The Ecology of Chitin Degradation

  • Graham W. Gooday
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


Chitin is the (1→4)-β-linked homopolymer of N-acetyl-D-glucosamine (Fig. 1). The individual polymer chains can be thought of as helices, as each sugar unit is inverted with respect to its neighbors. This leads to their stabilization as rigid ribbons by 03—H … 05 and 06—H … 07 hydrogen bonds. The commonest form of chitin is α-chitin. Its unit cell is of two N,N‵-diacetylchitobiose units of two chains in an antiparallel arrangement. Thus, adjacent polymer chains run in opposite directions, held together by 06—H … 06 hydrogen bonds, and the chains are held in sheets by 07 … H—N hydrogen bonds (Minke and Blackwell, 1978). This gives a statistical mixture of CH2OH orientations, equivalent to half oxygens on each residue, each forming inter- and intramolecular hydrogen bonds. This results in two types of amide groups; all are involved in the interchain C=O … H—N bonds, while half of the groups also serve as acceptors for 06—H … O=C intramolecular bonds. This extensive intermolecular hydrogen bonding leads to a very stable structure, the individual polymer chains eventually giving rise to microfibrils if allowed to crystallize (Gooday, 1983). A less common form of chitin is β-chitin, in which the unit cell is of one N,N‵diacetylchitobiose unit, giving a polymer stabilized as a rigid ribbon, as for α-chitin, by 03—H … 05 intramolecular bonds (Gardner and Blackwell, 1975). Chains are then held together in sheets by C=O … H—N hydrogen bonding of the amide groups and by the CH2OH side chains, forming intersheet hydrogen bonds to the carbonyl oxygens on the next chains (06—H … 07). This gives a structure of parallel poly-N-acetylglucosamine chains with no intersheet hydrogen bonds.


Chitinase Activity Colloidal Chitin Chitinolytic Enzyme Chitinolytic Activity Chitin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abderhalden, E., and Heyns, K., 1933, Nachweis von Chitin in Flügelresten von Coleopteren des oberen Mitteleocäns. Biochem. Z. 259: 320–321.Google Scholar
  2. Allan, G. G., Fox, J. R., and Kong, N., 1978, A critical evaluation of the potential sources of chitin and chitosan, in: Proceedings of the First International Conference on Chitin/Chitosan (R. A. A. Muzzarelli and E. R. Pariser, eds.), pp. 64–78, MIT Sea Grant Report 78-7.Google Scholar
  3. Amagase, S., Mori, M., Nakayama, S., 1972, Digestive enzymes in insectivorous plants. IV. Enzymatic digestion of insects by Nepenthes secretion and Drosera peltata extract: Proteolytic and chitinolytic activities, J. Biochem. 72: 765–767.PubMedGoogle Scholar
  4. Amako, K., Shimodori, S., Imoto, T., Miake, S., and Umeda, A., 1987, Effects of chitin and its soluble derivatives on survival of Vibrio cholerae O1 at low temperature, Appl. Environ. Microbiol. 53: 603–605.PubMedGoogle Scholar
  5. Aronson, J. M., and Lin, C. C., 1978, Hyphal wall chemistry of Leptomitus lacteus, Mycologia 70: 363–369.Google Scholar
  6. Arroyo-Begovich, A., and Carabez-Trejo, A., 1982, Location of chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers, J. Parasitol. 68: 253–258.PubMedGoogle Scholar
  7. Aruchami, M., Sundara-Rajulu, G., and Gowri, N., 1986, Distribution of deacetylase in arthropods, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 263–265, Plenum Press, New York.Google Scholar
  8. Aumen, N. G., 1980, Microbial succession on a chitinous substrate in a woodland stream, Microbial Ecol. 6: 317–327.Google Scholar
  9. Austin, P. R., Brine, C. J., Castle, J. E., and Zikakis, J. P., 1981, Chitin—new facets of research, Science 212: 749–753.PubMedGoogle Scholar
  10. Baross, J. A., Tester, P. A., and Morita, R. Y., 1978, Incidence, microscopy and etiology of exoskeleton lesions in the tanner crab Chionectes tanner, J. Fish. Res. Board Can. 35: 1141–1149.Google Scholar
  11. Bartnicki-Garcia, S., and Lippman, E., 1982, Fungal cell wall composition, in: CRC Handbook of Microbiology, 2nd ed., Vol. IV., Microbial Composition: Carbohydrates, Lipids and Minerals (A. J. Laskin and H. A. Lechevalier, eds.), pp. 229–252, CRC Press, Boca Raton.Google Scholar
  12. Baxby, P., and Gray, T. R. G., 1968, Chitin decomposition in soil. I. Media for isolation of chitinoclastic micro-organisms from soil. Trans. Br. Mycol. Soc. 51: 287–242.Google Scholar
  13. Belas, M. R., and Colwell, R. R. 1982, Adsorption kinetics of laterally and polarly flagellated Vibrio, J. Bacteriol. 151: 1568–1580.PubMedGoogle Scholar
  14. Benmouna, M., Jaspar-Versali, M. F., Toussaint, C., and Jeuniaux, C., 1986, A comparative study of chitinase activity in digestive tract of Serranus cabrilla and Serranus scriba, Biochem. Syst. Ecol. 14: 435–437.Google Scholar
  15. Berkeley, R. C. W., 1978, Chitinolytic and chitosanolytic microorganisms and the potential biodeterioration problem in the commercial application of chitin and its derivatives, in: Proceedings of the First International Conference on Chitin/Chitosan (R. A. A. Muzzarelli and E. R. Pariser, eds.), pp. 570–577, MIT Sea Grant Report 78-7.Google Scholar
  16. Berkeley, R. C. W., 1979, Chitin, chitosan and their degradative enzymes, in: Microbial Polysaccharides and Polysaccharases (R. C. W. Berkeley, G. W. Gooday, and D. C. Ellwood, eds.), pp. 205–236, Academic Press, London.Google Scholar
  17. Billy, C., 1969, Etude d’une bacterie chitinolytique anaerobie Clostridium chitinophilum n.sp., Ann. Inst. Pasteur 6: 75–82.Google Scholar
  18. Birkbeck, T. H., and McHenery, J. G., 1984, Chitinase in the mussel, Mytilus edulis (L.), Comp. Biochem. Physiol. 77B: 861–865.Google Scholar
  19. Blackwell, J., and Weih, M. A., 1984, The structure of chitin-protein complexes, in: Chitin, Chitosan and Related Enzymes (J. P. Zikakis, ed.), pp. 257–272, Academic Press, New York.Google Scholar
  20. Boland, A., 1987, Chitinolyse dans les sediments marins, Ann. Soc. R. Zool. Belg. 117: 111.Google Scholar
  21. Boyer, J. N., 1986, End products of anaerobic chitin degradation by salt marsh bacteria as substrates for dissimilatory sulfate reduction and methanogenesis, Appl. Environ. Microbiol. 52: 1415–1418.PubMedGoogle Scholar
