp. 709–732, Academic Press, New York.Google Scholar
  138. Hale, M., 1987, Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica, Lichenologist 19: 269–287.PubMedGoogle Scholar
  139. Hall, K., 1986a, Rock moisture content in the field and the laboratory and its relationship to mechanical weathering studies, Earth Surface Processes Landforms 11: 131–142.Google Scholar
  140. Hall, K., 1986b, Ireeze-thaw simulations on quartz-micaschist and their implications for weathering studies on Signy Island, Antarctica, Br. Antarct. Surv. Bull. 73: 19–30.Google Scholar
  141. Hand, R. MI., 1980, Bacterial population of two saline Antarctic lakes, Proc. 4th Int. Symp. Environ. Biogeochem., pp. 123–129, Springer-Verlag, Berlin.Google Scholar
  142. Hand, R. M., and Burton, H. R., 1981, Microbial ecology of an Antarctic saline meromictic lake, Hydrobiologia 81/82: 363–374.Google Scholar
  143. Harder, R., and Persiel, I., 1962, The occurrence of lower soil Phycomycetes in the Antarctic, Arch. Mikrobiol. 41: 44–50.PubMedGoogle Scholar
  144. Harris, H. J. H., and Cartwright, K., 1981, Hydrogeology of the Don Juan Basin, Wright Valley, Antarctica, Antarct Res. Ser. Wash. 33: 161–184.Google Scholar
  145. Hasle, G. R., 1956, Phytoplankton and hydrography of the Pacific part of the Atlantic Ocean, Nature (London) 177: 616–617.Google Scholar
  146. Hasle, G. R., 1969, An analysis of the phytoplankton of the Pacific Southern Ocean: Abundance, composition and distribution during the Brategg Expedition, 1947–48, Hvalradets Skr. 52: 1–168.Google Scholar
  147. Hawes, I., 1983, Turbulence and its consequences for phytoplankton development in ice covered Antarctic lakes, Br. Antarct. Surv. Bull. 60: 69–82.Google Scholar
  148. Hawes, I., 1985, Factors controlling phytoplankton population in maritime Antarctic lakes, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 245–252, Springer-Verlag, Berlin.Google Scholar
  149. Heal, O. W., Bailey, A. D., and Latter, P. M., 1967, Bacteria, fungi and protozoa in Signy Island soils compared with those from a temperate moorland, Phil. Trans. R. Soc. Lond. B 252: 191–197.Google Scholar
  150. Heap, J. (ed.), 1987, Handbook of the Antarctic Treaty System, 5th ed., Scientific Committee on Antarctic Research, Cambridge.Google Scholar
  151. Herbert, R. A., 1986, The ecology and physiology of psychrophilic microorganisms, in: Microbes in Extreme Environments (R. A. Herbert and G. A. Codd, eds.), pp. 1–25, Academic Press, London.Google Scholar
  152. Heywood, R. B., 1977, Antarctic freshwater ecosystems: review and synthesis, in: Adaptations within Antarctic Ecosystems, Proc. 3rd SCAR Symp. Antarct. Biol. (G. A. Llano, ed.), pp. 801–828, Gulf Publishing Co., Houston.Google Scholar
  153. Heywood, R. B., 1984, Antarctic Inland waters, in: Antarctic Ecology (R. M. Laws, ed.), pp. 279–344, Academic Press, London.Google Scholar
  154. Heywood, R. B., 1987, Limnological studies in the Antarctica Peninsula region, in: Antarctic Aquatic Biology, BIOMASS Sci. Ser., Vol. 7 (S. Z. El-Sayed, ed.), pp. 157–173, SCAR, Cambridge.Google Scholar
  155. Heywood, R. B., and Whitaker, T. M., 1984, The Antarctic marine flora, in: Antarctic Ecology (R. M. Laws, ed.), pp. 373–420, Academic Press, London.Google Scholar
  156. Heywood, R. B., Dartnall, H. J. G., and Priddle, J., 1980, Characteristics and classification of the lakes of Signy Island, South Orkney Islands, Antarctica, Freshwater Biol. 10: 47–59.Google Scholar
  157. Hirsch, P., 1986, Microbial life at extremely low nutrient levels, Adv. Space Res. 6: 12: 287–298.PubMedGoogle Scholar
  158. Hirsch, P., Gallikowski, C. A., and Friedmann, E. I., 1985, Microorganisms in soil samples from Linnaeus Terrace, southern Victoria Land: preliminary observations, Antarct. J. U.S. 20: 183–186.Google Scholar
  159. Holdgate, M. W., 1964, Terrestrial ecology in the maritime Antarctic, in: Biologie Antarctique (R. Carrick, M. Holdgate, and J. Prévost, eds.), pp. 181–194, Hermann, Paris.Google Scholar
  160. Holm-Hansen, O., 1963, Algae: Nitrogen fixation by Antarctic species, Science 139: 1059–1060.PubMedGoogle Scholar
  161. Holm-Hansen, O., Azam, F., Carlucci, A. F., Hodson, R. E., and Karl, D. M., 1977, Microbial distribution and activity in and around McMurdo Sound, Antarct. J. U.S. 12: 29–32.Google Scholar
  162. Hooker, J. D., 1847, Flora Antarctica, part 55, Algae, in: The Botany of the Antarctic Voyage, Vol. II, pp. 454–519, Reeve Bros., London.Google Scholar
  163. Horner, R. A., 1985a, Ecology of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 83–103, CRC Press, Boca Raton.Google Scholar
  164. Horner, R. A., 1985b, Taxonomy of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 147–157, CRC Press, Boca Raton.Google Scholar
  165. Horner, R. A., Syvertsen, E. E., Thomas, D. P., and Lange, C., 1988, Proposed terminology and reporting units for sea ice algal assemblages, Polar Biol. 8: 249–253.Google Scholar
  166. Horowitz, N. H., 1979, Biological water requirements, in: Strategies of Microbial Life in Extreme Environments (M. Shilo ed.), pp. 15–27, Dahlem Konferenzen, Berlin.Google Scholar
  167. Horowitz, N. H., Bauman, A. J., Cameron, R. E., Geiger, P. J., Hubbard, J. S., Shulman, G. P., Simmonds, P. G., and Westberg, K., 1969, Sterile soil from Antarctica: Organic analysis, Science 164: 1054–1056.PubMedGoogle Scholar
  168. Horowitz, N. H., Cameron, R. E., and Hubbard, J. S., 1972, Microbiology of the Dry Valleys of Antarctica, Science 176: 242–245.PubMedGoogle Scholar
  169. Hoshiai, T., 1977, Seasonal changes of ice communities in the sea: ice near Syowa Station, Antarctica, in: Polar Oceans (M. J. Dunbar, ed.), pp. 301–317, Arctic Institute of North America, Calgary, Alberta.Google Scholar
  170. Howard-Williams, C., and Vincent, W. F., 1985, Ecosystem properties of Antarctic streams, N. Z. Antarct. Rec. (Special Issue) 6: 21–31.Google Scholar
  171. Howard-Williams, C., Vincent, C. L., Broady, P. A., and Vincent, W. F., 1986a, Antarctic stream ecosystems: Variability in environmental properties and algal community structure, Int. Rev. Gesamte Hydrobiol. 71: 511–544.Google Scholar
  172. Howard-Williams, C., Vincent, W. F., and Wratt, G. S., 1986b, The Alph River ecosystem: A major freshwater environment in southern Victoria Land, N.Z. Antarct. Rec. 7: 21–33.Google Scholar
  173. Huguenin, R. L., Miller, K. J., and Leschine, S. B., 1983, Mars: A contamination potential?, Adv. Space Res. 38: 35–38.Google Scholar
  174. Johnson, P. W., and Sieburth, J. McN., 1979, Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr. 24: 928–935.Google Scholar
  175. Johnson, R. M., and Bellinofif, R. D., 1981, A taxonomic study of a dominant coryneform bacterial type found in Antarctic soils, Antarct. Res. Ser. Wash. 30: 169–184.Google Scholar
  176. Johnson, R. M., Madden, J. M., and Swafford, J. R., 1978, Taxonomy of Antarctic bacteria from soils and air, primarily of the McMurdo Station and Dry Valleys region, Antarct. Res. Ser. Wash. 30: 35–64.Google Scholar
  177. Johnson, R. M., Inai, M., and McCarthy, S., 1981, Characteristics of cold desert Antarctic coryneform bacteria, J. Ariz. Nev. Acad. Sci. 16: 51–60.Google Scholar
  178. Kappen, L., and Friedmann, E. I., 1983, Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens, Polar Biol. 1: 227–232.Google Scholar
  179. Kappen, L., Friedmann, E. I., and Garty, J., 1981, Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat, Flora 171: 216–235.Google Scholar
  180. Karl, D. M., LaRock, J. W., and Schultz, D. J., 1977, Adenosine triphosphate and organic carbon in the Cariaco Trench, Deep Sea Res. 24: 105–113.Google Scholar
  181. Klein, H. P., 1977, The Viking biological investigations: General aspects, J. Geophys. Res. 82: 4677–4680.Google Scholar
  182. Klein, H. P., 1979, The Viking mission and the search for life on Mars, Rev. Geophys. Space Phys. 17: 1655–1662.Google Scholar
  183. Klingler, J. M., and Vishniac, H. S., 1989, Water potential of Antarctic soils, Polarforschung 58: 231–238.Google Scholar
  184. Kobori, H., Sullivan, C. W., and Shizuya, H., 1984, Bacterial plasmids in Antarctic natural microbial assemblages, Appl. Environ. Microbiol. 48: 515–518.PubMedGoogle Scholar
  185. Konlechner, J. C., 1985, Investigation of the fate and effects of a paraffin-based crude oil in an Antarctic terrestrial ecosystem, N.Z. Antarct. Rec. 6: 40–46.Google Scholar
  186. Kottmeier, S. T., and Sullivan, C. W., 1988, Sea ice microbial community (SIMCO). 9. Effects of temperature and salinity on rates of metabolism and growth in autotrophs and heterotrophs. Polar Biol. 8: 293–304.Google Scholar
  187. Lange, O. L., and Kappen, L., 1972, Photosynthesis of lichens from Antarctica, Antarct. Res. Ser. Wash. 20: 83–95.Google Scholar
  188. Latter, P. M., and Heal, O. W., 1971, A preliminary study of the growth of fungi and bacteria from temperate and Antarctic soils in relation to temperature, Soil Biol. Biochem. 3: 365–379.Google Scholar
  189. Laws, R. M., 1985, Ecology of the Southern Ocean, Am. Sci. 73: 26–40.Google Scholar
  190. Lewis, D. H., and Smith, D. C., 1967, Sugar alcohols (polyols) in fungi and green plants, New Phytol. 66: 143–184.Google Scholar
  191. Lipps, J., 1978, Man’s impact along the Antarctic Peninsula, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 333–372, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  192. Lister, A., 1984, Prédation in and Antarctic micro-arthropod community, Acarology 6: 886–892.Google Scholar
  193. Lister, A., Usher, M. B., and Block, W., 1987, Description and quantification of field attack rates by predatory mites: An example using an electrophoresis method with a species of Antarctic mite, Oecologia 72: 185–191.Google Scholar
  194. Love, F. G., Simmons, G. M. Jr., Parker, B. C., Wharton, R. A. Jr., and Seaburg, K. G., 1983, Modern Conophyton-like microbial mats discovered in Lake Vanda, Antarctica, Geomicrobiol. J. 3: 33–48.Google Scholar
  195. Lyakh, S. P., Kozlova, T. M., and Salivonik, S. M., 1984, Effect of periodic freezing and thawing of cells of the Antarctic black yeast Nadsoniella nigra var. hesuelica, Microbiology 52: 486–491.Google Scholar
  196. Madden, J. M., Siegel, S. K., and Johnson, R. M., 1979, Taxonomy of some Antarctic Bacillus and Corynebacterium species, Antarct. Res. Ser. Wash. 30: 77–103.Google Scholar
  197. Makyut, G. A., 1985, The ice environment, in: Sea Ice Biota (R. A. Horner, ed.), pp. 21–82, CRC Press, Boca Raton.Google Scholar
  198. Margni, R. A., and Castrelos, O. D., 1963, Exámenes bacteriológicos de aire, nieve y suelo de Cabo Primavera y Estación Científica Ellsworth, Inst. Antart. Argent. Publ. 76: 1–15.Google Scholar
  199. McConville, M. J., 1985, Chemical composition and biochemistry of sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 105–209, CRC Press, Boca Raton.Google Scholar
  200. McConville, M. J., and Wetherbee, R., 1983, The bottom-ice microalgal community from annual ice in inshore waters of East Antarctica, J. Phycol. 19: 431–439.Google Scholar
  201. McConville, M. J., Mitchell, C., and Wetherbee, R., 1985, Patterns of carbon assimilation in a microalgal community from annual sea ice, Polar Biol. 4: 135–142.Google Scholar
  202. McCraw, J. D., 1967, Soils of Taylor dry valley, Victoria Land, Antarctica, with notes on soils from other localities in Victoria Land, N.Z. J. Geol. Geophys. 10: 498–539.Google Scholar
  203. McGinnis, L. D., 1978, appendix: Letter and critique, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 253–254, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  204. McKay, C. P., 1986, Exobiology and future Mars missions: The search for Mars’ earliest biosphere, Adv. Space Res. 6: 12: 269–285.PubMedGoogle Scholar
  205. McKay, C. P., and Friedmann, E. I., 1984, Continuous temperature measurements in the cryptoendolithic microbial habitat by satellite-relay data acquisition system, Antarct. J. U.S. 19: 170–172.Google Scholar
  206. McKay, C. P., and Friedmann, E. I., 1985, Temperature variations in the cryptoendolithic microbial environment in the Antarctic Dry Valleys, Polar Biol. 4: 19–25.PubMedGoogle Scholar
  207. McKay, C. P., Weed, R., Tyler, D. A., Vestal, J. R., and Friedmann, E. I., 1983, Studies of cryptoendolithic communities in the Antarctic cold desert, Antarct. J. U.S. 18: 227–228.Google Scholar
  208. McKay, C. P., Clow, G., Wharton, R. A., Jr., and Squyres, S., 1985, The thickness of ice on perennially frozen lakes. Nature (London) 313: 561–562.Google Scholar
  209. McLean, A. L., 1918, Bacteria of ice and snow in Antarctica, Nature (London) 102: 35–39.Google Scholar
  210. McLean, A. L., 1919, Bacteriological and other researches, Australasian Antarctic Expedition 1911–1914, Sci. Rep. C, Vol. 7, pp. 1–128.Google Scholar
  211. McMeekin, T. A., and Franzmann, P. D., 1988, Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. Polar Biol. 8: 281–285.Google Scholar
  212. Mercer, J. H., 1983, Cenozoic glaciation in the Southern Hemisphere, Ann. Rev. Earth Planet Sci. 11: 99–132.Google Scholar
  213. Meryman, H. T., 1966, Review of biological freezing, in: Cryobiology (H. T. Meryman, ed.), pp. 1–106, Academic Press, London.Google Scholar
  214. Meyer, G. H., 1962, Microbiological populations of Antarctic air, soil, snow and melt pools, Polar Rec. 11: 317–318.Google Scholar
  215. Meyer, G. H., Morrow, M. B., and Wyss, O., 1962, Viable microorganisms in a fifty year old yeast preparation in Antarctica, Nature (London) 196: 598–599.Google Scholar
