Diffusion The Crucial Process in Many Aspects of the Biology of Bacteria

  • Arthur L. Koch
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


The basis of all motion in biology is diffusion. The movement may be as simple as the diffusion of a precursor from the point of formation to an enzyme that processes it; it may be as complex as the mechanism of Chemotaxis or muscle contraction. The movements of nutrients up to a cell or a collection of cells is probably the first thing that comes to mind when one considers bacterial ecosystems. Diffusion is also relevant to the movement of microorganisms and nutrients through slimes and gels in natural ecosystems. Of course, in microbiology there are practical applications of diffusion, such as the assay of antibiotic concentrations, in which diffusion, among other factors, controls the size of the zone of inhibition.


Outer Membrane Cytoplasmic Membrane Diffusion Constant Porous Plate Periplasmic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker, G. K., 1964, Molecular exclusion and restricted diffusion process in molecular-sieve chromatography, Biochemistry 3; 723–730.CrossRefGoogle Scholar
  2. Adams, G., and Delbruck, M., 1968, Reduction of dimensionality in biological diffusion processes, in: Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 198–215, W. H. Freeman and Co., San Francisco.Google Scholar
  3. Berg, H. C., 1983, Random Walks in Biology, Princeton University Press, Princeton, N.J.Google Scholar
  4. Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20: 193–219.PubMedCrossRefGoogle Scholar
  5. Best, J., 1955, The inference on intracellular enzymatic properties for kinetics data obtained from living cells, J. Cell Comp. Physiol. 46: 1–27.CrossRefGoogle Scholar
  6. Caldwell, D. E., and Lawrence, J. R., 1986, Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of a surface microenvironment, Microbial Ecol. 12: 299–312.CrossRefGoogle Scholar
  7. Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, Oxford.Google Scholar
  8. Characklis, W. G., 1984, Biofilm development: A process analysis, in: Microbial Adhesion and Aggregation (K. C. Marshall, ed.), pp. 137–157, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Characklis, W. G., and Cooksey, K. E., 1983, Biofilms and microbial fouling, Adv. Appl. Microbiol. 29: 93–138.CrossRefGoogle Scholar
  10. Crank, J., 1975, The Mathematics of Diffusion, 2nd ed., Oxford University Press, Oxford.Google Scholar
  11. Kelly, F. X., Dapsis, K. J., and Lauffenburger, D. A., 1988, Effect of bacterial Chemotaxis on dynamics of microbial competition, Microb. Ecol. 14: 115–131.CrossRefGoogle Scholar
  12. Koch, A. L., 1959, The dynamics of coliphage plaque formation. I. Macroplaque experiments, Virology 8: 273–292.PubMedCrossRefGoogle Scholar
  13. Koch, A. L., 1960, Encounter efficiency of coliphage-bacterium interaction, Biochim. Biophys. Acta 39: 311–318.CrossRefGoogle Scholar
  14. Koch, A. L., 1966, The logarithm in biology. I. Mechanisms generating the log-normal distribution exactly, J. Theor. Biol. 12: 276–290.PubMedCrossRefGoogle Scholar
  15. Koch, A. L., 1967, Kinetics of permease catalyzed transport, J. Theor. Biol. 14: 103–130.PubMedCrossRefGoogle Scholar
  16. Koch, A. L., 1969, The logarithm in biology. II. Distributions simulating the log-normal, J. Theor. Biol. 23: 251–268.PubMedCrossRefGoogle Scholar
  17. Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol. 6: 147–217.PubMedCrossRefGoogle Scholar
  18. Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 261–279, Springer-Verlag, Berlin.Google Scholar
  19. Koch, A. L., 1982a, Diffusion limit and bacterial growth, in: Overproduction of Microbial Products (V. Krumphanzl, B. Sikyta, and Z. Vanek, eds.), pp. 571–580, Academic Press, London.Google Scholar