  22. Boyer, J. N., and Kator, H. I., 1985, Method for measuring microbial degradation and mineralisation of 14C-labelled chitin obtained from the blue crab, Callinectes sapidus, Microb. Ecol. 11: 185–192.Google Scholar
  23. Bradbury, P., Deroux, G., and Campillo, A., 1987, The feeding apparatus of a chitinivorous ciliate, Tissue Cell 19: 351–363.PubMedGoogle Scholar
  24. Brisou, J., Tysset, C., de Rautlin, de la Roy, Y., Curcier, R., and Moreau, R., 1964, Etude sur la chitinolyse a milieu marin, Ann. Inst. Pasteur 106: 469–478.Google Scholar
  25. Brown, L. R., Brown-Skrobot, S., Teichart, C., Blasingame, D. J., and Ladner, C. M., 1982, The use of chitinous seafood wastes for the control of plant parasitic nematodes, in: Chitin and Chitosan (S. Hirano and S. Tokura, eds.), pp. 227–232, The Japanese Society of Chitin and Chitosan, Tottori.Google Scholar
  26. Brumioul, D., and Voss-Foucart, M. F., 1977, Substances organiques dans kles carapaces de crustaces fossiles. Comp. Biochem. Physiol. 57B: 171–175.Google Scholar
  27. Bull, A. T., 1970, Inhibition of polysaccharidases by melanin: Enzyme inhibition in relation to mycolysis, Arch. Biochem. Biophys. 137: 345–356.PubMedGoogle Scholar
  28. Burnett, J. H., 1979, Aspects of the structure and growth of hyphal walls, in: Fungal Walls and Hyphal Growth (J. H. Burnett and A. P. J. Trinci, eds.) pp. 1–25, Cambridge University Press, Cambridge.Google Scholar
  29. Bussers, J. C., and Jeuniaux, C., 1974, Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés, Protistologica 10: 43–46.Google Scholar
  30. Buxton, E. W., Khalifa, O., and Ward, V., 1965, Effect of soil amendment with chitin on pea wilt caused by Fusarium oxysporum f. pisi, Ann. Appl. Biol. 55: 83–88.Google Scholar
  31. Campbell, L. L., and Williams, O. B., 1951, A study of chitin-decomposing microorganisms of marine origin, J. Gen. Microbiol. 5: 894–905.PubMedGoogle Scholar
  32. Campos-Takai, G. M., Dietrich, S. M. C., and Mascaranhas, Y., 1982, Isolation and characterisation of chitin from the cell walls of Achlya radiosa, J. Gen. Microbiol. 128: 207–209.Google Scholar
  33. Carlisle, D. B., 1964, Chitin in the Cambrian fossil Myolithellus, Biochem. J. 90: 1c.PubMedGoogle Scholar
  34. Chan, J. G., 1970. The Occurrence, Taxonomy and Activity of Chitinolytic Bacteria from Sediment, Water and Fauna of Puget Sound, Ph.D. thesis, University of Washington, Seattle.Google Scholar
  35. Christensen, P. J., 1977, The history, biology and taxonomy of the Cytophaga group, Can. J. Microbiol. 23: 1599–1653.PubMedGoogle Scholar
  36. Clark, J., Quayle, K. A., Macdonald, N. L., and Stark, J. R., 1988, Metabolism in marine flatfish—V. Chitinolytic activities in dover sole Solea solea (L.), Comp. Biochem. Physiol. 90B: 379–384.Google Scholar
  37. Clarke, P. H., and Tracey, M. V., 1956, The occurrence of chitinase in some bacteria, J. Gen. Microbiol. 14: 188–196.PubMedGoogle Scholar
  38. Cornelius, C., Dandrifosse, C., and Jeuniaux, C., 1975, Biosynthesis of chitinase by mammals of the order Carnivora, Biochem Syst. Ecol. 3: 121–122.Google Scholar
  39. Cornelius, C., Dandrifosse, C., and Jeuniaux, C., 1976, Chitinolytic enzymes of the gastric mucosa of Perodictus potto (primate prosimian): Purification and enzyme activity, Eur. J. Biochem. 7: 445–448.Google Scholar
  40. Cross, M., 1985, Microbial Colonisation and Degradation of Chitin in Aquatic Environments, Ph.D. thesis, University of Aberdeen, Aberdeen, Scotland.Google Scholar
  41. Culbreath, A. K., Rodriguez-Kabana, R., and Morgan-Jones, G., 1986, Chitin and Paecilomyces lilacinus for control of Meloidogyne arenaria, Nematropica 16: 153–166.Google Scholar
  42. Dandrifosse, G., 1975, Purification of chitinases contained in pancreas or gastric mucosa of frog, Biochemie 57: 829–831.Google Scholar
  43. Dandrifosse, G., Schoffeniels, E., and Jeuniaux, C., 1965, Secretion de chitinase par la muqueuse gastrique isolee, Biochim. Biophys. Acta 94: 153–164.PubMedGoogle Scholar
  44. Danulat, E., 1986, Role of bacteria with regard to chitin degradation in the digestive tract of the cod Gadus morhua, Mar. Biol. 90: 335–343.Google Scholar
  45. Danulat, E., and Kausch, H., 1984, Chitinase activity in the digestive tract of the cod Gadus morhua (L.), J. Fish Biol. 24: 125–133.Google Scholar
  46. Datema, R., Ende, van den M., and Wessels, J. G. H., 1977, The hyphal wall of Mucor mucedo. 2. Hexosamine-containing polymers, Eur. J. Biochem. 80: 621–626.PubMedGoogle Scholar
  47. Davis, B., and Eveleigh, D. E., 1984, Chitosanases: Occurrence, production and immobilization, in: Chitin, Chitosan and Related Enzymes (J. P. Zikakis, ed.), pp. 161–179, Academic Press, Orlando.Google Scholar
  48. Davis, L. L., and Bartnicki-Garcia, S., 1984, The co-ordination of chitosan and chitin synthesis in Mucor rouxii, J. Gen. Microbiol. 130: 2095–2102.PubMedGoogle Scholar
  49. Deming, J. W., 1985, Bacterial growth in deep-sea sediment trap and boxcore samples, Mar. Ecol. Prog. Ser. 25: 305–312.Google Scholar
  50. Deming, J. W., 1986, Ecological strategies of barophilic bacteria in the deep ocean, Microbiol. Sci. 3: 205–211.PubMedGoogle Scholar
  51. Dietrich, M. A., Hackney, C. R., and Grodner, R. M., 1984, Factors affecting the adherence of Vibrio cholerae to blue crab (Callinectes sapidus) shell, in: Vibrios in the Environment (R. R. Colwell, ed.), pp. 601–611, John Wiley & Sons, New York.Google Scholar
  52. Donderski, W., 1984, Chitinolytic bacteria in water and bottom sediments of two lakes of different trophy, Acta Microbiol. Pol. 33: 163–170.PubMedGoogle Scholar
  53. Donderski, W., Bylinska, T., Czajkowski, H., Gardocka, B., Kowalkowska, D., Myzyk, G., and Poziemska, E., 1984, Initial studies on heterotrophic bacteria capable of decomposition of some macromolecular compounds in waters and bottom sediments of six lakes in Ilawa Lake District, Acta Univ. Nicolai Copernici 57: 75–82.Google Scholar
  54. Elyakova, L. A., 1972, Distribution of cellulases and chitinases in marine invertebrates, Comp. Biochem. Physiol. 43B: 67–70.Google Scholar
  55. Everson, I., 1977, The Living Resources of the Southern Ocean, FAO Southern Ocean Fisheries Survey Programme, GLO/50/77/1.Google Scholar
  56. Ewing, W. H., Davis, B. R., Fife, M. A., and Lessei, E. F., 1973, Biochemical characterization of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. (formerly Enterobacter liquefaciens) and Serratia rubidaca (Stapp) comb. nov. and designation of type and neotype strains, Int. J. Syst. Bacteriol. 23: 217–225.Google Scholar
  57. Fange, R., Lunblad, G., Lind, J., and Slettengren, K., 1979, Chitinolytic enzymes in the digestive system of marine fishes, Mar. Biol. 53: 317–321.Google Scholar
  58. Fargues, J., Kilbertus, G., Reisinger, O., and Olah, G. M., 1977, Chitinolytic activity in soils, in: Soil Biology and Conservation of the Biosphere (J. Szegi, ed.), pp. 257–260, Akademiai Kiado, Budapest.Google Scholar
  59. Faure-Raynaud, M., 1981, Determination de l’activite chitinolytique de microorganismes, bacteria et levures, de la litiere du sapin Abies alba Mill, Ann. Microbiol. (Inst. Pasteur) 132B: 267–279.Google Scholar
  60. Febvay, G., Decharme, M., and Kermarrec, A., 1984, Digestion of chitin by the labial glands of Acromyrmex octospinosus Reich (Hymenoptera: Formicidae), Can. J. Zool. 62: 229–234.Google Scholar
  61. Fenton, D., Davis, B., Rotgers, C., and Eveleigh, D. E., 1978, Enzymatic hydrolysis of chitosan, in: Proceedings of the First International Conference on Chitin/Chitosan (R. A. A. Muzzarelli and E. R. Pariser, eds.), pp. 525–541, MIT Sea Grant Report 78-7.Google Scholar
  62. Florkin, M., 1965, Paléoproteines, Acad. R. Belg. Bull. Cl. Sci. 51: 156–169.Google Scholar
  63. Gardner, K. H., and Blackwell, J., 1975, Refinement of the structure of β-chitin, Biopolymers 14: 1581–1595.PubMedGoogle Scholar
  64. Giraud-Gaille, M. M., and Bouligand, Y., 1986, Chitin-protein molecular organization in arthropod, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 29–35, Plenum Press, New York.Google Scholar
  65. Godoy, G., Rodriguez-Kabana, R., Shelby, R. A., and Morgan-Jones, G., 1983, Chitin amendments for control of Meloidogyne arenaria in infested soils. 2. Effects of microbial population, Nematropica 13: 63–74.Google Scholar
  66. Gooday, G. W., 1979, A survey of polysaccharase production: A search for phylogenetic implications, in: Microbial Polysaccharides and Polysaccharases (R. C. W. Berkeley, G. W. Gooday, and D. C. Ellwood, eds.), pp. 437–460, Academic Press, London.Google Scholar
  67. Gooday, G. W., 1983, The microbial synthesis of cellulose, chitin and chitosan, Prog. Ind. Microbiol. 18: 85–127.Google Scholar
  68. Gooday, G. W., and Trinci, A. P. J., 1980, Wall structures and biosynthesis in fungi, in: The Eukaryotic Microbial Cell (G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), 30th Symposium of Society for General Microbiology, Cambridge University Press, Cambridge.Google Scholar
  69. Goodrich, T. D., and Morita, R. Y., 1977a, Incidence and estimation of chitinase activity associated with marine fish and other estuarine samples, Mar. Biol. 41: 349–353.Google Scholar
  70. Goodrich, T. D., and Morita, R. Y., 1977b, Bacterial chitinase in the stomachs of marine fishes from Yaquina Bay, Oregon, USA, Mar. Biol. 41: 335–360.Google Scholar
  71. Gould, W. D., Bryant, R. J., Trofymov, J. A., Anderson, R. V., Elliott, E. T, and Coleman, D. C., 1981, Chitin decomposition in a model soil system. Soil Biol. Biochem. 13: 487–492.Google Scholar
  72. Gow, N. A. R., and Gooday, G. W., 1983, Ultrastructure of chitin in hyphae of Candida albicans and other dimorphic and mycelial fungi, Protoplasma 115: 52–58.Google Scholar
  73. Gow, N. A. R., Gooday, G. W., Rosser, J. D., and Wilson, M. J., 1987, Infrared and X-ray diffraction data on chitins of variable structure, Carbohydr. Res. 165: 105–110.Google Scholar
  74. Gowri, N., Aruchami, M., and Sundara-Rajulu, G., 1986, Natural deacetylation of the cuticle in Sacculina rotundata, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 266–268, Plenum Press, New York.Google Scholar
  75. Gray, T. R. G., and Baxby, P., 1968, Chitin decomposition in soil. The ecology of chitoclastic microorganisms in forest soil, Trans. Br. Mycol. Soc. 51: 293–309.Google Scholar
  76. Gray, T. R. G., and Bell, T. F., 1963, The decomposition of chitin in an acid soil, in Soil Organisms (J. Doeksen and J. van der Drift, eds.), pp. 222–230, North Holland Publishing Co., Amsterdam.Google Scholar
  77. Grimont, P. A. D., Jackson, T. A., Ageron, E., and Noonan, M. J., 1988, Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costerytra zealandica, Int. J. Syst. Bacteriol. 38: 1–6.Google Scholar
  78. Hadwiger, L. A., Fristensky, B., and Riggelman, R. C., 1984, Chitosan, a natural regulator in plantfungal pathogen interactions, increases crop yields, in: Chitin, Chitosan and Related Enzymes (J. P. Zikakis, ed.), pp. 291–302, Academic Press, Orlando.Google Scholar
  79. Hamid, A., Sakuda, T., and Kakimoto, D., 1979, Microflora in the alimentary tract of gray mullet—4. Estimation of enzymic activity of the intestinal bacteria. Bull. Jpn. Soc. Sci. Fish. 45: 99–106.Google Scholar
  80. Hedges, A., and Wolfe, R. S., 1974, Extracellular enzyme from myxobacter AL-1 that exhibits both β-1,4-glucanase and chitosanase activities. J. Bacteriol. 120: 844–853.PubMedGoogle Scholar
  81. Helmke, E., and Weyland, H., 1986, Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria. Mar. Biol. 91: 1–7.Google Scholar
  82. Henis, Y., Sneh, B., and Katan, J., 1967. Effect of organic amendments on Rhizoctonia and accompanying microflora in soil, Can. J. Microbiol. 13: 643–649.PubMedGoogle Scholar
  83. Herth, W., Mulisch, M., and Zugenmaier, P., 1986, Comparison of chitin fibril structure and assembly in three unicellular organisms, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 107–120, Plenum Press, New York.Google Scholar
  84. Herwig, R. P., Staley, J. T., Nerini, M. K., and Braham, H. W., 1984, Baleen whales: Preliminary evidence for forestomach microbial fermentation, Appl. Environ. Microbiol. 47: 421–423.PubMedGoogle Scholar
  85. Herwig, R. P., Pellerin, N. B., Irgens, R. L., Maik, J. S., and Staley, J. T., 1988, Chitinolytic bacteria and chitin mineralization in the marine waters and sediments along the Antarctic Peninsula, FEMS Microbiol. Ecol. 53: 101–112.Google Scholar
  86. Hillman, K., Gooday, G. W., and Prosser, J. I., 1989, A simple model system for small scale in vitro study of estuarine sediment ecosystems, Lett. Appl. Microbiol. 8: 41–44.Google Scholar
  87. Hock, C. W., 1940, Decomposition of chitin by marine bacteria, Biol. Bull. 79: 199–206.Google Scholar
  88. Hood, M. A., and Meyers, S. P., 1973, The biology of aquatic chitinolytic bacteria and their chitinolytic activities, Mer 11: 213–219.Google Scholar
  89. Hood, M. A., and Meyers, S. P., 1977a, Microbiological and chitinoclastic activities associated with Panaeus setiferus, J. Oceanogr. Soc. Jpn. 33: 235–241.Google Scholar
  90. Hood, M. A., and Meyers, S. P., 1977b, Rates of chitin degradation in an estuarine environment, J. Oceanogr. Soc. Jpn. 33: 328–334.Google Scholar
  91. Hood, M. A., and Meyers, S. P., 1978, Chitin degradation in estuarine environments and implications in crustacean biology, in: Proceedings of the First International Conference on Chitin/Chitosan (R. A. A. Muzzarelli and E. R. Pariser, eds.), pp. 563–569, MIT Sea Grant Report 78-7.Google Scholar
  92. Hsu, S. C., and Lockwood, J. L., 1975, Powdered chitin as a selective medium for enumeration of actinomycetes in water and soil, Appl. Microbiol. 29: 422–426.PubMedGoogle Scholar
  93. Huq, A., Small, E. B., West, P. A., Huq, M. I., Rahman, R., and Colwell, R. R., 1983, Ecological relationships between Vibrio cholerae and planktonic crustacean copepods, Appl. Environ. Microbiol. 45: 275–283.PubMedGoogle Scholar
  94. Huq, A., West, P. A., Small, E. B., Huq, M. I., and Colwell, R. R., 1984, Influence of water temperature, salinity and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms, Appl. Environ. Microbiol. 48: 420–424.PubMedGoogle Scholar
  95. Ikeda, T., and Dixon, P., 1982, Observations on moulting in Antarctic krill (Euphausia superba Dana), Aust. J. Mar. Freshwater Res. 33: 71–76.Google Scholar
  96. Iverson, K. L., Bromel, M. C., Anderson, A. W., and Freeman, T. P., 1984, Bacterial symbionts in the sugar beet root maggot Tetanops myopaeformis (von Röder), Appl. Environ. Microbiol. 47: 22–27.PubMedGoogle Scholar
  97. Jeuniaux, C., 1963, Chitine et Chitinolyse, Masson et Cie, Paris.Google Scholar
  98. Jeuniaux, C., 1971, On some biochemical aspects of regressive evolution in animals, in: Biochemical Evolution and the Origin of Life (E. Schoffeniels, ed.), pp. 304–313, North Holland Publishing Co., Amsterdam.Google Scholar
  99. Jeuniaux, C., 1981, Faunistique et ecologie chimique des peuplements benthique sur substrats dur et des sediments de la Baie de Calvi (Corse), Bull. Soc. R. Sci. Liege 11–12: 446–452.Google Scholar
  100. Jeuniaux, C., 1982, La chitine dans le régne animal, Bull. Soc. Zool. France 107: 363–386.Google Scholar
  101. Jeuniaux, C., Dandrifosse, G., and Micha, J. C., 1982, Caracteres et evolution de enzymes chitinolytiques chez les vertebrates inferieurs. Biochem. Syst. Ecol. 10: 365–372.Google Scholar
  102. Jeuniaux, C., Bussers, J. C., Voss-Foucart, M. F., and Poulicek, M., 1986, Chitin production by animals and natural communities in marine environment, in Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 515–522, Plenum Press, New York.Google Scholar
  103. Jeuniaux, C., Voss-Foucart, M., Poulicek, M., and Bussers, J., 1989, Sources of chitin, estimated from new data on chitin biomass and production, in: Proceedings of the 4th International Conference on Chitin/Chitosan (G. Skjak-Braek, T. Anthonsen, and P. A. Sandford, eds.), pp. 3–12, Elsevier, Amsterdam.Google Scholar
  104. Johnstone, D. W., and Cross, T., 1976, The occurrence and distribution of actinomycetes in lakes of the English Lake District, Freshwater Biol. 6: 457–463.Google Scholar
  105. Jones, G. E., 1958, Attachment of marine bacteria to Zooplankton, U.S. Fish. Wildlife Serv. Spec. Sci. Rep. 279: 77–78.Google Scholar
  106. Kaneko, T., and Colwell, R. R., 1975, Adsorption of Vibrioparahaemolyticus onto chitin and copepods, Appl. Microbiol. 29: 269–274.PubMedGoogle Scholar
  107. Kaneko, T., and Colwell, R. R., 1978, The annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microb. Ecol. 4: 135–155.Google Scholar
  108. Khalifa, O., 1965, Biological control of Fusarium wilt of peas by organic soil amendments, Ann. Appl. Biol. 56: 129–137.Google Scholar
  109. Kihara, K., and Morooka, N., 1962, Studies on marine chitin-decomposing bacteria. (I) Classification and description of species, J. Oceanogr. Soc. Jpn. 18: 41–46.Google Scholar
  110. Kim, J., and ZoBell, C. E., 1972, Agarase, amylase, cellulase and chitinase activity at deep sea pressures, J. Oceanogr. Soc. Jpn. 28: 131–137.Google Scholar
  111. Koch, B., and Disteche, A., 1986, The influence of pressure and temperature on the hydrolysis of prawn chitin in seawater by chitinase from Serratia marcescens, Oceanol. Acta 9: 515–517.Google Scholar
  112. Kono, M., Matsui, T., and Shimizur, C., 1987a, Chitin-decomposing bacteria in digestive tracts of cultured red sea bream and Japanese eel, Nippon Suisan Gakkaishi 53: 305–310.Google Scholar
  113. Kono, M., Matsui, T., and Shimizur, C., 1987b, Effect of chitin, chitosan and cellulose as diet supplements on the growth of cultured fish, Nippon Suisan Gakkaishi 53: 125–129.Google Scholar
  114. Kramer, K. J., and Koga, D., 1986, Insect chitin. Physical state, synthesis, degradation and metabolic regulation, Insect Biochem. 16: 851–877.Google Scholar
  115. Kuhl, J., Nittinger, and Siebert, G., 1978, Vervetang von Krillschalen in Futterungsversuchen an de Ratte, Arch. Fischereiwiss. 29: 99–103.Google Scholar
  116. Lakshmanaperumalsamy, P., 1983, Preliminary studies on chitinoclastic bacteria in Vellar Estuary, Mahasagar Bull. Nat. Inst. Oceanogr. 16: 293–298.Google Scholar
  117. Lear, D. W., 1963, Occurrence and significance of chitinolastic bacteria in pelagic waters and zooplankton, in: Symposium on Marine Microbiology (C. H. Oppenheimer, ed.), pp. 594–610, Charles C. Thomas, Springfield, Ill.Google Scholar
  118. Levi, P., 1984, The Periodic Table, (R. Rosenthal, trans.), Shocken Books, Pantheon Books of Random House, New York.Google Scholar
  119. Lindsay, G. J. H., 1984, Distribution and function of digestive tract chitinolytic enzymes in fish, J. Fish. Biol. 24: 529–536.Google Scholar
  120. Lindsay, G. J. H., and Gooday, G. W., 1985a, Action of chitinase in spines of the diatom Thalassiosira fluviatilis, Carbohydr. Polymers 5: 131–140.Google Scholar
  121. Lindsay, G. J. H., and Gooday, G. W., 1985b, Chitinolytic enzymes and the bacterial microflora in the digestive tract of cod, Gadus morhua, J. Fish. Biol. 26: 255–265.Google Scholar
  122. Lindsay, G. J. H., Walton, M. J., Adron, J. W., Fletcher, T. C., Cho, C. Y., and Coway, C. B., 1984, The growth of rainbow trout (Salmo gairdneri) given diets containing chitin and its relationships to chitinolytic enzymes and chitin digestibility, Aquaculture 37: 315–334.Google Scholar
  123. Lingappa, Y., and Lockwood, J. L., 1962, Chitin media for selective isolation and culture of actinomycetes, Phytopathology 52: 317–323.Google Scholar
  124. Linkins, A. E., and Neal, J. L., 1982, Soil cellulase, chitinase, and protease activity in Eriophorum vaginutum tussock tundra at Eagle Summit, Alaska, Holarctic Ecol. 5: 135–138.Google Scholar
  125. Liston, J., Wiebe, W. J., and Lighthart, B., 1965, Activities of marine benthic bacteria, Res. Fish. Coll. Fish. Contrib. Univ. Wash. 1965: 39–41.Google Scholar
  126. Lunblad, G., Elander, M., and Lind, J., 1976, Chitinase and β-N-acetylglucosaminidase in the digestive juice of Helix pomatia, Acta Chem. Scand. 30: 889–894.Google Scholar
  127. Lunblad, G., Elander, M., Lind, J., and Slettengren, 1979, Bovine serum chitinase, Eur. J. Biochem. 100: 455–460.Google Scholar
  128. Lysenko, O., 1976, Chitinase of Serratia marcescens and its toxicity to insects, J. Invertebr. Pathol. 27: 385–386.Google Scholar
  129. MacDonald, N. L., Stark, J. R., and Austin, B., 1986, Bacterial microflora in the gastro-intestinal tract of Dover sole (Solea solea L.), with emphasis on the possible role of bacteria in the nutrition of the host, FEMS Microbiol. Lett. 35: 107–111.Google Scholar
  130. MacDonell, M. T., Baker, R. M., Singleton, F. L., and Hood, M. A., 1984, Effects of surface association and osmolality on seawater populations of an environmental isolate of Vibrio cholerae, in: Vibrios in the Environment (R. R. Colwell, ed.), pp. 535–549, John Wiley & Sons, New York.Google Scholar
  131. Manson, F. D. C., Gooday, G. W, and Fletcher, T. C., 1989, The development of gastric and blood chitinase activity in the turbot Scophthalmus maximus (L.), in Proceedings of the 4th International Conference on Chitin/Chitosan (G. Skag-Braek, T. Anthonsen, and P. A. Sandford, eds.), pp. 243–253. Elsevier, Amsterdam.Google Scholar
  132. Martin, M. M., Gieselmann, M. J., and Martin, J. S., 1973, Rectal enzymes of attine ants: α-amylase and chitinase, J. Insect. Physiol. 19: 1409–1416.Google Scholar
  133. Martin, M. M., Kukor, J. J., Martin, J. S., O’Toole, T. E., and Johnson, M. W., 1981, Digestive enzymes of fungus-feeding beetles, Physiol. Zool. 54: 137–145.Google Scholar
  134. Mauch, F., Hadwiger, L. A., and Boller, T., 1988. Antifungal hydrolases in pea tissue, Plant Physiol. 87: 325–333.PubMedGoogle Scholar
  135. McCormick, C. L., and Anderson, R. W., 1984, Synthesis and characterisation of chitin pendently substituted with the herbicide metribuzen, in: Chitin, Chitosan and Related Enzymes (J. P. Zikakis, ed.), pp. 41–53, Academic Press, Orlando.Google Scholar
  136. Metraux, J. P., and Boller, T., 1986, Local and systemic induction of chitinase in cucumber Cucumis sativus cultivar Wisconsin plants in response to viral, bacterial and fungal infections, Physiol. Mol. Plant Pathol. 28: 161–170.Google Scholar
  137. Mian, J. H., Godoy, G., Shelby, R. A., Rodriguez-Kabana, R., and Morgan-Jones, G., 1982, Chitin amendments for control of Meloidogyne arenaria in infested soil, Nematropica 12: 71–84.Google Scholar
  138. Micha, J. C., Dandrifosse, G., and Jeuniaux, C., 1973, Distribution et localisation tissulaire de la synthese des chitinases chez les vertebres inferieurs, Arch. Int. Physiol. Biochim. 81: 439–451.PubMedGoogle Scholar
  139. Mihaly, K., 1960, Chitin breakdown of rhizosphere bacteria, Nature (London) 188: 251.Google Scholar
  140. Minke, R., and Blackwell, J., 1978, The structure of α-chitin, J. Mol. Biol. 120: 167–181.PubMedGoogle Scholar
  141. Mitchell, R., 1963, Addition of fungal cell-wall components to soil for biological disease control, Phytopathology 53: 1068–1071.Google Scholar
  142. Mitchell, R., and Alexander, M., 1962, Microbiological processes associated with the use of chitin for biological control, Soil Sci. Soc. Am. Proc. 26: 556–558.Google Scholar
  143. Mommsen, T. P., 1980, Chitinase and β-N-acetylglycosaminidase from the digestive fluid of the spider, Biochim. Biophys. Acta 612: 361–372.PubMedGoogle Scholar
  144. Monaghan, R. L., 1975, The Discovery, Distribution and Utilisation of Chitosanase, Ph.D. Thesis, Rutgers University, New Brunswick, N.J.Google Scholar
  145. Monaghan, R. L., Eveleigh, D. E., Tewari, R. P., and Reese, E. T., 1973, Chitosanase, a novel enzyme, Nature (London) New Biol. 245: 78–80.Google Scholar
  146. Monreal, J., and Reese, E. T., 1969, The chitinase of Serratia marcescens, Can. J. Microbiol. 15: 689–696.PubMedGoogle Scholar
  147. Morita, R. Y., 1979, Current status of the microbiology of the deep sea, Ambio Spec. Rep. 6: 33–36.Google Scholar
  148. Mowlah, A. H., Sakata, T., and Kakimoto, D. M., 1979, Microflora in the alimentary tract of gray mullet—V. Studies on the chitinolytic enzymes of Enterobacter and Vibrio, Bull. Jpn. Soc. Sci. Fish. 45: 1313–1317.Google Scholar
  149. Murray, C. L., and Lovett, J. S., 1966, Nutritional requirements of the chytrid, Karlingia asterocysta, an obligate chitinophile, Am. J. Bot. 53: 469–476.Google Scholar
  150. Muzzarelli, R. A. A., 1977, Chitin, Pergamon Press, Oxford.Google Scholar
  151. Muzzarelli, R. A. A., 1985, Chitin, in: The Polysaccharides (G. O. Aspinall, ed.), pp. 417–450, Academic Press, Orlando.Google Scholar
  152. Nalin, D. R., Reid, V. D., Levine, M. M., and Cisneros, L., 1979, Adsorption and growth of Vibrio cholerae on chitin, Infect. Immun. 25: 768–770.PubMedGoogle Scholar
  153. Ohwada, K., Tabor, P. S., and Colwell, R. R., 1980, Species composition and barotolerance of gut microflora of deep sea benthic macrofauna collected at various depths in the Atlantic Ocean, Appl. Environ. Microbiol. 40: 746–755.PubMedGoogle Scholar
  154. Okafor, N., 1966a, Ecology of micro-organisms in chitin buried in soil, J. Gen. Microbiol. 44: 311–327.PubMedGoogle Scholar
  155. Okafor, N., 1966b, The ecology of micro-organisms on, and the decomposition of insect wings in the soil, Plant Soil 25: 211–237.Google Scholar
  156. Okafor, N., 1966c, Estimation of the decomposition of chitin in soil by the method of carbon dixoide release, Soil Sci. 102: 140–142.Google Scholar
  157. Okafor, N., 1967, Decomposition of chitin by micro-organisms isolated from a temperate soil and a tropical soil, Nova Hedwigia 13: 209–226.Google Scholar
  158. Okafor, N., 1970, Influence of chitin on mycoflora and length of roots of wheat seedlings, Trans. Br. Mycol. Soc. 55: 483–485.Google Scholar
  159. Okutani, K., 1966, Studies of chitinolytic systems in the digestive tracts of Lateolabrux japonicus, Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 10: 1–47.Google Scholar
  160. Okutani, K., 1975, Microorganisms related to mineralization of chitin in aquatic environments, in: Nitrogen Fixation and Nitrogen Cycle (H. Takahashi, ed.), pp. 147–154, University of Tokyo Press, Tokyo.Google Scholar
  161. Okutani, K., and Kitada, H., 1971, The distribution of chitin and iV-acetylglucosamine-decomposing bacteria in aquatic environments, Tech. Bull. Fac. Agric. Kagawa Univ. 23: 127–136.Google Scholar
  162. Ou, L., and Alexander, M., 1974, Effect of glass microbeads on the microbial degradation of chitin, Soil Sci. 118: 164–167.Google Scholar
  163. Parsons, J. W., 1980, Chemistry and distribution of amino sugars in soils and soil organisms, in: Soil Biochemistry, Vol. 5 (E. A. Paul and J. N. Ladd, eds.), pp. 197–227, Marcel Dekker, Inc., New York.Google Scholar
  164. Patton, R. S., and Chandler, P. T., 1975, In vivo digestibility evaluation of chitinous material, J. Dairy Sci. 58: 397–403.Google Scholar
  165. Patton, R. S., Chandler, P. T., and Gonzalez, O. G., 1975, Nutritive value of crab meal for young ruminating calves, J. Dairy Sci. 58: 404–409.Google Scholar
  166. Pearlmutter, N. L., and Lembi, C. A., 1978, Localization of chitin in algal and fungal cell walls by light and electron microscopy, J. Histochem. Cytochem. 26: 782–791.PubMedGoogle Scholar
  167. Pel, R., and Gottschal, J. C., 1986a, Mesophilic chitin-degrading anaerobes isolated from an estuarine environment, FEMS Microbiol. Ecol 38: 39–49.Google Scholar
  168. Pel, R., and Gottschal, J. C., 1986b, Chitinolytic communities from an anaerobic estuarine environments, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 539–546, Plenum Press, New York.Google Scholar
  169. Pel, R., and Gottschal, J. C., 1986c, Stimulation of anaerobic chitin degradation in mixed cultures, Antonie van Leewenhoek J. Microbiol. Serol. 52: 359–360.Google Scholar
  170. Pel, R., and Gottschal, J. C., 1987, The effect of oxygen and sulfydryl reagents on the hydrolysis and the fermentation of chitin by Clostridium 9.1, FEMS Microbiol. Lett. 44: 59–62.Google Scholar
  171. Pel, R., and Gottschal, J. C., 1989, Interspecies interaction based on transfer of a thioredoxin-like compound in anaerobic chitin-degrading mixed cultures, FEMS Microbiol. Ecol. 62: 349–358.Google Scholar
  172. Peter, M. G., Kegel, G., and Keller, R., 1986, Structural studies on sclerotized insect cuticle, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 21–28, Plenum Press, New York.Google Scholar
  173. Polyanskaya, L. M., Kozhevin, P. A., and Zvyagintsev, D. G., 1985, Stimulation and elimination of nodule bacteria in soil after the introduction of an actinomycete and chitin, Microbiology 53: 830–833.Google Scholar
  174. Portier, R. J., and Meyers, S. P., 1981, Chitin transformation and pesticide interactions in a simulated aquatic microenvironmental system, Dev. Ind. Microbiol. 22: 543–555.Google Scholar
  175. Portier, R. J., and Meyers, S. P., 1984, Coupling of in situ and laboratory microcosm protocols for ascertaining fate and effect of xenobiotics, in: Toxicity Screening Procedures using Bacterial Systems (D. Liu and B. J. Outka, eds.), pp. 345–379, Marcel Dekker, Inc., New York.Google Scholar
  176. Poulicek, M., 1982, Coquilles et Autre Structures Squelettiques des Mollusques: Composition, Chimique, Biomasse et Biodegradation en Milieu Marin, Ph.D. thesis, University of Liege, Liege, Belgium.Google Scholar
  177. Poulicek, M., 1983, Patterns of mollusk shell biodegradation in bathyal and abyssal sediments, J. Mollusc Stud. Suppl. 12A: 136–141.Google Scholar
  178. Poulicek, M., 1985, Importance of chitin in the biogeochemical cycling of heavy metals in oceanic environment, in: Proceedings, Metal Cycling in the Environment, Brussels, pp. 153–165., SCOPE, Brussels, Belgium.Google Scholar
  179. Poulicek, M., and Jaspar-Versali, M. F., 1981, Etude experimentalle de la degradation des coquilles de mollusques au niveau des sediments marins, Bull. Soc. R. Sci. Liege 50: 513–518.Google Scholar
  180. Poulicek, M., and Jaspar-Versali, M. F., 1984, Biodegradation de la trame organique des coquilles de mollusques en mileau marin: action des microorganismes endolithes, Bull. Soc. R. Sci. Liege 53: 114–126.Google Scholar
  181. Poulicek, M., and Jeuniaux, C., 1982, Biomass and biodegradation of mollusk shell chitin in some marine sediment, in: Chitin and Chitosan (S. Hirano and S. Tokura, eds.), pp. 196–199, The Japanese Society of Chitin and Chitosan, Tottori.Google Scholar
  182. Poulicek, M., and Jeuniaux, C., 1989, Chitin biomass in marine sediments, in: Proceedings of the 4th International Conference on Chitin/Chitosan (G. Skjak-Braek, T. Anthronsen, and P. A. Sandford, eds.), Elsevier, Amsterdam.Google Scholar
  183. Poulicek, M., Voss-Foucart, M. F., and Jeuniaux, C., 1986a, Chitinoproteic complexes and mineralization in mollusk skeletal structures, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 7–12, Plenum Press, New York.Google Scholar
  184. Poulicek, M., Goffinet, G., Voss-Foucart, M. F., Bussers, J. C., Jaspar-Versali, M. F., and Toussaint, C., 1986b, Chitin degradation in natural environment (mollusk shells and crab carapaces), in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 547–550, Plenum Press, New York.Google Scholar
  185. Poulicek, M., Machiroux, R., and Toussaint, C., 1986c, Chitin diagenesis in deep-water sediments, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 523–530, Plenum Press, New York.Google Scholar
  186. Rehbein, H., Danulat, E., and Leineman, M., 1986, Activities of chitinase and protease and concentration of fluoride in the digestive tract of Antarctic fishes feeding on krill Euphausia superba (Dana), Comp. Biochem. Physiol. 85A: 545–551.Google Scholar
  187. Reichardt, W., 1988, Impact of the antarctic benthic fauna on the enrichment of biopolymer degrading psychrophilic bacteria, Microb. Ecol. 15: 311–321.Google Scholar
  188. Reichardt, W., and Morita, R. Y., 1982, Influence of temperature adaptation on glucose metabolism in a psychrotrophic strain of Cytophaga johnsonae, Appl. Environ. Microbiol. 44: 1282–1288.PubMedGoogle Scholar
  189. Reichardt, W., Gunn, B., and Colwell, R. R., 1983, Ecology and taxonomy of chitinoclastic Cytophaga and related chitin-degrading bacteria isolated from an estuary, Microb. Ecol. 9: 273–294.Google Scholar
  190. Reisert, P. S., and Fuller, M. S., 1962, Decomposition of chitin by Chytridiomyces species, Mycologia 54: 647–657.Google Scholar
  191. Rittenberg, S. C., Anderson, D. Q., and ZoBell, C. E., 1937, Studies on the enumeration of marine anaerobic bacteria, Proc. Soc. Exp. Biol. Med. 35: 652–653.Google Scholar
  192. Roberts, W. K., and Selitrennikoff, C. P., 1988, Plant and bacterial chitinases differ in antifungal activity, J. Gen. Microbiol. 134: 169–176.Google Scholar
  193. Rodriguez-Kabana, R., Godoy, G., Morgan-Jones, G., and Shelby, R. A., 1983, The determination of soil chitinase activity: Conditions for assay and ecological studies, Plant Soil 75: 95–106.Google Scholar
  194. Rudall, K. M., and Kenchington, W., 1973, The chitin system, Biol. Rev. 48: 597–636.Google Scholar
  195. Ruschke, R., 1967, Uber weitere chitinolytische Bakterien aus dem Feldsee, Arch. Hydrobiol. Suppl. 23: 115–120.Google Scholar
  196. Schlumbaum, A., Mauch, F., Vogeli, U., and Boller, T., 1986, Plant chitinases are potent inhibitors of fungal growth, Nature (London) 324: 365–367.Google Scholar
  197. Schwarz, J. R., Yayanos, A. A., and Colwell, R. R., 1976, Metabolic activities of the intestinal microflora of a deep sea invertebrate, Appl. Environ. Microbiol. 31: 46–48.PubMedGoogle Scholar
  198. Seki, H., 1965a, Microbiological studies on the decomposition of chitin marine environment—XI. Rough estimation of chitin decomposition in the ocean, J. Oceanogr. Soc. Jpn. 21: 17–24.Google Scholar
  199. Seki, H., 1965b, Microbiological studies on the decomposition of chitin marine environment—X. Decomposition of chitin in marine sediments, J. Oceanogr. Soc. Jpn. 21: 25–32.Google Scholar
  200. Seki, H., 1966, Seasonal fluctuation of heterotrophic bacteria in the sea of Aburatsubo Inlet, J. Oceanogr. Soc. Jpn. 22: 15–26.Google Scholar
  201. Seki, H., and Taga, N., 1963a, Microbial studies on the decomposition of chitin in marine environment—I. Occurrence of chitinoclastic bacteria in the neritic region. J. Oceanogr. Soc. Jpn. 19: 101–108.Google Scholar
  202. Seki, H., and Taga, N., 1963b, Microbial studies on the decomposition of chitin in marine environment—III. Aerobic decomposition of chitin by isolated chitinolytic bacteria, J. Oceanogr. Soc. Jpn. 19: 143–157.Google Scholar
  203. Seki, H., and Taga, N., 1965a, Microbial studies on the decomposition of chitin in marine environment—V. Chitinoclastic bacteria as symbionts. J. Oceanogr. Soc. Jpn. 19: 158–161.Google Scholar
  204. Seki, H., and Taga, N., 1965b, Microbial studies on the decomposition of chitin in marine environment—VIII. Distribution of chitinolytic bacteria in the pelagic and neritic waters, J. Oceanogr. Soc. Jpn. 21: 174–187.Google Scholar
  205. Seki, H., and Taga, N., 1965c, Microbial studies on the decomposition of chitin in marine environment—VI. Chitinoclastic bacteria in the digestive tract of whales from the Antarctic Ocean. J. Oceanogr. Soc. Jpn. 20: 272–277.Google Scholar
  206. Sietsma, J. H., Vermuelen, C. A., and Wessels, J. G. H., 1986, The role of chitin in hyphal morphogenesis, in: Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 63–69, Plenum Press, New York.Google Scholar
  207. Skinner, C. E., and Dravis, F., 1937, A quantitative determination of chitin destroying microorganisms in soil, Ecology 18: 391–397.Google Scholar
  208. Smith, R. J., and Grula, E. A., 1983, Chitinase is an inducible enzyme in Beauvaria bassiana, J. Invertebr. Pathol 42: 319–326.Google Scholar
  209. Smucker, R. A., 1982, Determination of chitin hydrolytic potential in an estuary, in: Chitin and Chitosan (S. Hirano and S. Tokura, eds.), pp. 135–139, The Japanese Society of Chitin and Chitosan, Tottori.Google Scholar
  210. Smucker, R. A., 1984, Biochemistry of the Streptomyces spore sheath, in: Biological, Biochemical and Biomedical Aspects of Actinomycetes (L. Ortiz-Ortiz, L. F. Bojalib, and V. Yakoleff, eds.), pp. 171–177, Academic Press, Orlando.Google Scholar
  211. Smucker, R. A., and Dawson, R., 1986, Products of photosynthesis by marine phytoplankton: Chitin in TCA ‘protein’ precipitates, J. Exp. Mar. Biol. Ecol. 104: 143–152.Google Scholar
  212. Smucker, R. A., and Pfister, R. M., 1978, Characteristics of Streptomyces coelicolor A3(2) aerial spore rodlet mosaic, Can. J. Microbiol. 24: 397–408.PubMedGoogle Scholar
  213. Smucker, R. A., and Wright, D. A., 1984, Chitinase activity in the crystalline style of the American oyster Crassostrea virginica, Comp. Biochem. Physiol. 77A: 239–241.Google Scholar
  214. Smucker, R. A., Warnes, C. E., and Haviland, C. J., 1985, Chitinase production by a freshwater Pseudomonad, in: Biodeterioration 6 (S. Barry, D. R. Houghton, G. C. Llewellyn, and C. E. O’Rear, eds.), pp. 549–553, C.A.B. International Institute, London.Google Scholar
  215. Sneh, B., and Henis, Y., 1970, Production of antifungal substances against Rhizoctonia solani in chitin amended-soil, Phytopathology 62: 595–600.Google Scholar
  216. Sochard, M. R., Wilson, D. F., Austin, B., and Colwell, R. R., 1979, Bacteria associated with the surface and gut of marine copepods. Appl. Environ. Microbiol. 37: 750–759.PubMedGoogle Scholar
  217. Soderhall, K., and Unestam, T., 1975, Properties of extracellular enzymes from Aphanomyces astaci and their relevance in the penetration process of crayfish cuticle. Physiol. Plant. 35: 140–146.Google Scholar
  218. Spiegel, Y., Conn, E., and Chet, I., 1986, Use of chitin for controlling plant parasitic nematodes. I. Direct effects on nematode reproduction and plant performance, Plant Soil 95: 87–96.Google Scholar
  219. Spiegel, Y., Chet, I., and Conn, E., 1987, Use of chitin for controlling plant parasitic nematodes. H. Mode of action, Plant Soil 98: 337–346.Google Scholar
  220. Stanier, R. Y., 1947, Studies on non-fruiting myxobacteria. I. Cytophaga johnsonae n.sp., a chitindecomposing myxobacterium, J. Bacteriol. 53: 207–315.Google Scholar
  221. St Leger, R. J., Charnley, A. K., and Cooper, R. M., 1986a, Cuticle degrading enzymes of entomopathogenic fungi: Mechanisms of interaction between pathogen enzymes and insect cuticle, J. Invertebr. Pathol. 47: 295–302.Google Scholar
  222. St Leger, R. J., Cooper, R. M., and Charnley, A. K., 1986b, Cuticle-degrading enzymes of entomopathogenic fungi: Regulation of production of chitinolytic enzymes, J. Gen. Microbiol. 132: 1509–1517.Google Scholar
  223. Streichsbier, F., 1982, Okologische Untersuchungen zum mikrobiellen Chitinabbau in stadtnahen Fliessgewassern, Wasser Abwasser 25: 53–70.Google Scholar
  224. Streichsbier, F., 1983, Utilization of chitin as sole carbon and nitrogen source by Chromobacterium violaceum, FEMS Microbiol. Lett. 19: 129–132.Google Scholar
  225. Sturz, H., and Robinson, J., 1986, Anaerobic decomposition of chitin in freshwater sediments, in Chitin in Nature and Technology (R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, eds.), pp. 531–538, Plenum Press, New York.Google Scholar
  226. Sundarraj, N., and Bhat, J. V., 1972, Breakdown of chitin by Cytophaga johnsonae, Arch. Mikrobiol. 85: 159–167.PubMedGoogle Scholar
  227. Surarit, R., Gopal, P. K., and Shepherd, M. G., 1988, Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans, J. Gen. Microbiol. 134: 1723–1730.PubMedGoogle Scholar
  228. Timmis, K., Hobbs, G., and Berkeley, R. C. W., 1974, Chitinolytic clostrida isolated from marine mud, Can. J. Microbiol. 20: 1284–1285.PubMedGoogle Scholar
  229. Tracey, M. V., 1955, Cellulase and chitinase in soil amoebae, Nature (London) 175: 815.Google Scholar
  230. Unestam, T., 1966, Chitinolytic, cellulolytic and pectinolytic activity in vitro of some parasitic and saprophytic oomycetes, Physiol. Plant. 19: 15–30.Google Scholar
  231. Unestam, T., 1968, Some properties of unpurified chitinase from crayfish plague fungus, Aphanomyces astaci, Physiol. Plant. 21: 137–147.Google Scholar
  232. Van Eck, W. H., 1978, Autolysis of chlamydospores of Fusarium solani f. sp. Cucurbitae in chitin and laminarin amended soils, Soil Biol. Biochem. 10: 89–92.Google Scholar
  233. Veldkamp, H., 1955, A study of the aerobic decomposition of chitin by microorganisms, Meded. Landbouwhogesch. Wageningen 55: 127–174.Google Scholar
  234. Vermeulen, C. A., and Wessels, J. G. H., 1984, Ultrastructural differences between wall apices of growing and non-growing hyphae of Schizophyllum commune, Protoplasma 120: 123–130.Google Scholar
  235. Voss-Foucart, M. F., Jeuniaux, C., and Greyoire, C., 1974, Resistance de la chitine de la nacre du nautile (Mollusque Cephalopode) a l’action de certains facteurs intervenant au cours de la fossilisation, Comp. Biochem. Physiol. 48B: 447–451.Google Scholar
  236. Ward, H. D., Alroy, J., Lev, B. I., Keusch, G. T., and Pereira, M. E. A., 1985, Identification of chitin as a structural component of Giardia cysts, Infect. Immun. 49: 629–534.PubMedGoogle Scholar
  237. Warnes, C. E., and Randies, C. I., 1977, Preliminary studies on chitin decomposition in Lake Erie sediments, Ohio J. Sci. 77: 224–230.Google Scholar
  238. Warnes, C. E., and Randies, C. I., 1980, Succession in a microbial community associated with chitin in Lake Erie sediment and water, Ohio J. Sci. 80: 250–255.Google Scholar
  239. Warnes, C. E., and Rux, T. P., 1982, Chitin mineralisation in a freshwater habitat, in: Chitin and Chitosan (S. Hirano and S. Tokura, eds.), pp. 191–195, The Japanese Society of Chitin and Chitosan, Tottori.Google Scholar
  240. Weyland, H., 1981, Distribution of actinomycetes on the sea floor, Zentralbl. Bakteriol. 11: 185–193.Google Scholar
  241. Williams, S. T., and Robinson, C. S., 1981, The role of streptomycetes in decomposition of chitin in acidic soils, J. Gen. Microbiol. 127: 55–63.Google Scholar
  242. Wirsen, C. O., and Jannasch, H. W., 1976, Decomposition of solid organic materials in the deep sea, Environ. Sci. Technol. 10: 880–886.Google Scholar
  243. Wolkin, R. H., and Pate, J. L., 1985, Selection for nonadherent or nonhydrophobic mutants co-selects for non-spreading mutants of Cytophaga johnsonae and other gliding bacteria, J. Gen. Microbiol. 131: 737–750.Google Scholar
  244. Wyckoff, R. W. G., 1972, The Biochemistry of Animal Fossils, Scientechnica Publ., Bristol.Google Scholar
  245. Yamamoto, H., and Seki, H., 1979, Impact of nutrient enrichment in a waterchestnut ecosystem at Takahama-Iri bay of Lake Kasumigaura, Japan, Water Air Soil Pollut. 12: 519–527.Google Scholar
  246. Yoshida, Y., and Sera, H., 1970, On chitinolytic activities in the digestive tracts of several species of fishes and mastication and digestion of foods by them. Bull. Jpn. Soc. Sci. Fish. 36: 751–754.Google Scholar
  247. Zhloba, N. M., Tiunova, N. A., and Sidorova, I. I., 1980, Extracellular hydrolytic enzymes of mycophilic fungi, Mikol. Fitopatol. 14: 496–499.Google Scholar
  248. ZoBell, C. E., and Rittenberg, S. C., 1938, The occurrence and characteristics of chitinoclastic bacteria in the sea, J. Bacteriol. 35: 275–287.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Graham W. Gooday
    • 1
  1. 1.Department of Genetics and Microbiology, Marischal CollegeUniversity of AberdeenAberdeenScotland

Personalised recommendations