  216. Meyer, G. H., Morrow, M. B., and Wyss, O., 1963, Viable microorganisms from faeces and foodstuffs from early Antarctic expeditions, Can. J. Microbiol. 9: 163–167.Google Scholar
  217. Mikell, A. T. Jr., Parker, B. C., and Simmons, G. M. Jr., 1984, Response of an Antarctic lake heterotrophic community to high dissolved oxygen, Appl. Environ. Microbiol. 47: 1062–1066.PubMedGoogle Scholar
  218. Miller, K. J., Leschine, S. B., and Huguenin, R. L., 1983, Halotolerance of micro-organisms isolated from saline Antarctic Dry Valley soils, Antarct. J. U.S. 18: 222–223.Google Scholar
  219. Miotke, F., 1985, Die Dünen in Victoria Valley, Victoria Land, Antarktis. Ein Beitrag zur äolischen Formung im extrem kalten Klima, Polarforschung 55: 79–125.Google Scholar
  220. Miwa, T., 1975, Clostridia isolated from the soil in the east coast of Lützow-Holm Bay, East Antarctica, Antarct. Rec. 53: 89–99.Google Scholar
  221. Morelli, F. A., Cameron, R. E., Gensel, D. R., and Randall, L. P., 1972, Monitoring of Antarctic Dry Valley drilling sites, Antarct. J. U.S. 7: 92–94.Google Scholar
  222. Monta, R. Y., 1975, Psychrophilic bacteria, Bacterio. Rev. 39: 146–167.Google Scholar
  223. Morita, R. Y., Griffiths, R. P., and Hyasaka, S. S., 1977, Heterotrophic activity of microorganisms in Antarctic waters, in: Adaptations within Antarctic Ecosystems (G. A. Llano, ed.), pp. 99–113, Smithsonian Institution, Washington, D.C.Google Scholar
  224. Mudrey, M. G., Jr., McGinnis, L. D., and Treves, S. B., 1978, Summary of field activities of the Dry Valley Drilling Project, 1972–73 and 1973–74, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 179–210, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  225. Myrcha, A., Pietr, S. J., and Tatur, A., 1985, Role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. Condy, and R. M. Laws, eds.), pp. 156–162, Springer-Verlag, Berlin.Google Scholar
  226. Nakaya, S., Motoori, Y., and Nishimura, M., 1979, One aspect of the evolution of saline lakes in the Dry Valleys of south Victoria Land, Mem. Natl. Inst. Polar Res. (Tokyo) (Special Issue) 13: 49–52.Google Scholar
  227. Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32: 617–622.PubMedGoogle Scholar
  228. Orchard, V. A., and Corderoy, D. M., 1983, Influence of environmental factors on the decomposition of penguin guano in Antarctica, Polar Biol. 1: 199–204.Google Scholar
  229. Palmisano, A. C., and Simmons, G. M., Jr., 1987, Spectral downwelling irradiance in an Antarctic lake, Polar Biol. 7: 145–151.Google Scholar
  230. Palmisano, A. C., and Sullivan, C. W., 1983, Sea-ice microbial communities (SIMCO). 1. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica, in 1980, Polar Biol. 2: 171–178.Google Scholar
  231. Palmisano, A. C., and Sullivan, C. W., 1985a, Physiological response of micro-algae in the ice platelet layer to low light conditions, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 84–88, Springer-Verlag, Berlin.Google Scholar
  232. Palmisano, A. C., and Sullivan, C. W., 1985b, Growth, metabolism and dark survival in sea ice microalgae, in: Sea Ice Biota (R. A. Horner, ed.), pp. 131–146, CRC Press, Boca Raton.Google Scholar
  233. Parker, B.C., 1972, Conservation of freshwater habitats on the Antarctic Peninsula, in: Proceedings of the Colloquium on Conservation Problems in Antarctica, 1971, Blacksburg, Virginia (B. C. Parker, ed.), pp. 143–162, Allen Press, Lawrence, Kans.Google Scholar
  234. Parker, B.C., 1978, Potential impact on Lake Bonney of activities associated with modelling freshwater Antarctic ecosystems, in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 255–278, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  235. Parker, B.C., and Simmons, G. M., Jr., 1985, Paucity of nutrient cycling and absence of food chains in the unique lakes of southern Victoria Land, in: Antarctic Nutrient Cycling and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 238–244, Springer-Verlag, Berlin.Google Scholar
  236. Parker, B. C., and Wharton, R. A., Jr., 1985, Physiological ecology of bluegreen algal mats (modern stromatolites) in Antarctic oasis lakes, Arch. Hydrobiol. Alg. Stud. 38/39: 331–348.Google Scholar
  237. Parker, B. C., Ford, A. B., Allnutt, T., Bishop, B., and Wendt, S., 1977, Baseline microbiological data for soils of the Dufek Massif, Antarct. J. U.S. 12: 24–26.Google Scholar
  238. Parker, B. C., Mudrey, M. G., Jr., Cartwright, K., and McGinnis, L. D., 1978a, Environmental appraisal for the Dry Valley Drilling Project, Phases III, IV, V (1973–74, 1974–75, 1975–76), in: Environmental Impact in Antarctica (B. C. Parker, ed.), pp. 37–144, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  239. Parker, B.C., Howard, R. V., and Allnutt, F. C. T., 1978b, Summary of environmental monitoring and impact assessment of the DVDP, in: Environmental Impact in Antarctica (B.C. Parker, ed.), pp. 211–251, Virginia Polytechnic Institute, Blacksburg.Google Scholar
  240. Parker, B. C., Simmons, G. M., Jr., Love, F. G., Wharton, R. A., Jr., and Seaburg, K. G., 1981, Modern stromatolites in Antarctic Dry Valley lakes, BioScience 31: 656–661.Google Scholar
  241. Parker, B. C., Boyer, S., Allnutt, F. C. T., Seaburg, K. G., Wharton, R. A. Jr., and Simmons, G. M. Jr., 1982a, Soils from the Pensacola Mountains, Antarctica: Physical, chemical and biological characteristics, Soil. Biol. Biochem. 14: 265–271.Google Scholar
  242. Parker, B. C., Simmons, G. M., Jr., Kaspar, M., Mikell, A., Love, F. G., Seaburg, K. G., and Wharton, R. A., Jr., 1982b, Physiological adaptations of biota in Antarctic oasis lake—year 2, Antarct. J. U.S. 17: 191–193.Google Scholar
  243. Parker, B. C., Simmons, G. M., Jr., Wharton, R. A., Jr., Seaburg, K.G., and Love, F. G., 1982c, Removal of organic and inorganic material from Antarctic lakes by aerial escape of blue-green algal mats, J. Phycol. 18: 72–78.Google Scholar
  244. Phillpot, H. R., 1985, Physical geography—climate, in: Key Environments—Antarctica (W. N. Bonner and D. W. H. Walton, eds.), pp. 23–38, Pergamon Press, Oxford.Google Scholar
  245. Pickard, J. (ed.), 1986, Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills, Academic Press, North Ryde, Australia.Google Scholar
  246. Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum Press, New York.Google Scholar
  247. Prévot, A. R., and Moureau, M., 1952, Recherches sur les bactéries anaerobies de la Terre Adélie (prelevées par la première expedition antarctique française), Ann. Inst. Pasteur 82: 13–19.Google Scholar
  248. Priddle, J., 1980a, The production ecology of benthic plants in some Antarctic lakes. I. In situ production studies, J. Ecol. 68: 141–153.Google Scholar
  249. Priddle, J., 1980b, The production ecology of benthic plants in some Antarctic lakes. II. Laboratory physiology studies, J. Ecol. 68: 155–166.Google Scholar
  250. Priddle, J., and Belcher, J. H., 1981, Freshwater biology at Rothera Point, Adelaide Island. 2. Algae, Br. Antarct.Surv. Bull. 53: 1–10.Google Scholar
  251. Priddle, J., and Heywood, R. B., 1980, Evolution of Antarctic lake ecosystems, Biol. J. Linn. Soc. 14: 51–66.Google Scholar
  252. Priddle, J., Hawes, I., and Ellis-Evans, J. C., 1986, Antarctic aquatic ecosystems as habitats for phytoplankton, Biol. Rev. 61: 199–238.Google Scholar
  253. Pugh, G. J. F., 1980, Strategies in fungal ecology, Trans. Br. Mycol. Soc. 75: 1–14.Google Scholar
  254. Pugh, G. J. F., and Allsopp, D., 1982, Micro-fungi on Signy Island, South Orkney Islands, South Atlantic Ocean, Br. Antarct. Surv. Bull. 57: 55–68.Google Scholar
  255. Ramsay, A. J., 1983, Bacterial biomass in ornithogenic soils of Antarctica, Polar Biol. 1: 221–225.Google Scholar
  256. Roberts, B., 1958, Chronological list of Antarctic expeditions, Polar Rec. 9: 191–239.Google Scholar
  257. Schlichting, H. E., Jr., Speziale, B. J., and Zink, R. M., 1978, Dispersal of algae and protozoa by Antarctic flying birds, Antarct. J. U.S. 13: 147–149.Google Scholar
  258. Schreiber, U., 1979, Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans, FEBS Lett. 107: 4–9.PubMedGoogle Scholar
  259. Seaburg, K. G., Parker, B. C., Wharton, R. A., Jr., and Simmons, G. M., Jr., 1981, Temperaturegrowth responses of algal isolates from Antarctic oasis lakes, J. Phycol. 17: 353–360.Google Scholar
  260. Siebert, J., and Hirsch, P., 1988, Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo Dry Valleys (South Victoria Land), Polar Biol. 9: 37–44.PubMedGoogle Scholar
  261. Sieburth, J. McN., 1961, Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals, J. Bacteriol. 82: 72–79.PubMedGoogle Scholar
  262. Sieburth, J. McN., 1963, Bacterial habitats in the Antarctic environment, in: Symposium on Marine Micro-biology (C. H. Oppenheimer, ed.), pp. 533–548, Charles C. Thomas, Springfield, Ill.Google Scholar
  263. Sieburth, J. McN., 1965, Microbiology of Antarctica, in: Biogeography and Ecology in Antarctica (J. van Mieghem and van Oye, eds.), pp. 267–295, Dr. W. Junk, The Hague.Google Scholar
  264. Siegel, B. Z., Siegel, S. M., Chen, J., and La Rock, P., 1983, Extraterrestrial habitat on earth: The algal mat of Don Juan Pond, Adv. Space Res. 3: 39–42.PubMedGoogle Scholar
  265. Sieracki, M. E., Johnson, P. W., and Sieburth, J. McN., 1985, Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy, Appl. Environ. Microbiol. 49: 799–810.PubMedGoogle Scholar
  266. Simmons, G. M., Wharton, R. A., Jr., McKay, P., Nedell, S., and Clow, G., 1987, Sand/ice interactions and sediment deposition in perennially ice-covered Antarctic lakes. Antarct. J. U.S. 22: 237–240.Google Scholar
  267. Smith, H. G., 1978, The distribution and ecology of terrestrial Protozoa of Subantarctic and Antarctic islands, Br. Antarct. Surv. Sci. Rep. 95: 1–104.Google Scholar
  268. Smith, H. G., 1985, The colonization of volcanic tephra on Deception Island by Protozoa: Long-term trends, Br. Antarct. Surv. Bull. 66: 19–33.Google Scholar
  269. Smith, R. I. L., 1984a, Colonization and recovery by cryptogams following recent volcanic activity on Deception Island, South Shetland Islands, Br. Antarct. Surv. Bull. 62: 25–51.Google Scholar
  270. Smith, R. I. L., 1984b, Terrestrial plant biology of the sub-Antarctic and Antarctic, in: Antarctic Ecology (R. M. Laws, ed.), pp. 61–162, Academic Press, London.Google Scholar
  271. Smith, R. I. L., 1988, Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol. Conserv. 45: 55–72.Google Scholar
  272. Smith, R. I. L., and Poncet, S., 1987, Deschampsia antarctica and Colobanthus quitensis in the Terra Firma Islands, Br. Antarct. Surv. Bull. 74: 31–35.Google Scholar
  273. Sømme, L., and Block, W., 1982, Cold hardiness of Collembola at Signy Island, Maritime Antarctica, Oikos 39: 168–176.Google Scholar
  274. Soneda, M., 1961, On some yeasts from the Antarctic region, Biol. Results Jpn. Res. Exp. 15: 3–10.Google Scholar
  275. Speir, T. W., and Cowling, J. C., 1984, Ornithogenic soils of the Cape Bird Adelie penguin rookeries, Antarctica. 1. Chemical properties, Polar Biol. 2: 199–206.Google Scholar
  276. Straka, R. P., and Stokes, J. L., 1960, Psychrophilic bacteria from Antarctica, J. Bacteriol. 80: 622–625.PubMedGoogle Scholar
  277. Sullivan, C. W., 1985, Sea ice bacteria: Reciprocal interactions of the organisms and their environment, in: Sea Ice Biota (R. A. Horner, ed.), pp. 159–171, CRC Press, Boca Raton.Google Scholar
  278. Sullivan, C. W., and Palmisano, A. C. 1984, Sea-ice microbial communities: Distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica, Appl. Environ. Microbiol. 47: 788–795.PubMedGoogle Scholar
  279. Sullivan, C. W., Palmisano, A. C., Kottmeier, S., McGrath Grossi, D., and Moe, R., 1985, Influence of light on growth and development of the sea-ice microbial community of McMurdo Sound, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 78–83, Springer-Verlag, Berlin.Google Scholar
  280. Sun, S. H., Huppert, M., and Cameron, R. E., 1978, Identification of some fungi from soil and air of Antarctica, Antarct. Res. Ser. Wash. 30: 1–26.Google Scholar
  281. Sussman, A. S., and Halvorson, H. O., 1966, Spores, Harper and Row, New York and London.Google Scholar
  282. Svensson, B. H., 1980, Carbon dioxide and methane fluxes from the ombrotrophic parts of a Subarctic mire, Ecol. Bull. (Stockholm) 30: 235–250.Google Scholar
  283. Tanner, A. C., and Herbert, R. A., 1981, Nutrient regeneration in maritime Antarctic sediments, Kiel Meeresforsch. 5: 390–395.Google Scholar
  284. Tearle, P. V., 1987, Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines, Soil Biol. Biochem. 19: 381–390.Google Scholar
  285. Thompson, D. C., Bromley, A. M., and Craig, R. M. F., 1971, Ground temperatures in an Antarctic dry valley, N.Z. J. Geol. Geophys. 14: 477–483.Google Scholar
  286. Tominaga, H., 1977, Photosynthetic nature and primary productivity of Antarctic freshwater phytoplankton, Jpn. J. Limnol. Oceanogr. 11: 596–607.Google Scholar
  287. Torii, T., Matsumoto, G. I., and Nakaya, S., 1989, The chemical characteristics of Antarctic lakes and ponds, with special emphasis on the distribution of nutrients. Polarforschung 58: 219–230.Google Scholar
  288. Tschermak-Woess, E., and Riedmann, E. I., 1984, Hemichloris antarctica, new genus, new species, Chlorococcales, Chlorophyta. A cryptoendolithic alga from Antarctica, Phycologia 23: 443–454.PubMedGoogle Scholar
  289. Tsiklinsky, Mlle., 1908, La flore microbienne dans les régions du Pole Sud, in: Expedition Antarctique Française 1903–1905 (J. Charcot, ed.), pp. 1–33, Masson et Cie., Paris.Google Scholar
  290. Tubaki, K., 1961, On some fungi isolated from the Antarctic materials, Biol. Results Jpn. Antarctic Res. Exp. (Special Publ.) 14: 3–9.Google Scholar
  291. Tuck, A. F., 1987, Stratospheric Ozone, United Kingdom Stratospheric Ozone Group, First Report, Her Majesty’s Stationery Office, London.Google Scholar
  292. Tuovila, B. J., and LaRock, P. A., 1987, Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations, Antarct. J. U.S. 19: 181–182.Google Scholar
  293. Ugolini, F. C., and Anderson, D. M., 1973, Ionic migration and weathering in frozen Antarctic soils, Soil Sci. 115: 461–470.Google Scholar
  294. Uydess, I. L., and Vishniac, W. V., 1976, Electron microscopy of Antarctic soil bacteria, in: Extreme Environments; Mechanisms of Microbial Adaptation (M. R. Heinrich, ed.), pp. 29–56, Academic Press, New York.Google Scholar
  295. Van Liere, L., and Walsby, A. E., 1982, Interactions of cyanobacteria with light, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 9–45, Blackwell Scientific Publications, Oxford.Google Scholar
  296. Vestal, J. R., 1988a, Biomass of the cryptoendolithic microbiota from the Antarctic desert, Appl. Environ. Microbiol. 54: 957–959.PubMedGoogle Scholar
  297. Vestal, J. R., 1988b, Carbon metabolism in the cryptoendolithic microbiota from the Antarctic desert, Appl. Environ. Microbiol. 54: 960–965.PubMedGoogle Scholar
  298. Vestal, J. R., Federle, T. W., and Friedmann, E. I., 1984, The effects of light and temperature on the Antarctic cryptoendolithic microbiota in vitro, Antarct. J. U.S. 19: 173–174.Google Scholar
  299. Vincent, W. F., 1981, Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake, Ecology 62: 1215–1224.Google Scholar
  300. Vincent, W. F., 1985, Factors controlling phytoplankton production in Lake Vanda (77 deg S), Can. J. Fish. Aquat. Sci. 39: 1602–1609.Google Scholar
  301. Vincent, W. F., 1988, Microbial Ecosystems of Antarctica, Cambridge University Press, Cambridge.Google Scholar
  302. Vincent, W. F., and Howard-Williams, C., 1985, Ecosystem properties of Dry Valley lakes, N.Z. Antarct. Rec. (Special Issue) 6: 11–20.Google Scholar
  303. Vincent, W. F., and Howard-Williams, C., 1986a, Antarctic stream ecosystems: Physiological ecology of a blue-green algal epilithion, Freshwater Biol. 16: 219–234.Google Scholar
  304. Vincent, W. E, and Howard-Williams, C., 1986b, Microbial ecology of Antarctic streams, in: Perspectives in Microbial Ecology (F. Megusar and M. Cantar, eds.), pp. 201–206, Slovene Society for Microbiology, Ljubljana, Yugoslavia.Google Scholar
  305. Vincent, W. F., and Vincent, C. L., 1982, Factors controlling phytoplankton production in Lake Vanda (77 deg S), Can. J. Fish. Aquat. Sci. 39: 1602–1609.Google Scholar
  306. Vincent, W. F., Downes, M. T., and Vincent, C. L., 1981, Nitrous oxide cycling in Lake Vanda, Antarctica, Nature (London) 292: 618–620.Google Scholar
  307. Vishniac, H. S., 1983, An enation system for the isolation of Antarctic yeasts inhibited by conventional media, Can. J. Microbiol. 29: 90–95.Google Scholar
  308. Vishniac, H. S., and Hempfling, W. P., 1979a, Evidence of an indigenous microbiota (yeast) in the Dry Valleys of Antarctica, J. Gen. Microbiol. 112: 301–314.Google Scholar
  309. Vishniac, H. S., and Hempfling, W. P., 1979b, Cryptococcus vishniacii sp. nov., an Antarctic yeast, Int. J. Syst. Bacteriol. 29: 153–158.Google Scholar
  310. Vishniac, H. S., and Klingler, J. M., 1986, Yeasts in the Antarctic deserts, in: Perspectives in Microbial Ecology (F. Megusar and M. Gantar, eds.), pp. 46–51, Slovene Society for Microbiology, Ljubljana, Yugoslavia.Google Scholar
  311. Vishniac, W. V., and Mainzer, S. E., 1973, Antarctica as a Martian model, Life Sci. Space Res. 11: 25–31.PubMedGoogle Scholar
  312. Walton, D. W. H., 1982, The Signy Island terrestrial reference sites: XV. Microclimate monitoring, 1972–74, Br. Antarct. Surv. Bull. 55: 111–126.Google Scholar
  313. Walton, D. W. H., 1984, The terrestrial environment, in: Antarctic Ecology (R. M. Laws, ed.), pp. 1–60, Academic Press, London.Google Scholar
  314. Walton, D. W. H., 1985, Preliminary study of the action of crustose lichens on rock surfaces in Antarctica, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. Condy, and R. M. Laws, eds.), pp. 180–185, Springer-Verlag, Berlin.Google Scholar
  315. Walton, D. W. H., 1987, Antarctic terrestrial ecosystems, Environ. Int. 13: 83–93.Google Scholar
  316. Watanuki, K., Torii, T., Murayama, H., Hirabayashi, J., Sano, M., and Abiko, T., 1977, Geochemical features of Antarctic lakes, Antarct. Rec. 59: 18–25.Google Scholar
  317. West, W., and West, G. S., 1911, Freshwater algae, in: British Antarctic Expedition, 1907–09. Reports of the Scientific Investigations. Biology, Vol. 1 (J. Murray, ed.), pp. 263–298, Heinemann, London.Google Scholar
  318. Wharton, R. A., Vinyard, W. C., Parker, B. C., Simmons, G. M., and Seaburg, K. G., 1981, Algae in cryoconite holes in Canada Glacier in southern Victoria Land, Antarctica, Phycologia 20: 208–211.Google Scholar
  319. Wharton, R. A., Jr., Parker, B. C., and Simmons, G. M., Jr., 1983, Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes, Phycologia 22: 355–366.Google Scholar
  320. Wharton, R. A., Jr., McKay, C. P., Simmons, G. M., Jr., and Parker, B. C., 1985, Cryoconite holes on glaciers, BioScience 35: 499–503.PubMedGoogle Scholar
  321. Wharton, R. A., Jr., McKay, G. M., Simmons, G. M., Jr., and Parker, B. C., 1986, Oxygen budget of a perennially ice-covered Antarctic dry valley lake, Limnol. Oceanogr. 31: 437–443.PubMedGoogle Scholar
  322. Whitaker, T. M., 1977, Sea ice habitats of Signy Island (South Orkneys) and their primary productivity, in: Adaptations within Antarctic Ecosystems (G. A. Llano, ed.), pp. 75–82, Smithsonian Institution, Washington, D.C.Google Scholar
  323. Womersley, C., and Smith, L., 1981, Anhydrobiosis in nematodes. I: the role of glycerol, myoinositol and trehalose during desiccation, Comp. Biochem. Physiol. 70B: 579–586.Google Scholar
  324. Wood, A. M., Horan, P. K., Muirhead, K., Phinney, D. A., Yentsch, C. M., and Waterbury, J. B., 1985, Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy and flow cytometry, Limnol. Oceanogr. 30: 1303–1315.Google Scholar
  325. Wright, S. W., and Burton, H. R., 1981, The biology of Antarctic saline lakes, Hydrobiologia 81/82: 319–338.Google Scholar
  326. Wynn-Williams, D. D., 1980, Seasonal fluctuations in microbial activity in Antarctic moss peat, Biol. J. Linn. Soc. 14: 11–28.Google Scholar
  327. Wynn-Williams, D. D., 1982, Simulation of seasonal changes in microbial activity of maritime Antarctic peat, Soil. Biol. Biochem. 14: 1–12.Google Scholar
  328. Wynn-Williams, D. D., 1983, Distribution and characteristics of Chromobacterium in the maritime and sub-Antarctic, Polar Biol. 2: 101–108.Google Scholar
  329. Wynn-Williams, D. D., 1984, Comparative respirometry of peat decomposition on a latitudinal transect in the maritime Antarctic, Polar Biol. 3: 173–181.Google Scholar
  330. Wynn-Williams, D. D., 1985a, Comparative microbiology of moss-peat decomposition on the Scotia Arc and Antarctica Peninsula, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 204–210, Springer-Verlag, Berlin.Google Scholar
  331. Wynn-Williams, D. D., 1985b, The biota of a lateral moraine and hinterland of the Blue Glacier, South Victoria Land, Antarctica, Br. Antarct. Surv. Bull. 66: 1–5.Google Scholar
  332. Wynn-Williams, D. D., 1985c, Photofading retardant for epifluorescence microscopy in soil microecological studies, Soil Biol. Biochem. 17: 739–746.Google Scholar
  333. Wynn-Williams, D. D., 1986, Microbial colonisation of Antarctic fellfield soils, in: Perspectives in Microbial Ecology (F. Megusar and M. Cantar, eds.), pp. 191–200, Slovene Society for Microbiology, Ljubljana, Yugoslavia. Microbial Ecology, Ljubljana, August 1986.Google Scholar
  334. Wynn-Williams, D. D., 1988, Cotton strip decomposition relative to environmental factors in the Maritime Antarctic, in: Cotton Strip Assay: An Index of Decomposition in Soils (A. F. Harrison, P. M. Latter, and D. W. H. Walton, eds.), ITE Symp., Vol. 24, pp. 126–133. Institute of Terrestrial Ecology, Grange-over-Sands.Google Scholar
  335. Wynn-Williams, D. D., 1989, TV image analysis of microbial communities in Antarctic fellfields, Polarforschung 58: 239–250.Google Scholar
  336. Yarrington, M. R., and Wynn-Williams, D. D., 1985, Methanogenesis and the anaerobic microbiology of a wet moss community at Signy Island, in: Antarctic Nutrient Cycles and Food Webs (W. R. Siegfried, P. R. Condy, and R. M. Laws, eds.), pp. 229–233, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David D. Wynn-Williams
    • 1
  1. 1.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK

Personalised recommendations