Advertisement

Microbial Mats in Australian Coastal Environments

  • Graham W. Skyring
  • John Bauld
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

Microbial mats are intrinsically important to microbial ecology because many of the characteristics describing quantitative and qualitative relationships between constructing microorganisms and their aquatic environments occur over vertical sections of a few millimeters or, at most, a centimeter. Their fossilized counterparts, stromatolites, are found in many parts of the world (Schopf, 1983). However, there are spectacular examples of large and very ancient stromatolite structures and accompanying wellpreserved fossil microorganisms in Australia (Schopf, 1968; Oehler, 1976, 1978; Oehler et al., 1979; Walter et al., 1980; Walter, 1983; Awramik et al., 1983; Schopf et al., 1987). Contemporary interest in the biology of microbial mats is indicated by the presentation of 75 contributions at two recent international conferences that were concerned specifically with microbial mats (Cohen et al., 1984; Cohen and Rosenberg, 1989). Various kinds of microbial mats occur in Australian coastal environments; however, cyanobacterial and diatomaceous mats are the most extensive and most thoroughly investigated. In this review, we have taken coastal environments to encompass embayments, estuaries, and coastal lakes. We have also included coral reefs, since these habitats are significant and important features of Australian coastal environments.

Keywords

Coral Reef Sulfate Reduction Great Barrier Reef Coastal Environment Before Present 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K. L., Tayne, T. A., and Ward, D. M., 1987, Formation and fate of fermentation products in hot spring cyanobacterial mats, Appl. Environ. Microbiol. 53: 2343–2352.PubMedGoogle Scholar
  2. Atkinson, M. J., 1987, Low phosphorus sediments in a hypersaline marine environment, Estuarine Coastal Shelf Sci. 24: 335–347.Google Scholar
  3. Awramik, S. M., Schopf, J. W., and Walter, M. R., 1983, Filamentous fossil bacteria from the Archean of Western Australia, Precambrian Res. 20: 357–374.Google Scholar
  4. Bauld, J., 1981a, Occurrence of benthic microbial mats in saline lakes, Hydrobiologia 81: 87–111.Google Scholar
  5. Bauld, J., 1981b, Geobiological role of cyanobacterial mats in sedimentary environments: Production and preservation of organic matter, BMR J. Aust. Geol. Geophys. 6: 307–317.Google Scholar
  6. Bauld, J., 1983, Response of microbial mats to salinity and desiccation, Int. Symp. Microb. Ecol. Abstr. 3: 42.Google Scholar
  7. Bauld, J., 1984a, Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 39–58, Alan R. Liss, Inc., New York.Google Scholar
  8. Bauld, J., 1984b, Role of Photoheterotrophic Bacteria in Carbon and Sulfur Cycling in Benthic Microbial Communities, discussion paper, SCOPE-UNEP Workshop on Global Sulfur Cycle, Tallinn, Estonian SSR.Google Scholar
  9. Bauld, J., 1986a, Benthic microbial communities of Australian salt lakes, in: Limnology in Australia (P. De Deckker and W. D. Williams, eds.), pp. 95–111, CSIRO, Melbourne.Google Scholar
  10. Bauld, J., 1986b, Transformation of sulfur species by phototrophic and chemotrophic microbes, in: The Importance of Chemical “Speciation” in Environmental Processes (M. Bernhard, F. E. Brinckman, and P. J. Sadler, eds.), pp. 255–273, Dahlem Konferenzen LS 33, Springer-Verlag, Berlin.Google Scholar
  11. Bauld, J., 1987, (Photo)heterotrophic activity in benthic microbial communities. Int. Symp. Environ. Biogeochem. Abstr. 8: 48.Google Scholar
  12. Bauld, J., 1988, Microbial mats in playa lakes and other saline habitats: Early Mars analog?, in: Exobiology and Future Mars Missions, NASA Conference Publication 10027, (C. P. McKay and W. L. Davis, eds.), pp. 7–8, National Aeronautics and Space Administration, Washington, D.C.Google Scholar
  13. Bauld, J., and Brock, T. D., 1974, Algal excretion and bacterial assimilation in hot spring algal mats, J. Phycol. 10: 101–106.Google Scholar
  14. Bauld, J., and Chambers, L. A., 1983, Carbon flow in microbial mats, Aust. Microbiol. 4: 92.Google Scholar
  15. Bauld, J., Chambers, L. A., and Skyring, G. W., 1979, Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelih Pool, Shark Bay, W.A., Aust. J. Mar. Freshwater Res. 30: 753–764.Google Scholar
  16. Bauld, J., Burne, R. V., Chambers, L. A., Ferguson, J., and Skyring, G. W., 1980, Sedimentological and geobiological studies of intertidal cyanobacterial mats in north-eastern Spencer Gulf, South Australia, in: Biogeochemistry of Ancient and Modern Environments (P. A. Trudinger, M. R. Walter, and B. J. Ralph, eds.), pp. 157–166, Australian Academy of Science, Canberra.Google Scholar
  17. Bauld, J., Favinger, J. L., Madigan, M. T., and Gest, H., 1987, Obligately halophilic Chromatium vinosum from Hamelin Pool, Shark Bay, Australia, Curr. Microbiol. 14: 335–339.Google Scholar
  18. Bauld, J., Farmer, J. D., and D’Amelio, E., 1990, Modern microbial mats, in: The Proterozoic Biosphere: A Multidisciplinary Study (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge (in press).Google Scholar
  19. Bebout, B. M., Paerl, H. W., Crocker, K. M., and Prufert, L. E., 1987, Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community, Appl. Environ. Microbiol. 53: 2353–2362.PubMedGoogle Scholar
  20. Borowitzka, M. A., Larkum, A. W. D., and Borowitzka, L. J., 1978, A preliminary study of algal turf communities of a shallow coral reef lagoon using an artificial substratum, Aquat. Bot. 5: 365–381.Google Scholar
  21. Boynton, W. R., Hall, C. A., Falkowski, P. G., Keefe, C. W., and Kemp, W. M., 1983, Phytoplankton productivity in aquatic ecosystems, Encyc. Plant Physiol. (New Ser.) 12D: 305–327.Google Scholar
  22. Brown, A. D., 1976, Microbial water stress, Bacteriol. Rev. 40: 803–846.PubMedGoogle Scholar
  23. Bubela, B., 1980, Some aspects of the interstitial water movements in simulated sedimentary systems, BMR J. Aust. Geol. Geophys. 5: 257–263.Google Scholar
  24. Bubela, B., Ferguson, J., and Davies, P. J., 1975, Biological and abiological processes in a simulated sedimentary system, J. Geol. Soc. Aust. 22: 135–143.Google Scholar
  25. Burne, R. V., and Bauld, J., 1985, The origin and preservation of microbial organic facies in coastal saline lakes of South Australia and Western Australia, in: Abstr. Geol. Soc. London Symp. Lacustrine Petroleum Source Rocks, pp. 17–18.Google Scholar
  26. Burne, R. V., and Colwell, J. B., 1982, Temperate carbonate sediments of northern Spencer Gulf, South Australia: A high salinity “foramol” province, Sedimentology 29: 223–238.Google Scholar
  27. Burne, R. V., and Ferguson, J., 1983, Contrasting marginal sediments of a seasonally flooded saline lake—Lake Eliza, South Australia: Significance for oil shale genesis, BMR J. Aust. Geol. Geophys. 8: 99–108.Google Scholar
  28. Burne, R. V., and Moore, L. S., 1987, Microbialities: Organosedimentary deposits of benthic microbial communities, Palaios 2: 241–254.Google Scholar
  29. Burne, R. V., Bauld, J., and De Deckker, P., 1980, Saline lake charophytes and their geological significance, J. Sediment. Petrol 50: 281–293.Google Scholar
  30. Burris, R. H., 1976, Nitrogen fixation by blue-green algae of Lizard Island area of the Great Barrier Reef, Aust. J. Plant. Physiol. 3: 41–51.Google Scholar
  31. Carpenter, R. C., 1985, Relationships between primary production and irradiance in coral reef algal communities, Limnol. Oceanogr. 30: 784–793.Google Scholar
  32. Castenholz, R. W., Bauld, J., and Pierson, B. K., 1990, Photosynthetic activity in modern mat-building communities, in: The Proterozoic Biosphere: A Multidisciplinary Study (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge (in press).Google Scholar
  33. Castenholz, R. W., Jørgensen, B. B., D’Amelio, E., and Bauld, J., 1988, Oscillatoria boryana, a fluctuating component of sulfide-rich microbial mats, Int. Symp. Photosynthetic Prokaryotes Abstr. 6: 87.Google Scholar
  34. Chambers, L. A., 1982, Sulfur isotope study of a modern intertidal environment, and interpretation of ancient sulfides, Geochim. Cosmochim. Acta 46: 721–728.Google Scholar
  35. Chambers, L. A., 1985, Biochemical aspects of the carbon metabolism of microbial mat communities, in: Proceedings of the Fifth International Coral Reef Congress, Tahiti, 1985, Vol. 3 (C. Gabrie, J. L. Toffart, and B. Salvat, eds.), pp. 371–376, Antenne Museum-Ephe, Moorea, French Polynesia.Google Scholar
  36. Chambers, L. A., Trudinger, P. A. Smith, J. W., and Burns, M. S., 1975, fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans, Can. J. Microbiol. 21: 1602–1607.PubMedGoogle Scholar
  37. Cohen, Y., 1989, Hypersaline cyanobacterial mats: Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 22–36, American Society for Microbiology, Washington, D.C.Google Scholar
  38. Cohen, Y., and Rosenberg, E. (eds.), 1989, Microbial Mats: Physiological Ecology of Benthic Microbial Communities, American Society for Microbiology, Washington, D.C.Google Scholar
  39. Cohen, Y., Aizenshtat, Z., Stoler, A., and Jørgensen, B. B., 1980, The microbial geochemistry of Solar Lake, Sinai, in: Biogeochemistry of Ancient and Modern Environments (P. A. Trudinger and M. R. Walter, eds.), pp. 167–172, Australian Academy of Science, Canberra.Google Scholar
  40. Cohen, Y., Castenholz, R. W., and Halvorson, H. O. (eds.), 1984, Microbial Mats: Stromatolites, Alan R. Liss, Inc., New York.Google Scholar
  41. Cohen, Y., Jørgensen, B. B., Revsbech, N. P., and Poplawski, R., 1986, Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria, Appl. Environ. Microbiol. 51: 398–407.PubMedGoogle Scholar
  42. Cook, P. J., and Mayo, W., 1977, Sedimentology and Holocene history of a tropical estuary (Broad Sound, Queensland), BMR Bull. 170: 1–206.Google Scholar
  43. Cook, P. J., and Shergold, J. H., 1986, Proterozoic and Cambrian phosphorites—nature and origins, in: Phosphate Deposits of the World, Vol. 1, Proterozoic and Cambrian Phosphorites (P. J. Cook and J. H. Shergold, eds.), pp. 369–386, Cambridge University Press, Cambridge.Google Scholar
  44. Davies, G. R., 1970, Algal-laminated sediments, Gladstone Embayment, Shark Bay, Western Australia, Am. Soc. Petrol. Geol. Mem. 13: 169–205.Google Scholar
  45. Davis, J. S., 1978, Biological communities of a nutrient enriched salina, Aquat. Bot. 4: 23–42.Google Scholar
  46. De Deckker, P., Bauld, J., and Burne, R. V., 1982, Pillie Lake, Eyre Peninsula, South Australia: Modern environment and biota, dolomite sedimentation and Holocene history, Trans. R. Soc. S. Aust. 106: 169–181.Google Scholar
  47. Dill, R. F., Shinn, E. A., Jones, A. T, Kelly, K., and Steinen, E. P., 1986, Giant subtidal stromatolites forming in normal salinity waters, Nature (London) 324: 55–58.Google Scholar
  48. Dravis, J. J., 1983, Hardened subtidal stromatolites, Bahamas, Science 219: 385–386.PubMedGoogle Scholar
  49. Ellis, B. K., and Stanford, J. A., 1982, Comparative photoheterotrophy, chemoheterotrophy, and photolithotrophy in a eutrophic reservoir and an oligotrophic lake. Limnol. Oceanogr. 27: 440–454.Google Scholar
  50. Fattom, A., and Shilo, M., 1984, Hydrophobicity as an adhesion mechanism of benthic cyanobacteria, Appl. Environ. Microbiol. 47: 135–143.PubMedGoogle Scholar
  51. Ferguson, J., Plumb, L. A., and Skyring, G. W., 1988, Genetic models of low temperature stratiform Cu-(Pb-Zn) deposits in semiarid permeable carbonate sabkha, in: Mobilité et Concentration des Metaux de Base dans les Couvertures Sédimentaire; Manifestations, Mécanismes, Prospection, Conference Abstracts, p. 87.Google Scholar
  52. Fowler, M. G., and Douglas, A. G., 1987, Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia, Org. Geochem. 11: 201–213.Google Scholar
  53. Fuchs, G., Stupperich, E., and Eden, G., 1980, Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells, Arch. Microbiol. 128: 64–71.Google Scholar
  54. Garlick, W. G., 1981, Sabkhas, slumping and compaction at Mufubra, Zambia, Econ. Geol. 76: 1817–1847.Google Scholar
  55. Garrett, P., 1970, Phanerozoic stromatolites: Noncompetitive ecological restriction by grazing and burrowing animals, Science 169: 171–173.PubMedGoogle Scholar
  56. Gieskes, J. M., 1973, Interstitial water studies, leg 15—alkalinity, pH, Mg, Ca, Si, PO4, and NH4, in: Initial Report of the Deep Sea Drilling Project (B.C. Heezen and I. D. Macgregor, eds.), pp. 813–829, U.S. Government Printing Office, Washington, D.C.Google Scholar
  57. Goertemiller, T., 1988, Prototype for a Great Barrier Reef replica, Aust. Sci. Mag. 3: 18–20.Google Scholar
  58. Goldman, C. R., Mason, D. T., and Wood, B. J. B., 1972, Comparative study of the limnology of two small lakes on Ross Island, Antarctica, Antarct. Res. Ser. 20: 1–50.Google Scholar
  59. Gorin, G. E., Racz, L. G., and Walter, M. R., 1982, Late Precambrian-Cambrian sediments of Huqf Group, Sultanate of Oman, Am. Assoc. Pet. Geol. Bull. 66: 2609–2627.Google Scholar
  60. Grantham, P. J., Lijmbach, G. W. M., Posthuma, J., Hughes Clarke, M. W., and Willink, R. J., 1987, Origin of crude oils in Oman, J. Pet. Geol. 11: 61–80.Google Scholar
  61. Grey, K., Moore, L. S., Burne, R. V., Pierson, B. K., and Bauld, J., 1990, Lake Thetis, Western Australia: An example of saline lake sedimentation dominated by benthic microbial processes, Aust. J. Mar. Freshwater Res. 41: (in press).Google Scholar
  62. Griffin, D. M., 1981, Water and microbial stress, in: Advances in Microbial Ecology Vol. 5 (M. Alexander, ed.), pp. 91–136, Plenum Press, New York.Google Scholar
  63. Grotzinger, J. P., 1989, Facies and evolution of Precambrian carbonate depositional systems: Emergence of the modern platform archetype, in: Controls of Carbonate Platforms and Basin Development, (P. Crevello, J. F. Read, R. Sarg, and J. Wilson, eds.), Society of Economic Paleontologists and Mineralogists, Special Publication 44.Google Scholar
  64. Henrichs, S. M., and Reeburgh, W. S., 1987, Anaerobic mineralization of marine sediment organic matter: Rates and role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J. 5: 191–237.Google Scholar
  65. Holo, H., and Sirevag, R., 1986, Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus, Arch. Microbiol. 145: 173–180.Google Scholar
  66. Howarth, R. W., and Marino, R., 1984, Sulfate reduction in salt marshes, with some comparisons to sulfate reduction in microbial mats, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 254–263. Alan R. Liss, Inc., New York.Google Scholar
  67. Imbus, S. W., Engel, M. H., Elmore, R. D., and Zumberge, J. E., 1988, The origin, distribution and hydrocarbon generation potential of the organic-rich facies in the Nonesuch Formation, Central North American Rift System: A regional study, in: Advances in Organic Geochemistry 1987 (L. Mattavelli and L. Novelli, eds.), pp. 207–219, Pergamon Press, Oxford.Google Scholar
  68. Jackson, M. J., Powell, T. G., Summons, R. E., and Sweet, I. P., 1986, Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years. Nature (London) 322: 727–729.Google Scholar
  69. Jannasch, H. W., and Wirsen, C. O., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers, Bioscience 29: 592–598.Google Scholar
  70. Javor, B. J., and Castenholz, R. W., 1984, Invertebrate grazers of microbial mats, Laguna Guerrero Negro, Mexico, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 85–94, Alan R. Liss, Inc., New York.Google Scholar
  71. Johannes, R. E., and Project Symbiosis Team, 1972, The metabolism of some coral reef communities, Bioscience 22: 541–543.Google Scholar
  72. Johns, I. A., and Jacobson, G., 1988, Hydrological monitoring for a remote area—the Curtin Springs (N.T.) data acquisition platform, in: Hydrology and Water Resources Symposium 1988, National Conference Publication 88/1, pp. 275–277, The Institution of Engineers, Melbourne, Australia.Google Scholar
  73. Jones, A. G., Ewing, C. M., and Melvin, M. V., 1981, Biotechnology of solar saltfields, Hydrobiologia 82: 391–406.Google Scholar
  74. Jørgensen, B. B., and Cohen, Y., 1977, Solar Lake (Sinai). 5. The sulfur cycle of the benthic microbial mats, Limnol. Oceanogr. 22: 657–666.Google Scholar
  75. Jørgensen, B. B., Cohen, Y., and Des Marais, D. J., 1987, Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat, Appl. Environ. Microbiol. 53: 879–886.PubMedGoogle Scholar
  76. Kimmerer, W. J., McKinnon, A. D., Atkinson, M. J., and Kessel, J. A., 1985, Spatial distributions of plankton in Shark Bay, Western Australia, Aust. J. Mar. Freshwater Res. 36: 421–432.Google Scholar
  77. King, G. M., 1988, Methanogenesis of methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol. 54: 130–136.PubMedGoogle Scholar
  78. Knoll, A. H., and Bauld, J., 1989, The evolution of ecological tolerance in prokaryotes, Proc. R. Soc. Edinburgh: Earth Sciences 80: 209–223.Google Scholar
  79. Krumbein, W. E., Cohen, Y., and Shilo, M., 1977, Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats, Limnol. Oceanogr. 22: 635–656.Google Scholar
  80. Lazar, B., Javor, B., and Erez, J., 1989, Total alkalinity in marine-derived brines and pore waters associated with microbial mats, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 84–94, American Society for Microbiology, Washington, D.C.Google Scholar
  81. Logan, B. W., 1961, Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia, J. Geol. 69: 517–533.Google Scholar
  82. Logan, B. W., Read, J. F., and Davies, G. R., 1970, History of carbonate sedimentation, Quaternary epoch, Shark Bay, Western Australia, Am. Soc. Petrol. Geol. Mem. 13: 38–84.Google Scholar
  83. Logan, B.W., Hoffman, P., and Gebelein, C. D., 1974, Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia, Am. Soc. Petrol. Geol. Mem. 22: 140–194.Google Scholar
  84. Lyons, W. B., Hines, M. E., and Gaudette, H. E., 1984, Major and minor element porewater geochemistry of modern marine sabkhas: The influence of cyanobacterial mats, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 411–424. Alan R. Liss, Inc., New York.Google Scholar
  85. Marshall, J. F., and Davies, P. J., 1978, Skeletal carbonate variation on the continental shelf of eastern Australia, BMR J. Aust. Geol. Geophys. 3: 85–92.Google Scholar
  86. Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.Google Scholar
  87. McKinley, W. R., and Wetzel, R. G., 1979, Photolithotrophy, photoheterotrophy, and chemoheterotrophy: Patterns of resource utilization on an annual and a diurnal basis within a pelagic microbial community, Microb. Ecol. 5: 1–15.Google Scholar
  88. Mendelsohn, F., 1976, Mineral deposits associated with stromatolites, in: Stromatolites. Developments in Sedimentology, Vol. 20 (M. R. Walter, ed.), pp. 645–662, Elsevier, Amsterdam.Google Scholar
  89. Monty, C. L., 1979, Monospecific stromatolites from the Great Barrier Reef Tract and their paleontological significance, Ann. Soc. Geol. Belg. 101: 163–171.Google Scholar
  90. Moore, L. S., 1987, Water chemistry of the coastal saline lakes of the Clifton-Preston lakeland system, south-western Australia, and its influence on stromatolite formation, Aust. J. Mar. Freshwater Res. 38: 647–660.Google Scholar
  91. Moore, L. S., Knott, B., and Stanley, N. F., 1983, The stromatolites of Lake Clifton, Western Australia, Search 14: 309–314.Google Scholar
  92. Moriarty, D. J. W., 1983, Bacterial biomass and productivity in sediments, stromatolites, and water of Hamelin Pool, Shark Bay, Western Australia, Geomicrobiol. J. 3: 121–133.Google Scholar
  93. Morrissey, J., and Jones, M., 1988, Water—clean, clear and warm, Aust. Sci. Mag. 3: 33–41.Google Scholar
  94. Naiman, R. J., 1976, Primary production, standing stock, and export of organic matter in a Mohave Desert thermal stream, Limnol. Oceanogr. 21: 60–73.Google Scholar
  95. Nedwell, D. B., and Abram, J. W., 1978, Bacterial reduction in relation to sulfur geochemistry in two contrasting areas of a salt marsh sediment, Estuarine Coastal Mar. Sci. 6: 341–351.Google Scholar
  96. Oehler, D. Z., 1976, Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs Formation of Australia: Techniques and survey of preserved ultrastructure, J. Paleontol. 50: 90–106.Google Scholar
  97. Oehler, D. Z., 1978, Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa 2: 269–309.Google Scholar
  98. Oehler, D. Z., Oehler, J. H., and Stewart, A. J., 1979, Algal fossils from a late Precambrian, hypersaline lagoon. Science 205: 388–390.PubMedGoogle Scholar
  99. Paling, E. I., 1986, Ecological significance of blue-green algal mats in the Dampier mangrove system, Technical Series 2, 134 pp., Department of Conservation and Environment, Western Australia.Google Scholar
  100. Palmisano, A. C., Summons, R. E., Cronin, S. E., and Des Marais, D. J., 1989, Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia, J. Phycol. 25: 655–662.PubMedGoogle Scholar
  101. Pentecost, A., and Bauld, J., 1988, Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell, Geomicrobiol. J. 6: 129–135.Google Scholar
  102. Pentecost, A., and Riding, R., 1986, Calcification in cyanobacteria, in: Biomineralization in Lower Plants and Animals (B. S. C. Leadbeater and R. Riding, eds.), pp. 73–90, Clarendon Press, Oxford.Google Scholar
  103. Pierson, B. K., Oesterle, A., and Murphy, G. L., 1987, Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts, FEMS Microbiol. Ecol. 45: 365–376.Google Scholar
  104. Playford, P. E., and Cockbain, A. E., 1976, Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia, in: Stromatolites (M. R. Walter, ed.), pp. 389–411, Elsevier, Amsterdam.Google Scholar
  105. Plumb, L. A., Bauld, J., Ho, D., and Reichstein, I., 1982, Production and fate of organic carbon in cyanobacterial mats, in: Baas Becking Geobiological Laboratory, Annual Report, 1982, pp. 25–31, Bureau of Mineral Resources, Canberra, Australia.Google Scholar
  106. Plumb, L. A., Bauld, J., Ho, D., and Reichstein, I., 1983, Production and fate of organic carbon in cyanobacterial mats, in: Baas Becking Geobiological Laboratory, Annual Report, 1983, pp. 23–33, Bureau of Mineral Resources, Canberra, Australia.Google Scholar
  107. Potts, M., and Bowman, M. A., 1985, Sensitivity of Nostoc commune UTEX 584 (Cyanobacteria) to water stress, Arch. Microbiol. 141: 51–56.Google Scholar
  108. Renfro, A. R., 1974, Genesis of evaporative associated stratiform metalliferous deposits—a sabkha process. Econ. Geol. 69: 33–45.Google Scholar
  109. Revsbech, N. P., and Jørgensen, B. B., 1986, Microelectrodes: Their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 293–352, Plenum Press, New York.Google Scholar
  110. Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia, J. Paleontol. 42: 651–688.Google Scholar
  111. Schopf, J. W., 1983, Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, N.J.Google Scholar
  112. Schopf, J. W., and Parker, B. M., 1987, Early Archean (3.3 to 3.5 Ga-old) fossil microorganisms from the Warrawoona Group, Western Australia, Science 273: 70–73.Google Scholar
  113. Skyring, G. W., 1981, Sulfate reduction in modern sediments and implications for ore formation, BMR J. Aust. Geol. Geophys. 6: 335.Google Scholar
  114. Skyring, G. W., 1984, Sulfate reduction in marine sediments associated with cyanobacterial mats in Australia, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 265–275, Alan R. Liss, Inc., New York.Google Scholar
  115. Skyring, G. W., 1985a, Sulfate reduction in sediments associated with carbonate reefs in: Research Review, 1985, pp. 88–89, CSIRO, Division of Mineralogy and Geochemistry, Perth, Australia.Google Scholar
  116. Skyring, G. W., 1985b, Biogeochemistry of Holocene environments: Sulfate reduction in anoxic sediments, in: Baas Becking Geobiological Laboratory, Annual Report, 1985, pp. 4–6, Bureau of Mineral Resources, Canberra, Australia.Google Scholar
  117. Skyring, G. W., 1987, Sulfate reduction in coastal ecosystems, Geomicrobiol. J. 5: 295–374.Google Scholar
  118. Skyring, G. W., 1988, Sulfate reducers in oxygenic cyanobacterial mats. Aust. Microbiol. 9: 168.Google Scholar
  119. Skyring, G. W., 1989, Quantitative relationships between sulfate reduction and carbon metabolism in marine sediments, in: Interaction of Sulfur and Carbon Cycles in Marine Sediments, Chapter 6, SCOPE (P. Brimblecombe and A. Yu Lein, eds.), pp. 125–143, Wiley and Sons, Chichester.Google Scholar
  120. Skyring, G. W., and Chambers, L. A., 1980, Sulfate reduction in intertidal sediments, in: Sulfur in Australia (J. R. Freney and A. J. Nicholson, eds.), pp. 88–94, Australian Academy of Science, Canberra.Google Scholar
  121. Skyring, G. W., and Johns, I. A., 1980, Iron in cyanobacterial mats, Micron 11: 407–408.Google Scholar
  122. Skyring, G. W., and Lupton, F. S., 1986, Anaerobic microbial activity in organic-rich sediments of a coastal lake, in: Sediments Down-Under, 12th International Sedimentological Congress, Abstracts, p. 280, Canberra, Australia.Google Scholar
  123. Skyring, G. W., Oshrain, R. L., and Wiebe, W. J., 1979, Sulfate reduction rates in Georgia marshland soils, Geomicrobiol. J. 1: 389–400.Google Scholar
  124. Skyring, G. W., Chambers, L. A., and Bauld, J., 1983, Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia, Aust. J. Mar. Freshwater Res. 34: 359–374.Google Scholar
  125. Skyring, G. W., Lynch, R. M., and Smith, G. D., 1988, Acetylene reduction and hydrogen metabolism by a cyanobacterial/sulfate reducing bacterial mat ecosystem, Geomicrobiol. J. 6: 25–31.Google Scholar
  126. Skyring, G. W., Lynch, R. M., and Smith, G. D., 1989, Quantitative relationships between carbon, hydrogen, and sulfur metabolism in cyanobacterial mats, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), pp. 170–179, American Society for Microbiology, Washington, D.C.Google Scholar
  127. Smith, S. V., and Atkinson, M. J., 1983, Mass balance of carbon and phosphorus in Shark Bay, Western Australia, Limnol. Oceanogr. 28: 625–639.Google Scholar
  128. Soudry, D., and Southgate, P. N., 1989, Ultrastructure of a Middle Cambrian primary nonpelletal phosphorite and its early transformation into phosphate vadoids: Georgina Basin, Australia. J. Sediment. Petrol. 59: 53–64.Google Scholar
  129. Southgate, P. N., 1980, Cambrian stromatolitic phosphorites from the Georgina Basin, Australia, Nature (London) 285: 395–397.Google Scholar
  130. Stal, L. J., Grossberger, S., and Krumbein, W. E., 1984, Nitrogen fixation associated with cyanobacterial mat of a marine laminated microbial ecosystem, Mar. Biol. 82: 217–224.Google Scholar
  131. Summons, R. E., Powell, T. G., and Boreham, C. J., 1988, Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52: 1747–1763.Google Scholar
  132. Tobschall, H. J., and Dissanayake, C. B., 1986, Precious metals in cyanobacterial mats of Mannar Lagoon, Sri Lanka, in: Sediments Down-Under, 12th International Sedimentological Congress, Abstracts, p. 305, Canberra, Australia.Google Scholar
  133. Trudinger, P. A., 1982, Biology of sulfate reduction in intertidal sediments, in: Baas Becking Geobiological Laboratory, Annual Report, 1982, p. 35, Bureau of Mineral Resources, Canberra, Australia.Google Scholar
  134. Trudinger, P. A., Lambert, I. B., and Skyring, G. W., 1972, Biogenic sulfide ores: A feasibility study, Econ. Geol. 67: 1114–1127.Google Scholar
  135. Van Baalen, C., Hoare, D. S., and Brandt, E., 1971, Heterotrophic growth of blue-green algae in dim light, J. Bacteriol. 105: 685–689.PubMedGoogle Scholar
  136. van Liere, L., and Walsby, A. E., 1982, Interactions of cyanobacteria with light, in: The Biology of Cyanobacteria (N. G. Carr and B. A. Whitton, eds.), pp. 9–45, Blackwell Scientific Publications, Oxford.Google Scholar
  137. Walter, M. R., 1983, Archean stromatolites: Evidence of the Earth’s earliest benthos, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), pp. 187–213, Princeton University Press, Princeton, N.J.Google Scholar
  138. Walter, M. R., and Bauld, J., 1983, The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: Examples from the Proterozoic of Australia and the Cainozoic of Antarctica, Precambrian Res. 21: 129–148.Google Scholar
  139. Walter, M. R., and Bauld, J., 1986, Subtidal stromatolites of Shark Bay, in: Sediments Down-Under: 12th International Sedimentological Congress Abstracts, p. 315, Canberra, Australia.Google Scholar
  140. Walter, M. R., Golubic, S., and Priess, W. V., 1973, Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia, J. Sediment. Petrol. 43: 1021–1030.Google Scholar
  141. Walter, M. R., Buick, R., and Dunlop, J. S. R., 1980, Stromatolites 3,400–3,500 Myrs old from the North Pole area, Western Australia, Nature (London) 284: 443–445.Google Scholar
  142. Ward, D. M., 1984, Decomposition of microbial mats—discussion, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 277–280, Alan R. Liss, Inc., New York.Google Scholar
  143. Ward, D. M., Bauld, J., Castenholz, R. W., Cohen, Y., Jørgensen, B. B., Nelson, D. C., Pierson, B. K., and Summons, R. E., Modern microbial mats: Anoxygenic, transitional, thermal, chemolithotrophic, eukaryotic and terrestrial, in: The Proterozoic Biosphere: A Multidisciplinary Study (J. W. Schopf and C. Klein, eds.), Cambridge, University Press, Cambridge (in press).Google Scholar
  144. Webb, K. L., Du Paul, W. D., Wiebe, W., Sottile, W., and Johannes, R. E., 1975, Enewetak (Eniwetok) Atoll: Aspects of the nitrogen cycle on a coral reef, Limnol. Oceanogr. 20: 198–210.Google Scholar
  145. Wiebe, W. J., 1985, Nitrogen dynamics on coral reefs, in: Proceedings of the Fifth International Coral Reef Congress, Tahiti, 1985, Vol. 3 (C. Gabrie, J. L. Toffart, and B. Salvat, eds.), pp. 401–406, Antenne Museum-Ephe, Moorea, French Polynesia.Google Scholar
  146. Wiebe, W. J., Johannes, R. E., and Webb, K. L., 1975, Nitrogen fixation in a coral reef community, Science 188: 257–259.PubMedGoogle Scholar
  147. Wilkinson, C. R., 1979, Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria, Nature (London) 279: 527–529.Google Scholar
  148. Wilkinson, C. R., Williams, D. McB., Sammarco, P. W., Hogg, R. W., and Trott, L. A., 1984, Rates of nitrogen fixation on coral reefs across the continental shelf of the central Great Barrier Reef, Mar. Biol. 80: 255–262.Google Scholar
  149. Williams, W. D., 1981, Inland salt lakes: An introduction, Hydrobiologia 81: 1–14.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Graham W. Skyring
    • 1
  • John Bauld
    • 2
  1. 1.Division of Water ResourcesCSIROCanberraAustralia
  2. 2.Division of Continental GeologyBureau of Mineral ResourcesCanberraAustralia

Personalised recommendations