  20. Koch, A. L., 1982b, Multistep kinetics: Choice of models for the growth of bacteria, J. Theor. Biol. 98: 401–417.PubMedCrossRefGoogle Scholar
  21. Koch, A. L., 1983, The surface stress theory of microbial morphogenesis, Adv. Microbiol. Physiol. 24: 301–366.CrossRefGoogle Scholar
  22. Koch, A. L., 1985, The macroeconomics of bacterial growth, in: Bacteria in Their Natural Environments (M. M. Fletcher and G. D. Floodgate, eds.), pp. 1–42, Academic Press, London.Google Scholar
  23. Koch, A. L., and Coffman, R., 1970, Diffusion permeations or enzyme limitation: A probe for the kinetics of enzyme induction. Biotech. Bioeng. XII: 651–677.CrossRefGoogle Scholar
  24. Koch, A. L., and Wang, C. H., 1982, How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 131: 36–42.PubMedCrossRefGoogle Scholar
  25. Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.Google Scholar
  26. Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105: 187–197.PubMedGoogle Scholar
  27. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Advances in Microbial Ecology, Vol. 6 (K. C. Marshall, ed.), pp. 171–198, Plenum Press, New York.CrossRefGoogle Scholar
  28. Morita, R. Y., 1985, Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state, in: Bacteria in Their Natural Environments (M. M. Fletcher and G. D. Floodgate, eds.), pp. 111–130, Academic Press, London.Google Scholar
  29. Nikaido, H., 1979, Nonspecific transport through the outer membrane, in: Bacterial Outer Membrane (M. Inouye, ed.), pp. 361–407, John Wiley & Sons, New York.Google Scholar
  30. Nikaido, H., and Rosenberg, E. Y., 1981, Effect of solute size on the diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli, J. Gen. Physiol. 11: 121–135.CrossRefGoogle Scholar
  31. Ogsten, A. G., 1958, The spaces in a uniform random suspension of fibres, Trans. Faraday Soc. 54: 1754–1757.CrossRefGoogle Scholar
  32. Ou, L.-T., and Marquis, R. E., 1970, Electromechanical interaction on cell walls of gram-positive cocci, J. Bacteriol. 101: 92–101.PubMedGoogle Scholar
  33. Poindexter, J., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum Press, New York.Google Scholar
  34. Powell, E. O., 1967, The growth rate of microorganisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 34–55, Her Majesty’s Stationery Office, London.Google Scholar
  35. Preiss, J. W., and E. Pollard, 1960–61, Localization of β-galactosidase in cells of Escherichia coli by low voltage electron bombardment. Biophys. J. 1: 429–435.CrossRefGoogle Scholar
  36. Purcell, E. M., 1977, Life at low Reynolds number, Am. J. Phys. 45: 3–12.CrossRefGoogle Scholar
  37. Rashevsky, N., 1960, Mathematical biophysics, Vol. 1, 3rd rev. ed., pp. 1–148, Dover, New York.Google Scholar
  38. Renkin, E. M., 1954, Filtration, diffusion, and molecular sieving through porous cellulose membranes, J. Gen. Physiol. 38: 225–243.PubMedGoogle Scholar
  39. Revsbech, N. P., and Jorgensen, B. B., 1986, Microelectrodes: Their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 293–252, Plenum Press, New York.Google Scholar
  40. Rodbard, D., 1974, Estimation of molecular weight by gel filtration and gel electrophoresis, in: Methods of Protein Separation, Vol. 2 (N. Catsimpoolas, ed.), pp. 145–180, Plenum Press, New York.Google Scholar
  41. Valentine, R. C., and Allison, A. C., 1959, Virus particle adsorption. I. theory of absorption and experiments on the attachment of particles to nonbiological surfaces, Biochim. Biophys. Acta 34: 10–23.PubMedCrossRefGoogle Scholar
  42. von Smoluchowski, M., 1918, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen, Zeitschr. Phys. Chem. 92: 129–168.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Arthur L. Koch
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations