Advertisement

Microbial Plasticity The Relevance to Microbial Ecology

  • E. Terzaghi
  • M. O’Hara
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)

Abstract

Classical microbial taxonomy rests solidly on assumptions of phenotypic stability and constancy of bacterial species. This phenotypic stability, in turn, not only has been presumed to reflect a corresponding physiological and genotypic stability but has also carried the tacit assumption that there is a manifest correspondence between genotype and phenotype. The discoveries first of plasmids and then of various classes of both autonomous and nonautonomous mobile genetic elements presented a serious challenge to this comfortable view of microbial stability. And now, as the techniques of contemporary microbiology and molecular genetics are being focused on an increasingly wide variety of microbial groups, mounting evidence is suggesting with increasing insistence that the microbial genome, and hence phenotype, is even more plastic and adaptable than initially imagined.

Keywords

Transposable Element Neisseria Gonorrhoeae Rearrangement Event Cryptic Gene Replicative Transposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, J. M., Freitag, C. S., Clements, J. R., and Eisenstein, B. I., 1985, An invertible element of DNA controls phase variation of type I fimbriae of Escherichia coli, Proc. Natl. Acad. Sci. USA 82: 5724.PubMedGoogle Scholar
  2. Abraham, L. J., and Rood, J. I., 1987, Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens, J. Bacteriol. 169: 1579.PubMedGoogle Scholar
  3. Alexander, M., 1986, Ecological concerns relative to genetically engineered microorganisms, in: Microbial Communities in the Soil (V. Jensen, A. Kjoller, and L. H. Sorensen, eds.), pp. 347–354, Elsevier Applied Science Publications, London.Google Scholar
  4. Anderson, R. P., and Roth, J., 1978, Tandem chromosomal duplications in Salmonella typhimurium: fusion of histidine genes to novel promoters, J. Mol. Biol. 119: 147.PubMedGoogle Scholar
  5. Argos, P., Laudy, A., Abremski, K., Egan, J. B., Haggard-Ljungquist, E., Hoess, R. H., Kahn, M. L., Kalionis, B., Narayana, S. V. L., Pierson III, L. S., Sternberg, N., and Leong, J. M., 1986, The integrase family of site-specific recombinases: regional similarities and global diversity, EMBO J. 5: 433.PubMedGoogle Scholar
  6. Arico, B., and Rappuoli, R., 1987, Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes, J. Bacteriol. 169: 2847.PubMedGoogle Scholar
  7. Balganesh, M., and Setlow, J. K., 1986, Plasmid-to-plasmid recombination in Haemophilus influenzae, J. Bacteriol. 165: 308.PubMedGoogle Scholar
  8. Barbour, A. G., and Garon, C. F., 1987, Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends, Science 237: 409.PubMedGoogle Scholar
  9. Bartlett, D. H., Wright, M. E., and Silverman, M., 1988, Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement, Proc. Natl. Acad. Sci. USA 85: 3923.PubMedGoogle Scholar
  10. Bennett, P., 1985, Bacterial transposons, in: Genetics of Bacteria (J. Scaife, D. Leach, and A. Galazzi, eds.), pp. 97–115, Academic Press, New York.Google Scholar
  11. Berry, J. O., and Atherley, A. G., 1984, Induced plasmid-genome rearrangements in Rhizobium japonicum, J. Bacteriol. 157: 218.PubMedGoogle Scholar
  12. Betz, J. L., Brown, P. R., Smyth, M. J., and Clarke, P. H., 1974, Evolution in action, Nature (London) 247: 261.Google Scholar
  13. Bianchi, M. E., and Radding, C. M., 1983, Insertions, deletions and mismatches in heteroduplex DNA made by RecA protein, Cell 35: 511.PubMedGoogle Scholar
  14. Birkbeck, T. H., and Penn, C. W. (eds.), 1986, Antigenic Variation in Infectious Diseases, Society for General Microbiology, Special Publication 19, IRL Press, Washington, D.C.Google Scholar
  15. Borst, P., and Greaves, D. R., 1987, Programmed gene rearrangements altering gene expression, Science 235: 658.PubMedGoogle Scholar
  16. Botstein, D., 1980, A theory of modular evolution for bacteriophages, Ann. N.Y. Acad. Sci. 354: 4841.Google Scholar
  17. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161: 529.PubMedGoogle Scholar
  18. Brown, J. E., and Clarke, P. H., 1975, Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide, J. Gen Microbiol. 64: 329.Google Scholar
  19. Cairns, J., Overbaugh, J., and Miller, S., 1988, The origin of mutants, Nature (London) 335: 142.Google Scholar
  20. Campbell, A., 1965, The steric effect in lysogenization by bacteriophage lambda. 1. Lysogenization of a partially diploid strain of Escherichia coli K12, Virology 27: 329.PubMedGoogle Scholar
  21. Campbell, A., 1983, Transposons and their evolutionary significance, in: Evolution of Genes and Proteins (M. Nei and R. K. Koehn, eds.), pp. 258–279, Sinauer & Associates, Sunderland, Mass.Google Scholar
  22. Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II (R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  23. Charlier, D., Piette, J., and Glansdorf, N., 1982, IS3 can function as a mobile promoter in Escherichia coli, Nucleic Acids Res. 10: 5935.PubMedGoogle Scholar
  24. Chatterjee, D. K., and Chakrabarty, A. M., 1982, Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids, Mol. Gen. Genet. 188: 279.PubMedGoogle Scholar
  25. Chatterjee, D. K., and Chakrabarty, A. M., 1983, Genetic homology between independently isolated chlorobenzoate-degradative plasmids, J. Bacteriol. 153: 532.PubMedGoogle Scholar
  26. Chung, S.-T. 1987, TN4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae, J. Bacteriol. 169: 4436.PubMedGoogle Scholar
  27. Ciampi, M. S., Schmid, M. B., and Roth, J. R., 1982, Transposon Tn10 provides a promoter for transcription of adjacent sequences, Proc. Natl. Acad. Sci. USA 79: 5016.PubMedGoogle Scholar
  28. Clark, D. P., and Rod, M. L., 1987, Regulatory mutations that allow the growth of Escherichia coli on butanol as a carbon source, J. Mol. Evol. 25: 151.PubMedGoogle Scholar
  29. Clegg, S., and Gerlach, G. F., 1987, Enterobacterial fimbriae, J. Bacteriol. 169: 934.PubMedGoogle Scholar
  30. Clewell, D. B., An, F.-Y., White, B. A., and Gawron-Burke, C., 1985, Streptococcus faecalis sex pheromone (CAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon Tn918, J. Bacteriol. 162: 1212.PubMedGoogle Scholar
  31. Coveney, J. A., Fitzgerald, G. F., and Daly, C., 1987, Detailed characterization and comparison of four lactic streptococcal bacteriophages based on morphology, restriction mapping, DNA homology and structural protein analysis, Appl. Environ. Microbiol. 53: 1439.PubMedGoogle Scholar
  32. Cullum, J., 1985, Insertion sequences, in: Genetics of Bacteria (J. Scaife, D. Leach, and A. Galizzi, eds.), pp. 85–96, Academic Press, New York.Google Scholar
  33. Dorman, C. J., and Higgins, C.F., 1987, Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases, J. Bacteriol. 169: 3840.PubMedGoogle Scholar
  34. Downs, D. M., and Roth, J. R., 1987, A novel P22 prophage in Salmonella typhimurium, Genetics 117: 367.PubMedGoogle Scholar
  35. Ebert, K., Hanke, C., Delius, H., Goebel, W., and Pfeifer, F., 1987, A new insertion element ISH26 from Halobacterium halobium. Mol. Gen. Genet. 206: 81.Google Scholar
  36. Fitzgerald, G. F., and Clewell, D. B., 1985, A conjugative transposon (Tn919) in Streptococcus sanguis, Infect. Immun. 47: 415.PubMedGoogle Scholar
  37. Flores, M., Gonzalez, V., Brom, S., Martinez, E., Pinero, D., Romero, D., Davila, G., and Palacios, R., 1987, Reiterated sequences in Rhizobium and Agrobacterium spp., J. Bacteriol. 169: 5782.PubMedGoogle Scholar
  38. Flores, M., Gonzalez, V., Pardo, M. A., Leija, A., Martinez, E., Romero, D., Pinero, D., Davila, G., and Palacios, R., 1988, Genomic instability in Rhizobium phaseoli, J. Bacteriol. 170: 1191.PubMedGoogle Scholar
  39. Flynn, J. L., and Ohman, D. E., 1988, Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype, J. Bacteriol. 170: 1452.PubMedGoogle Scholar
  40. Gafftiey, T. D., and Lessie, T. G., 1987, Insertion sequence-dependent rearrangements of Pseudomonas cepacia plasmid pTGL1, J. Bacteriol. 169: 224.Google Scholar
  41. Gething, M. J., Bye, J., Skehel, J., and Waterfield, M., 1980, Cloning and DNA sequence of doublestranded copies of haemagglutinin genes from H2-strains and H3-strains elucidates antigenic shift and drift in human influenza virus, Nature (London) 287: 301.Google Scholar
  42. Gilson, E., Clement, J. M., Perrin, D., and Hoffnung, M., 1987, Palindromic units: A case of highly repetitive DNA sequences in bacteria, Trends Genet. 3: 226.Google Scholar
  43. Gonda, D. K., and Radding, C. M., 1983, By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology, Cell 34: 647.PubMedGoogle Scholar
  44. Gottesman, S., 1984, Bacterial regulation: Global regulatory networks, Annu. Rev. Genet. 18: 415.PubMedGoogle Scholar
  45. Guerry, P., Logan, S. M., and Trust, T. J., 1988, Genomic rearrangements associated with antigenic variation in Campylobacter coli, J. Bacteriol. 170: 316.PubMedGoogle Scholar
  46. Haas, R., and Meyer, T. F., 1986, The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion, Cell 44: 107.PubMedGoogle Scholar
  47. Hacking, A. J., and Lin, E. C. C., 1977, Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli, J. Bacteriol. 130: 832.PubMedGoogle Scholar
  48. Hacking, A. J., Aquilar, J., and Lin, E. C. C., 1978, Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power, J. Bacteriol. 136: 522.PubMedGoogle Scholar
  49. Hahn, M., and Hennecke, H., 1987, Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences, Appl. Environ. Microbiol. 53: 2247.PubMedGoogle Scholar
  50. Hall, B. G., 1982, Chromosomal mutation for citrate utilization by Escherichia coli K-12, J. Bacteriol. 151: 269.PubMedGoogle Scholar
  51. Hall, B. G., 1983, Evolution of new metabolic functions in laboratory organisms, in: Evolution of Genes and Proteins (M. Nei and R. K. Koehn, ed.), pp. 234–257, Sinauer & Associates, Sunderland, Mass.Google Scholar
  52. Hall, B. G., 1988, Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887.PubMedGoogle Scholar
  53. Hall, B. G., and Betts, P. W., 1987, Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli, Genetics 115: 431.PubMedGoogle Scholar
  54. Hall, B. G., Yokoyama, S., and Calhoun, D. H., 1983, Role of cryptic genes in microbial evolution, Mol. Biol. Evol. 1: 109.PubMedGoogle Scholar
  55. Harris, L. A., Logan, S. M., Guerry, P., and Trust, T. J., 1987, Antigenic variation of Campylobacter flagella, J. Bacteriol. 169: 5066.PubMedGoogle Scholar
  56. Hartley, B. S., Altosaar, I., Dothie, J. M., and Neuberger, M. S., 1976, Experimental evolution of a xylitol dehydrogenase, in: Proceedings of the Third John Innes Symposium (R. Markham and R. W. Horne, eds.), pp. 191–200, North-Holland, Amsterdam.Google Scholar
  57. Haselkorn, R., Golden, J. W., Lammers, P. J., and Mulligan, M. E., 1986, Developmental rearrangement of cyanobacterial nitrogen-fixation genes, Trends Genet. 2: 255.Google Scholar
  58. Haselkorn, R., Bukema, W. J., Golden, J. W., Lammers, P. J., and Mulligan, M. E., 1988, Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena 7120 abstr. L010, UCLA Symp. Mol. Basis Plant Dev., p. 131.Google Scholar
  59. Haugland, R., and Verma, D. P. S., 1981, Interspecific plasmid and genomic DNA sequence homologies and localization of nif genes in effective and ineffective strains of Rhizobium japonicum, J. Mol. Appl. Genet. 1: 205.PubMedGoogle Scholar
  60. Hellingswerf, K. J., and Konings, W. N., 1985, The energy flow in bacteria: The main free energy intermediates and their regulatory role, Adv. Microb. Physiol. 26: 125.Google Scholar
  61. Heumann, W., Rosch, A., Springer, R., Wagner, E., and Winkler, K. P., 1984, In Rhizobiaceae five different species are produced by rearrangements of one genome, induced by DNA-damaging agents, Mol. Gen. Genet. 197: 425.Google Scholar
  62. Hinton, D. M., and Musso, R. E., 1982, Transcription initiation sites within an IS2 insertion in a Galconstitutive mutant of Escherichia coli, Nucleic Acids Res. 10: 5015.PubMedGoogle Scholar
  63. Hofman, J. D., Schalkwyk, L. C., and Doolittle, W. F., 1986, ISH51: A large, degenerate family of insertion sequence-like elements in the genome of the archaebacterium Halobacterium volcanii, Nucleic Acids Res. 14: 6983.PubMedGoogle Scholar
  64. Holloway, B.W., and Morgan, A. P., 1986, Genome organization in Pseudomonas, Annu. Rev. Microbiol. 40: 79.PubMedGoogle Scholar
  65. Huber, H. E., Iida, S., Arber, W., and Bickle, T. A., 1985, Site-specific DNA inversion is enhanced by a DNA sequence element in cis, Proc. Natl. Acad. Sci. USA 82: 3776.PubMedGoogle Scholar
  66. Iida, S., and Hiestand-Nauer, R., 1986, Localized conversion at the crossover sequences in the sitespecific DNA inversion system of bacteriophage P1, Cell 45: 71.PubMedGoogle Scholar
  67. Inouye, M., and Sarma, R. (eds.), 1986, Protein Engineering: Applications in Science, Medicine and Industry, Academic Press, New York.Google Scholar
  68. Jacob, F., 1977, Evolution and tinkering, Science 196: 1161.PubMedGoogle Scholar
  69. Jain, R. K., Sayler, G. S., Wilson, J. T., Houston, L., and Pacia, D., 1987, Maintenance and stability of introduced genotypes in groundwater aquifer material, Appl. Environ. Microbiol. 53: 996.PubMedGoogle Scholar
  70. Jarvis, A. W., and Meyer, J., 1986, Electron microscopic heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages, Appl. Environ. Microbiol. 51: 566.PubMedGoogle Scholar
  71. Jaurin, B., and Normark, S., 1983, Insertion of IS2 creates a novel amp C promoter in Escherichia coli, Cell 32: 809.PubMedGoogle Scholar
  72. Johnson, R. C., and Simon, M. I., 1987, Enhancers of site-specific recombination in bacteria, Trends Genet. 3: 262.Google Scholar
  73. Johnson, R. C., Glasgow, A. C., and Simon, M. I., 1987, Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity, Nature (London) 329: 462.Google Scholar
  74. Juni, E., and Heym, G. A., 1980, Studies of some naturally occurring auxotrophs of Neiserria gonorrhoeae, J. Gen. Microbiol. 121: 85.PubMedGoogle Scholar
  75. Kearney, B., Ronald, P. C., Dahlbeck, D., and Staskawicz, B. J., 1988, Molecular basis for evasion of plant host defence in bacterial spot disease of pepper, Nature (London) 332: 541.Google Scholar
  76. Kemper, J., 1984, Gene recruitment for a subunit of isopropylmalate isomerase, in: Microorganisms as Model Systems for Studying Evolution (R. P. Mortlock, ed.), pp. 255–284, Plenum Press, New York.Google Scholar
  77. Kleckner, N., 1983, Transposon Tn10, in: Mobile Genetic Elements (J. Shapiro, ed.), pp. 261–299, Academic Press, New York.Google Scholar
  78. Komano, T., Kubo, A., and Nisioka, T., 1987a, Shufflon: Multi-inversion of four contiguous DNA segments of plasmid R64 creates seven different open reading frames, Nucleic Acids Res. 15: 1165.PubMedGoogle Scholar
  79. Komano, T., Kim, S. R., and Nisoka, T., 1987b, Distribution of shufflon among Incl plasmids, J. Bacteriol. 169: 5317.PubMedGoogle Scholar
  80. Kricker, M., and Hall, B. G., 1984, Directed evolution of cellobiose utilization in Escherichia coli K12, Mol. Biol. Evol. 1: 171.PubMedGoogle Scholar
  81. Kricker, M., and Hall, B. G., 1987, Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12, Genetics 115: 419.PubMedGoogle Scholar
  82. Kubo, A., Kusukawa, A., and Komano, T., 1988, Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the Incl 1 plasmid R64: Homology to the site-specific recombinases of the integrase family. Mol. Gen. Genet. 213: 30.PubMedGoogle Scholar
  83. Lechevallier, M. W., Camper, A. K., Broadaway, S. C., Henson, J. M., and McFeters, G. A., 1987, Sensitivity of genetically engineered organisms to selective media, Appl. Environ. Microbiol. 53: 606.PubMedGoogle Scholar
  84. Lerner, S. A., Wu, T. T., and Lin, E. C. C., 1964, Evolution of a catabolic pathway in bacteria, Science 146: 1313–1315.PubMedGoogle Scholar
  85. Lessie, T. G., and Gaffhey, T., 1986, Catabolic potential of Pseudomonas cepacia, in: The Bacteria, Vol. X (J. R. Sokatch, ed.), pp. 439–482, Academic Press, New York.Google Scholar
  86. Levin, M. A., Seidler, R., Borguin, A. W., Fowle III, J. R., and Barkay, T., 1987, Developing methods to assess environmental release, BioTechnology 5: 38.Google Scholar
  87. Lewin, B., 1987, Genes III, p. 603, John Wiley & Sons, New York.Google Scholar
  88. Li, W.-H., 1984, Retention of cryptic genes in microbial populations, Mol. Biol. Evol. 1: 213.PubMedGoogle Scholar
  89. Marshall, R. B., Wilton, B. E., and Robinson, A. J., 1981, Identification of Leptospira serovars by restriction endonuclease analysis, J. Med. Microbiol. 14: 163.PubMedGoogle Scholar
  90. Mew, A. J., Ionas, G., Clarke, J. K., Robinson, A. J., and Marshall, R. B., 1985, Comparison of Mycoplasma ovipneumoniae isolates using bacterial restriction endonuclease DNA analysis and SDS-PAGE, Vet. Microbiol. 10: 541.PubMedGoogle Scholar
  91. Meyer, T. F., 1987, Molecular basis of surface antigen variation in Neisseria, Trends Genet. 3: 319.Google Scholar
  92. Mori, M., Tanimoto, A., Yoda, K., Harada, S., Koyama, N., Hashiguchi, K., Obinata, M., Yamasaki, M., and Tamura, G., 1986, Essential structure in the cloned transforming DNA that induces gene amplification of the Bacillus subtilis amyE-tmrB region, J. Bacteriol. 166: 787.PubMedGoogle Scholar
  93. Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T., and Yura, T., 1981, Multiple nutritional requirements of lactobacilli: Genetic lesions affecting amino acid biosynthetic pathways, J. Bacteriol. 148: 64.PubMedGoogle Scholar
  94. Mortlock, R. P., 1981, Catabolism of five carbon sugars, in: Microbiology—1981 (D. Schlessinger, ed.), pp. 151–155, American Society for Microbiology, Washington, D.C.Google Scholar
  95. Mortlock, R. P., 1984, The utilization of pentitols in studies of the evolution of enzyme pathways, in: Microorganisms as Model Systems for Studying Evolution (R. P. Mortlock, ed.), pp. 1–22, Plenum Press, New York.Google Scholar
  96. Munro, P. M., Gauthier, M. J., and Laumond, F. M., 1987, Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures, Appl. Environ. Microbiol. 53: 1476.PubMedGoogle Scholar
  97. Murphy, E., and Novick, R. P., 1980, Site-specific recombination between plasmids of Staphylococcus aureus, J. Bacteriol. 141: 316.PubMedGoogle Scholar
  98. Nano, F. E., and Kaplan, S., 1984, Plasmid rearrangements in the photosynthetic bacterium Rhodopseudomonas sphaeroides, J. Bacteriol. 158: 1094.PubMedGoogle Scholar
  99. National Academy of Science Committee on the Introduction of Genetically Engineered Organisms into the Environment, 1987, Introduction of Recombinant DNA-Engineered Organisms into the Environment: Key Issues, National Academy Press, Washington, D.C.Google Scholar
  100. Niaudet, B., Janniere, L., and Ehrlich, S. D., 1984, Recombination between repeated DNA sequences occurs more often in plasmids than in the chromosome of Bacillus subtilis, Mol. Gen. Genet. 197: 46.PubMedGoogle Scholar
  101. Nisen, P., and Shapiro, L., 1980, Inverted-repeat nucleotide sequences in Escherichia coli and Caulobacter crescentus, Cold Spring Harbor Symp. Quant. Biol. 45: 81.Google Scholar
  102. Office of Technology Assessment, 1988, New Developments in Biotechnology—Field-Testing Engineered Organisms: Genetic and Ecological Issues, U.S. Government Printing Office, Washington, D.C.Google Scholar
  103. O’Hara, M., Collins, D. M., and De Lisle, G. W., 1985, Restriction endonuclease analysis of Brucella ovis and other Brucella species, Vet. Microbiol. 10: 425.PubMedGoogle Scholar
  104. Orner, C. A., and Cohen, S. N., 1986, Structural analysis of plasmid and chromosomal loci involved in site-specific excision and integration of the SLP1 element of Streptomyces coelicolor, J. Bacteriol. 166: 999.Google Scholar
  105. Palmer, L. M., Baya, A. M., Grimes, D. J., and Colwell, R. R., 1984, Molecular genetic and phenotypic alteration of Escherichia coli in natural water microcosms containing toxic chemicals, FEMS Microbiol. Lett. 21: 169.Google Scholar
  106. Parker, L. L., Betts, P. W., and Hall, B. G., 1988, Activation of a cryptic gene by excision of a DNA fragment, J. Bacteriol. 170: 218.PubMedGoogle Scholar
  107. Paruchuri, D. K., and Harshey, R. M., 1987, Flagellar variation in Serratia marcescens is associated with color variation, J. Bacteriol. 169: 61.PubMedGoogle Scholar
  108. Perry, A. C. E, Nicholson, I. J., and Saunders, J. R., 1988, Neisseria meningitidis C114 contains silent truncated pilin genes that are homologous to Neisseria gonorrhoeae pil sequences, J. Bacteriol. 170: 1691.PubMedGoogle Scholar
  109. Pickup, R. W., and Williams, P. A., 1982, Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20, J. Gen Microbiol. 128: 1385.PubMedGoogle Scholar
  110. Plasterk, R. H. A., and van de Putte, P., 1985, The invertible P-DNA segment in the chromosome of Escherichia coli, EMBO J. 4: 237.PubMedGoogle Scholar
  111. Plasterk, R. H. A., Simon, M. I., and Barbour, A. G., 1985, Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii, Nature (London) 318: 257.Google Scholar
  112. Potekhin, V. A., and Danilenko, V. N., 1985, The determinant of kanamycin resistance of Strepto myces rimosus: amplification in the chromosome and reversed genetic instability, Mol. Biol. 19: 672.Google Scholar
  113. Rangnekar, V. M., 1988, Variations in the ability of Pseudomonas sp. strain B13 cultures to utilize meta-chlorobenzoate is associated with tandem amplification and deamplification of DNA, J. Bacteriol. 170: 1907.PubMedGoogle Scholar
  114. Rappuoli, R., Perugini, M., and Ratti, G., 1987, DNA element of Corynebacterium diphtheriae with properties of an insertion sequence and usefulness for epidemiological studies, J. Bacteriol. 169: 308.PubMedGoogle Scholar
  115. Rasmussen, J. L., Odelson, D. A., and Macrina, F. L., 1987, Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis, J. Bacteriol. 169: 3573.PubMedGoogle Scholar
  116. Reanney, D. C., Roberts, W. P., and Kelly, W. J., 1982, Genetic interactions among microbial communities, in: Microbial Interactions and Communities (A. T. Ball and J. H. Slater, eds.), pp. 287–323, Academic Press, London.Google Scholar
  117. Reanney, D. C., Gowland, P. C., and Slater, J. H., 1983, Genetic interactions among communities, in: Microbes in the Natural Environment (R. Whittenbury and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge.Google Scholar
  118. Regnery, R. L., and Spruill, C. L., 1984, Extent of genetic heterogeneity among human isolates of Rickettsiae prowazekii as determined by restriction endonuclease analysis of rickettsial DNA, in: Microbiology—1984 (D. Schlessinger and L. Leive, eds.), pp. 297–304, American Society for Microbiology, Washington, D.C.Google Scholar
  119. Reynolds, A. E., Mahadevan, S., Felton, J., and Wright, A., 1985, Activation of the cryptic bgl Operon: Insertion sequences, point mutations and changes in superhelicity affect promoter strength, in: Genome Rearrangements (M. Simon and I. Herskowitz, eds.), A. R. Liss, New York.Google Scholar
  120. Riley, M., 1985, Discontinuous processes in the evolution of the bacterial genome, in: Evolutionary Biology, Vol. 19 (M. K. Hecht, B. Wallace, and G. T. Praner, eds.), pp. 1–36, Plenum Press, New York.Google Scholar
  121. Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51: 365.PubMedGoogle Scholar
  122. Ruvkun, G. B., Long, S. R., Meade, H. M., van den Bos, R. C., and Ausubel, F. M., 1982, ISRml: a Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes, J. Mol. Appl. Genet. 1: 405.PubMedGoogle Scholar
  123. Saedler, H., Reif, H. J., Hu, S., and Davidson, N., 1974, IS2, a genetic element for turn-off and turn-on of gene activity in Escherichia coli, Mol. Gen. Genet. 132: 265.PubMedGoogle Scholar
  124. Santha, M., Lukacs, K., Burg, K., Bernath, S., Rasko, L., and Stopkovits, L., 1988, Intraspecies genotypic heterogeneity among Mycoplasma gallisepticum strains, Appl. Environ. Microbiol. 54: 607.PubMedGoogle Scholar
  125. Sapienza, C., and Doolittle, W. F., 1982, Unusual physical organization of the Halobacterium genome, Nature (London) 295: 384.Google Scholar
  126. Sapienza, C., Rose, M. R., and Doolittle, W. F., 1982, High-frequency genomic rearrangements involving archaebacterial repeat sequence elements, Nature (London) 299: 182.Google Scholar
  127. Schaaper, R. M., Danforth, B. N., and Glickman, B. W., 1986, Mechanisms of spontaneous mutagenesis: An analysis of the spectrum of spontaneous mutation in the Escherichia coli lac I gene, J. Mol Biol. 189: 273.PubMedGoogle Scholar
  128. Schleifer, K. H., and Stackebrandt, E., 1983, Molecular systematics of prokaryotes, Annu. Rev. Microbiol. 37: 143.PubMedGoogle Scholar
  129. Schmid, M. B., 1988, Structure and function of the bacterial chromosome, Trends Biochem. Sci. 13: 131.PubMedGoogle Scholar
  130. Schnetz, K., Toloczyki, C., and Rak, B., 1987, β-Glucoside (bgt) Operon of Escherichia coli K-12: Nucelotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes, J. Bacteriol. 169: 2579.PubMedGoogle Scholar
  131. Scordilis, G. E., Ree, H., and Lessie, T. G., 1987, Identification of transposable elements which activate gene expression in Pseudomonas cepacia, J. Bacteriol. 169: 8.PubMedGoogle Scholar
  132. Seifert, H. S., and So, M., 1988, Genetic mechanisms of bacterial antigenic variation, Microbiol. Rev. 52: 327.PubMedGoogle Scholar
  133. Shalita, Z., Murphy, E., and Novick, R. P., 1980, Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships, Plasmid 3: 291.PubMedGoogle Scholar
  134. Shapiro, J. A., 1985, Mechanisms of DNA reorganisation in bacteria, Int. Rev. Cytol. 93: 25.PubMedGoogle Scholar
  135. Shapiro, J. A., 1986, Control of Pseudomonas putida growth on agar surfaces, in: The Bacteria, Vol. X, (J. R. Sokatch, ed.), pp. 27–69, Academic Press, New York.Google Scholar
  136. Shapiro, J. A., 1987, Organization of developing Escherichia coli colonies viewed by scanning electron microscopy, J. Bacteriol. 169: 142.PubMedGoogle Scholar
  137. Simon, M. I., and Silverman, M., 1983, Recombinational regulation of gene expression in bacteria, in: Gene Function in Procaryotes (J. Beckwith, J. Davies, and J. A. Gallant, eds.), pp. 211–227, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  138. Smith, C. A., and Thomas, C. M., 1987, Comparison of the organization of the genome of phenotypically diverse plasmids of incompatibility group P: Members of the IncP β subgroup are closely related, Mol. Gen. Genet. 206: 419.PubMedGoogle Scholar
  139. Smith, C. J., and Spiegel, H., 1987, Transposition of Tn4551 in Bacteroides fragilis: Identification and properties of a new transposon from Bacteroides spp., J. Bacteriol. 169: 3450.PubMedGoogle Scholar
  140. Smyth, P. F., and Clarke, P. H., 1975, Catabolite repression of Pseudomonas aeroginosa amidase: Isolation of promoter mutants, J. Gen. Microbiol. 90: 91.PubMedGoogle Scholar
  141. Soberon-Chavez, G., Najera, R., Olivera, H., and Segovia, L., 1986, Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid, J. Bacteriol. 167: 487.PubMedGoogle Scholar
  142. Spector, M. P., Park, Y. K., Tirgari, S., Gonzalez, T., and Foster, J. W., 1988, Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using Mu ddirected lacZ operon fusions, J. Bacteriol. 170: 345.PubMedGoogle Scholar
  143. Stern, A., Brown, M., Nickel, P., and Meyer, T. F., 1986, Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation, Cell 47: 61.PubMedGoogle Scholar
  144. Swanson, J., Bergstrom, K., Robbins, S., Barrera, O., Corwin, D., and Koomey, J. M., 1986, Gene conversion involving the pilin structural gene correlates with pilin+ pilin- changes in Neisseria gonorhoeae, Cell 47: 267.PubMedGoogle Scholar
  145. Szabo, L. J., and Mills, D., 1984, Integration and excision of pMC7105 in Pseudomonas syringae pv. phaseolicola: Involvement of repetitive sequences, J. Bacteriol. 157: 821.PubMedGoogle Scholar
  146. Szybalski, W., and Szybalski, E. H., 1974, Visualization of the evolution of viral genomes, in: Viruses, Evolution and Cancer (E. Kurstak and K. Maramorosch, eds.), Academic Press, New York.Google Scholar
  147. Thiermann, A. B., Hansaker, A. L., Mosely, S. L., and Kingscote, B., 1985, New method for classification of leptospiral isolates belonging to serogroup Pomona by restriction endonuclease analysis: serovar kennewicki, J. Clin. Microbiol. 21: 585.PubMedGoogle Scholar
  148. Townsend, D. E., Ashdown, N., Greed, L. C., and Grubb, W. B., 1984, Transposition of gentamicin resistance to staphylococcal plasmids encoding resistance to cationic agents, J. Antimicrob. Chemother. 14: 115.PubMedGoogle Scholar
  149. Trevors, J. T., 1988, Use of microcosms to study genetic interactions between microorganisms, Microbiol. Sci. 5: 132.PubMedGoogle Scholar
  150. Trevors, J. T., Barkay, T., and Bourquin, A. W., 1987, Gene transfer among bacteria in soil and aquatic environments: A review, Can. J. Microbiol. 33: 191.Google Scholar
  151. Turberville, C., and Clarke, P. H., 1981, A mutant of Pseudomonas aeruginosa PAC with an altered amidase inducible by the novel substrate, FEMS Microbiol. Lett. 10: 87.Google Scholar
  152. Valla, S., Coucheron, D. H., and Kjosbakken, J., 1987, The plasmids of Acetobacter xylinum and their interaction with the host chromosome, Mol. Gen. Genet. 208: 76.PubMedGoogle Scholar
  153. Van Rompuy, L., Min Jou, W., Verhoeyen, M., Huylebroeck, D., and Fiers, W., 1983, Molecular variation of influenza surface antigens, Trends Biochem. Sci. 8: 414.Google Scholar
  154. Villarroel, R., Hedges, R. W., Maenhaut, R., Leemans, J., Engler, G., Van Montagu, M., and Schell, J., 1983, Heteroduplex analysis of P plasmid evolution: The role of insertion and deletion of transposable elements, Mol. Gen. Genet. 189: 390.PubMedGoogle Scholar
  155. Walter, M. V., Porteous, A., and Seidler, R. J., 1987, Measuring genetic stability in bacteria of potential use in genetic engineering, Appl. Environ. Microbiol. 53: 105.PubMedGoogle Scholar
  156. Wanner, B. L., 1985, Phase mutants: Evidence of a physiologically regulated “change-in-state” gene system in Escherichia coli, in: Genome Rearrangement (M. Simon and I. Herskowitz, eds.), pp. 103–122, A. R. Liss, New York.Google Scholar
  157. Wanner, B. L., Wilmes, M. R., and Hunter, E., 1988, Molecular cloning of the wild-type phoM operon in Escherichia coli K-12, J. Bacteriol. 170: 279.PubMedGoogle Scholar
  158. Williams, P. A., and Jeenes, D. J., 1981, Origin of catabolic plasmids, in: Microbiology—1981 (D. Schlessinger, ed.), pp. 144–147, American Society for Microbiology, Washington, D.C.Google Scholar
  159. Wu, T. T., Lin, E. C. C., and Tanaka, S., 1968, Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon source, J. Bacteriol. 96: 447.PubMedGoogle Scholar
  160. Zhu, Y., and Lin, E. C. C., 1986, An evolvant of Escherichia coli that employs the L-fucose pathway also for growth on L-galactose and D-arabinose, J. Mol. Evol. 23: 259.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. Terzaghi
    • 1
  • M. O’Hara
    • 1
  1. 1.Department of Microbiology and GeneticsMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations