Physiological Ecology of Free-Living Protozoa

  • B. J. Finlay
Part of the Advances in Microbial Ecology book series (AMIE, volume 11)


There are about 20,000 species of the single-celled animal-like organisms we call protozoa, and they are the most abundant phagotrophs in the biosphere. One milliliter of sea water contains about 1000 heterotrophic flagellates (Sherr and Sherr, 1984; Fenchel, 1988), freshwater sediments contain about 10,000 ciliates (Finlay, 1980, 1982), and organically rich habitats such as activated sludge plants support at least 105 ciliates and flagellates per milliliter (Curds, 1973). The calcareous and siliceous oozes that cover most of the marine benthos are largely composed of the sedimented shells and skeletons of planktonic foraminifera and radiolaria, and at least one wonder of the ancient world, the great pyramid of Cheops at Gizeh, consists almost entirely of the compacted shells of the fossil foraminiferan Nummulites gizehensis (see Haynes, 1981).


Fruiting Body Dictyostelium Discoideum Planktonic Foraminifera Heterotrophic Flagellate Ciliated Protozoan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, D., and Wiessner, W., 1985, Nitrogen nutrition of endosymbiotic Chlorella spec., Endocyt. Cell Res. 2: 55–64.Google Scholar
  2. Anderson, O. R., 1983, Radiolaria, Springer-Verlag, New York.CrossRefGoogle Scholar
  3. Anderson, O. R., and Bé, A. W. H., 1976, The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates, J. Foraminiferal Res. 6: 1–21.CrossRefGoogle Scholar
  4. Anderson, O. R., Spindler, M., Bé, A. W. H., and Hemleben, C., 1979, Trophic activity of planktonic foraminifera, J. Mar. Biol. Assoc. U. K. 59: 791–799.CrossRefGoogle Scholar
  5. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  6. Barber, R. T., White, A. W., and Siegelman, H. W., 1969, Evidence for a cryptomonad symbiont in the ciliate, Cyclotrichium meunieri, J. Phycol. 5: 86–88.CrossRefGoogle Scholar
  7. Bé, A. W. H., Hemleben, C., Anderson, O. R., Spindler, M., Hacunda, J., and Tuntivate-Choy, S., 1977, Laboratory and field observations of living planktonic foraminifera, Micropaleontology 23: 155–179.CrossRefGoogle Scholar
  8. Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20: 193–219.PubMedCrossRefGoogle Scholar
  9. Berninger, U.-G., Finlay, B. J., and Canter, H. M., 1986, The spatial distribution and ecology of zoochlorellae-bearing ciliates in a productive pond, J. Protozool. 33: 557–563.Google Scholar
  10. Bick, H., 1972, Ciliated Protozoa. An Illustrated Guide to the Species Used as Biological Indicators in Freshwater Biology, World Health Organization, Geneva.Google Scholar
  11. Bick, H., and Kunze, S., 1971, Eine Zusammenstellung von autokologischen und saprobiologischen Befunden an Susswasserciliaten, Int. Rev. Gesamten Hydrobiol. 56: 337–384.CrossRefGoogle Scholar
  12. Bird, D. F., and Kalff, J., 1986, Bacterial grazing by planktonic lake algae, Science 231: 493–495.PubMedCrossRefGoogle Scholar
  13. Blackbourn, D. J., Taylor, F. J. R., and Blackbourn, J., 1973, Foreign organelle retention by ciliates, J. Protozool. 20: 286–288.Google Scholar
  14. Blanton, R. L., and Olive, L. S., 1983a, Ultrastructure of aerial stalk formation by the ciliated protozoan Sorogena stoianovitchae, Protoplasma 116: 125–135.CrossRefGoogle Scholar
  15. Blanton, R. L., and Olive, L. S., 1983b, Stalk function during sorogenesis by the ciliated protozoan Sorogena stoianovitchae, Protoplasma 116: 136–144.CrossRefGoogle Scholar
  16. Blanton, R. L., Warner, S.A., and Olive, L. S., 1983, The structure and composition of the stalk of the ciliated protozoan Sorogena stoianovitchae, J. Protozool. 30: 617–624.Google Scholar
  17. Boltovskoy, E., and Wright, R., 1976, Recent Foraminifera, Dr. W. Junk, The Hague.Google Scholar
  18. Bonner, J. T., Barkley, D. S., Hall, E. M., Konijn, T. M., Mason, J. W., O’Keefe, G., and Wolfe, P. B., 1969, Acrasinase, and the sensitivity to acrasin in Dictyostelium discoideum, Dev. Biol. 20: 72–87.PubMedCrossRefGoogle Scholar
  19. Bradbury, P. C., and Olive, L. S., 1980, Fine structure of the feeding stage of a sorogenic ciliate, Sorogena stoianovitchae gen. n., sp. n., J. Protozool. 27: 267–277.Google Scholar
  20. Brown, J. A., and Nielsen, P. J., 1974, Transfer of photosynthetically produced carbohydrate from endosymbiotic chlorellae to Paramecium bursaria, J. Protozool. 21: 569–570.PubMedGoogle Scholar
  21. Chang, M. T, Raper, K. B., and Poff, K. L., 1983, The effect of light on morphogenesis of Dictyostelium mucoroides, Exp. Cell Res. 143: 335–341.PubMedCrossRefGoogle Scholar
  22. Chapman-Andresen, C., and Hamburger, K., 1981, Respiratory studies on the giant amoeba Pelomyxa palustris, J. Protozool. 28: 433–440.Google Scholar
  23. Corliss, J. O., and Esser, S. C., 1974, Comments on the role of the cyst in the life cycle and survival of free-living protozoa, Trans. Am. Microsc. Soc. 93: 578–593.PubMedCrossRefGoogle Scholar
  24. Cronkite, D., and van den Brink, S., 1981, The role of oxygen and light in guiding “photoaccumulation” in the Paramecium bursaria-Chlorella symbiosis, J. Exp. Zool. 217: 171–177.CrossRefGoogle Scholar
  25. Curds, C. R., 1973, The role of protozoa in the activated-sludge process, Am. Zool. 13: 161–169.Google Scholar
  26. Doddema, H. J., and Vogels, G. D., 1978, Improved identification of methanogenic bacteria by fluorescence microscopy, Appl Environ. Microbiol. 36: 752–754.PubMedGoogle Scholar
  27. Erez, J., 1983, Calcification rates, photosynthesis and light in planktonic foraminifera, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de Jong, eds.), pp. 307–312, D. Reidel Publishing Co., Dordrecht, The Netherlands.CrossRefGoogle Scholar
  28. Feit, I. N., and Sollitto, R. B., 1987, Ammonia is the gas used for the spacing of fruiting bodies in the cellular slime mold, Dictyostelium discoideum, Differentiation 33: 193–196.CrossRefGoogle Scholar
  29. Fenchel, T., 1968, On “red water” in the Isefjord (inner Danish waters) caused by the ciliate Mesodinium rubrum, Ophelia 5: 245–253.Google Scholar
  30. Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.Google Scholar
  31. Fenchel, T., 1986a, Ecology of Protozoa, Springer-Verlag, Berlin.Google Scholar
  32. Fenchel, T., 1986b, Protozoan filter feeding, Prog. Protistol. 1: 65–113.Google Scholar
  33. Fenchel, T., 1986c, The ecology of heterotrophic flagellates, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 57–97, Plenum Press, New York.Google Scholar
  34. Fenchel, T., 1988, Marine plankton food chains, Annu. Rev. Ecol. Syst. 19: 19–38.CrossRefGoogle Scholar
  35. Fenchel, T., and Finlay, B. J., 1983, Respiration rates in heterotrophic free-living protozoa, Microb. Ecol. 9: 99–122.CrossRefGoogle Scholar
  36. Fenchel, T., and Finlay, B. J., 1984, Geotaxis in the ciliated protozoon Loxodes, J. Exp. Biol. 110: 17–33.Google Scholar
  37. Fenchel, T., and Finlay, B. J., 1986a, The structure and function of Müller vesicles in loxodid ciliates, J. Protozool. 33: 69–76.Google Scholar
  38. Fenchel, T., and Finlay, B. J., 1986b, Photobehavior of the ciliated protozoon Loxodes: taxic, transient and kinetic responses in the presence and absence of oxygen, J. Protozool. 33: 139–145.Google Scholar
  39. Fenchel, T., Perry, T., and Thane, A., 1977, Anaerobiosis and symbiosis with bacteria in free-living ciliates, J. Protozool. 24: 154–163.PubMedGoogle Scholar
  40. Filosa, M. F., 1979, Macrocyst formation in the cellular slime mold Dictyostelium mucoroides: involvement of light and volatile morphogenetic substance(s), J. Exp. Zool. 207: 491–495.CrossRefGoogle Scholar
  41. Finlay, B. J., 1980, Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile, Freshwater Biol. 10: 15–34.CrossRefGoogle Scholar
  42. Finlay, B. J., 1981, Oxygen availability and seasonal migrations of ciliated protozoa in a freshwater lake, J. Gen. Microbiol. 123: 173–178.Google Scholar
  43. Finlay, B. J., 1982, Effects of seasonal anoxia on the community of benthic ciliated protozoa in a productive lake, Arch. Protistenkd. 125: 215–222.CrossRefGoogle Scholar
  44. Finlay, B. J., 1985, Nitrate respiration by protozoa (Loxodes spp.) in the hypolimnetic nitrite maximum of a productive freshwater pond, Freshwater Biol. 15: 333–346.CrossRefGoogle Scholar
  45. Finlay, B. J., and Berninger, U.-G., 1984, Coexistence of congeneric ciliates (Karyorelictida: Loxodes) in relation to food resources in two freshwater lakes, J. Anim. Ecol. 53: 929–943.CrossRefGoogle Scholar
  46. Finlay, B. J., and Fenchel, T., 1986a, Physiological ecology of the ciliated protozoon Loxodes, Rep. Freshwater Biol. Assoc. 54: 73–96.Google Scholar
  47. Finlay, B. J., and Fenchel, T., 1986b, Photosensitivity in the ciliated protozoon Loxodes: pigment granules, absorption and action spectra, blue light perception, and ecological significance. J. Protozool. 33: 534–542.Google Scholar
  48. Finlay, B. J., Span, A. S. W., and Harman, J. M. P., 1983a, Nitrate respiration in primitive eukaryotes. Nature (London) 303: 333–336.CrossRefGoogle Scholar
  49. Finlay, B. J., Hetherington, N. B., and Davison, W., 1983b, Active biological participation in lacustrine barium chemistry, Geochim. Cosmochim. Acta 47: 1325–1329.CrossRefGoogle Scholar
  50. Finlay, B. J., Fenchel, T., and Gardener, S., 1986, Oxygen perception and O2 toxicity in the freshwater ciliated protozoon Loxodes, J. Protozool. 33: 157–165.Google Scholar
  51. Finlay, B. J., Curds, C. R., Bamforth, S. S. and Bafort, J. M., 1987a, Ciliated protozoa and other microorganisms from two African soda lakes (Lake Nakuru and Lake Simbi, Kenya). Arch. Protistenkd. 133: 81–91.CrossRefGoogle Scholar
  52. Finlay, B. J., Berninger, U.-G., Stewart, L. J., Hindle, R. M., and Davison. W., 1987b, Some factors controlling the distribution of two pond-dwelling ciliates with algal symbionts (Frontonia vernalis and Euplotes daidaleos), J. Protozool. 34: 349–356.Google Scholar
  53. Finlay, B. J., Berninger, U.-G., Clarke, K. J., Cowling, A. J., Hindle, R. M., and Rogerson. A., 1988. On the abundance of protozoa and their food in a productive freshwater pond, Eur. J. Protistol. 23: 205–217.CrossRefGoogle Scholar
  54. Fisher, P. R., Haeder, D. P., and Williams, K. L., 1985, Multidirectional phototaxis by Dictyostelium discoideum amoebae, FEMS Microbiol. Lett. 29: 43–47.CrossRefGoogle Scholar
  55. Gerisch, G., 1982, Chemotaxis in Dictyostelium, Annu. Rev. Physiol. 44: 535–552.PubMedCrossRefGoogle Scholar
  56. Gerisch, G., 1987, Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium, Annu. Rev. Biochem. 56: 853–879.PubMedCrossRefGoogle Scholar
  57. Gomer, R. H., and Firtel, R. A., 1987, Cell-autonomous determination of cell-type choice in Dictyostelium development by cell-cycle phase, Science 237: 758–762.PubMedCrossRefGoogle Scholar
  58. Goosen, N. K., Horemans, A. M. C., Hillebrand, S. J. W., Stumm, C. K., and Vogels, G. D., 1988, Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum, Arch. Microbiol. 150: 165–170.CrossRefGoogle Scholar
  59. Hallock, P., 1981, Algal symbiosis: A mathematical analysis, Mar. Biol. 62: 249–255.CrossRefGoogle Scholar
  60. Haynes, J. R., 1981, Foraminifera, Macmillan, London.Google Scholar
  61. Hecky, R. E., and Kling, H. J., 1981, The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: Species composition, biomass, chlorophyll content, and spatio-temporal distribution, Limnol. Oceanogr. 26: 548–564.CrossRefGoogle Scholar
  62. Hewett, S. W., 1980, Prey-dependent cell size in a protozoan predator, J. Protozool. 27: 311–313.Google Scholar
  63. Hibberd, D. J., 1977, Observations on the ultrastructure of the cryptomonad endosymbiont of the redwater ciliate Mesodinium rubrum, J. Mar. Biol. Assoc. U. K. 57: 45–61.CrossRefGoogle Scholar
  64. Imhoff, J. F., Sahl, H. G., Soliman, G. S. H., and Truper, H. G., 1979, The Wadi Natrum: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes, Geomicrobiol. J. 1: 219–234.CrossRefGoogle Scholar
  65. Jones, J. G., Simon, B. M., and Gardener, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol. 128: 1–11.Google Scholar
  66. Jonsson, P. R., 1987, Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina), Mar. Microb. Food Webs 2: 55–68.Google Scholar
  67. Jorgensen, B. B., Erez, J., Revsbech, N. P., and Cohen, Y., 1985, Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes, Limnol. Oceanogr. 30: 1253–1267.CrossRefGoogle Scholar
  68. Kahan, D., 1972, Cyclidium citrullus Cohn, a ciliate from the hot springs of Tiberias (Israel), J. Protozool. 19: 593–597.Google Scholar
  69. Karakashian, S. J., 1963, Growth of Paramecium bursaria as influenced by presence of algal symbionts, Physiol. Zool. 36: 52–68.Google Scholar
  70. Krumholz, L. R., Forsberg, C. W., and Veira, D. M., 1983, Association of methanogenic bacteria with rumen protozoa, Can. J. Microbiol. 29: 676–680.PubMedCrossRefGoogle Scholar
  71. Kuhlmann, H. W., and Heckmann, K., 1985, Interspecific morphogens regulating prey-predator relationships in protozoa, Science, 227: 1347–1349.PubMedCrossRefGoogle Scholar
  72. Kuile, B. T., and Erez, J., 1984, In situ growth rate experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii, J. Foraminiferal Res. 14: 262–276.CrossRefGoogle Scholar
  73. Lackey, J. B., 1938, The fauna and flora of surface waters polluted by acid mine drainage, Public Health Rep. 53: 1499–1507.CrossRefGoogle Scholar
  74. Laval-Peuto, M., and Febvre, M., 1986, On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichina), Biosystems 19: 137–158.PubMedCrossRefGoogle Scholar
  75. Laval-Peuto, M., Salvano, P., Gayol, P., and Greuet, C., 1986, Mixotrophy in marine planktonic ciliates: ultrastructural study of Tontonia appendiculariformis (Ciliophora, Oligotrichina), Mar. Microb. Food Webs 1: 81–104.Google Scholar
  76. Lee, C. C., and Fenchel, T., 1972, Studies on ciliates associated with sea ice from Antarctica. II. Temperature responses and tolerances in ciliates from Antarctic, temperate and tropical habitats, Arch. Protistenkd. 114: 237–244.Google Scholar
  77. Lee, J. J., 1983, Perspective on algal endosymbionts in larger foraminifera, Int. Rev. Cytol. Suppl. 14: 49–77.Google Scholar
  78. Lewis, K. E., and O’Day, D. H., 1977, Sex hormone of Dictyostelium discoideum is volatile, Nature (London) 268: 730–731.CrossRefGoogle Scholar
  79. Lewis, K. E., and O’Day, D. H., 1986, Phagocytic specificity during sexual development in Dictyostelium discoideum, Can. J. Microbiol. 32: 79–82.PubMedCrossRefGoogle Scholar
  80. Lindholm, T., 1985, Mesodinium rubrum —a unique photosynthetic ciliate, Adv. Aquat. Microbiol. 3: 1–48.Google Scholar
  81. Mato, J. M., and Konijn, T. M., 1979, Chemosensory transduction in Dictyostelium discoideum, in: Biochemistry and Physiology of Protozoa (M. Levandowsky and S. H. Hutner, eds.), Vol. 2, 2nd ed., pp. 181–219, Academic Press, New York.Google Scholar
  82. McManus, G. B., and Fuhrman, J. A., 1986, Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, U.S.A. J. Plank. Res. 8: 317–327.CrossRefGoogle Scholar
  83. Melack, J. M., 1979, Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya), Limnol. Oceanogr. 24: 760–767.CrossRefGoogle Scholar
  84. Morris, H. R., Taylor, G. W., Masento, M. S., Jermyn, K. A., and Kay, R. R., 1987, Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum, Nature (London) 328: 811–814.CrossRefGoogle Scholar
  85. Müller, M., 1980, The hydrogenosome, in: The Eukaryotic Microbial Cell (G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 127–142, Cambridge University Press, Cambridge.Google Scholar
  86. Müller, M., 1988, Energy metabolism of protozoa without mitochondria, Annu. Rev. Microbiol. 42: 465–488.PubMedCrossRefGoogle Scholar
  87. Müller, P. H., 1978, Carbon fixation and loss in a foraminiferal-algal symbiont system, J. Foraminiferal Res. 8: 35–41.CrossRefGoogle Scholar
  88. Muscatine, L., Karakashian, S. J., and Karakashian, M. W., 1967, Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant Hydra, Comp. Biochem. Physiol. 20: 1–12.CrossRefGoogle Scholar
  89. Nanney, D. L., 1982, Genes and phenes in Tetrahymena, Bioscience 32: 783–788.CrossRefGoogle Scholar
  90. Newell, P. C., Telser, A., and Sussman, M., 1969, Alternative developmental pathways determined by environmental conditions in the cellular slime mold Dictyostelium discoideum, J. Bacteriol. 100: 763–768.PubMedGoogle Scholar
  91. Newell, P. C., Europe-Finner, G. N., and Small, N. V., 1987, Signal transduction during amoebal Chemotaxis of Dictyostelium discoideum, Microbiol. Sci. 4: 5–11.PubMedGoogle Scholar
  92. Niess, D., Reisser, W., and Wiessner, W., 1981, The role of endosymbiotic algae in photoaccumulation of green Paramecium bursaria, Planta 152: 268–271.CrossRefGoogle Scholar
  93. Nisbet, B., 1984, Nutrition and Feeding Strategies in Protozoa, Croom Helm, London.Google Scholar
  94. Nissenbaum, A., 1975, The microbiology and biogeochemistry of the Dead Sea, Microb. Ecol. 2: 139–161.CrossRefGoogle Scholar
  95. Noland, L. E., and Gojdics, M., 1967, Ecology of free-living protozoa, in: Research in Protozoology (T.-T. Chen, ed.), Vol. 2, pp. 215–266, Pergamon Press, New York.Google Scholar
  96. Oakley, B. R., and Taylor, F. J. R., 1978, Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia, Biosystems 10: 361–369.PubMedCrossRefGoogle Scholar
  97. Olive, L. S., 1978, Sorocarp development by a newly-discovered ciliate, Science 202: 530–532.PubMedCrossRefGoogle Scholar
  98. Olive, L. S., and Blanton, R. L., 1980, Aerial sorocarp development by the aggregative ciliate, Sorogena stoianovitchae, J. Protozool. 27: 293–299.Google Scholar
  99. Packard, T. T., Blasco, D., and Barber, R. T., 1978, Mesodinium rubrum in the Baja California upwelling system, in: Upwelling Ecosystems (R. Boje and M. Tomczak, eds.), pp. 73–89, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  100. Pan, P., Hall, E. M., and Bonner, J. T, 1975, Determination of the active portion of the folic acid molecule in cellular slime mold Chemotaxis, J. Bacteriol. 122: 185–191.PubMedGoogle Scholar
  101. Patterson, D. J., and Dürrschmidt, M., 1987, Selective retention of chloroplasts by algivorous heliozoa: fortuitous chloroplast symbiosis? Eur. J. Protistol. 23: 51–55.CrossRefGoogle Scholar
  102. Poff, K. L., and Whitaker, B. D., 1979, Movement of slime molds, in: Encyclopedia of Plant Physiology (W. Haupt and M. E. Feinleib, eds.), pp. 355–382, Springer-Verlag, Berlin.Google Scholar
  103. Poff, K. L., Loomis, W. F., and Butler, W. L., 1974, Isolation and purification of the photoreceptor pigment associated with phototaxis in Dictyostelium discoideum, J. Biol. Chem. 249: 2164–2167.PubMedGoogle Scholar
  104. Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M., and Sanders, R. W., 1985, Protozoa in planktonic food webs, J. Protozool. 32: 409–415.Google Scholar
  105. Post, F., 1977, The microbial ecology of the Great Salt Lake, Microb. Ecol. 3: 143–165.CrossRefGoogle Scholar
  106. Raper, K. B., 1984, The Dictyostelids, Princeton University Press, Princeton, N.J.Google Scholar
  107. Rees, T. A. V., 1987, The green Hydra symbiosis and ammonium. I. The role of the host in ammonium assimilation and its possible regulatory significance, Proc. R. Soc. Lond. B 229: 299–314.CrossRefGoogle Scholar
  108. Reid, P. C., 1987, Mass encystment of a planktonic oligotrich ciliate, Mar. Biol. 95: 221–230.CrossRefGoogle Scholar
  109. Reisser, W., 1981, The endosymbiotic unit of Stentor polymorphus and Chlorella sp. Morphological and physiological studies, Protoplasma 105: 273–284.CrossRefGoogle Scholar
  110. Reisser, W., and Benseier, W., 1981, Comparative studies on photosynthetic enzymes of the symbiotic Chlorella from Paramecium bursaria and other symbiotic and non-symbiotic Chlorella strains, Arch. Microbiol. 129: 178–180.CrossRefGoogle Scholar
  111. Reisser, W., Fischer-Defoy, D., Staudinger, J., Schilling, N., and Hausmann, K., 1984, The endosymbiotic unit of Climacostomum virens and Chlorella sp. I. Morphological and physiological studies on the algal partner and its localization in the host cell, Protoplasma 119: 93–99.CrossRefGoogle Scholar
  112. Rieder, N., Ott, H. A., Pfundstein, P., and Schoch, R., 1982, X-ray micro-analysis of the mineral contents of some protozoa, J. Protozool. 29: 15–18.Google Scholar
  113. Rogerson, A., Finlay, B. J., and Berninger, U.-G., 1989, Sequestered chloroplasts in the freshwater ciliate Strombidium viride (Ciliophora, Oligotrichida), Trans. Amer. Microsc. Soc. 108: 117–126.CrossRefGoogle Scholar
  114. Sherr, B. F., and Sherr, E. B., 1984, Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 412–423, American Society for Microbiology, Washington, D.C.Google Scholar
  115. Sherr, E. B., Sherr, B. F., and Paffenhöfer, G.-A., 1986, Phagotrophic protozoa as food for metazoans, a “missing” trophic link in marine pelagic food webs?, Mar. Microb. Food Webs 1: 61–80.Google Scholar
  116. Smith, D. C., and Douglas, A. E., 1987, The Biology of Symbiosis, Edward Arnold, London.Google Scholar
  117. Smith, W. O., and Barber, R. T., 1979, A carbon budget for the autotrophic ciliate Mesodinium rubrum, J. Phycol. 15: 27–33.CrossRefGoogle Scholar
  118. Stich, H.-B., and Lampert, W., 1981, Predator evasion as an explanation of diurnal vertical migration by Zooplankton, Nature (London) 293: 396–398.CrossRefGoogle Scholar
  119. Stoecker, D. K., Michaels, A. E., and Davis, L. H., 1987, Large proportion of marine planktonic ciliates found to contain functional chloroplasts, Nature (London) 326: 790–792.CrossRefGoogle Scholar
  120. Stumm, C. K., and Zwart, K. B., 1986, Symbiosis of protozoa with hydrogen-utilizing methanogens, Microbiol. Sci. 3: 100–105.PubMedGoogle Scholar
  121. Stumm, C. K., Gijzen, H. J., and Vogels, G. D., 1982, Association of methanogenic bacteria with ovine rumen ciliates, Br. J. Nutr. 47: 95–99.PubMedCrossRefGoogle Scholar
  122. Swanberg, N. R., and Anderson, O. R., 1981, Collozoum caudatum sp. nov.: A giant colonial radiolarian from equatorial and Gulf Stream waters, Deep-Sea Res. 28A: 1033–1047.CrossRefGoogle Scholar
  123. Swanberg, N. R., and Harbison, G. R., 1980, The ecology of Collozoum longiforme, sp. nov., a new colonial radiolarian from the equatorial Atlantic Ocean, Deep-Sea Res. 27: 715–732.CrossRefGoogle Scholar
  124. Szabo, S. P., O’Day, D. H., and Chagla, A. H., 1982, Cell fusion, nuclear fusion, and zygote differentiation during sexual development of Dictyostelium discoideum, Dev. Biol. 90: 375–382.PubMedCrossRefGoogle Scholar
  125. Tailing, J. F., and Tailing, I. B., 1965, The chemical composition of African lake waters, Int. Rev. Gesamte Hydrobiol. Hydrogr. 50: 421–463.CrossRefGoogle Scholar
  126. Taylor, F. J. R., 1982, Symbioses in marine microplankton, Ann. Inst. Oceanogr. Paris 58(S): 61–90.Google Scholar
  127. Van Bruggen, J. J. A., 1986, Methanogenic bacteria as endosymbionts of sapropelic protozoa, Ph.D. thesis, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar
  128. Van Bruggen, J. J. A., Stumm, C. K., and Vogels, G. D., 1983, Symbiosis of methanogenic bacteria and sapropelic protozoa, Arch. Microbiol. 136: 89–95.CrossRefGoogle Scholar
  129. Van Bruggen, J. J. A., Zwart, K. B., Van Assema, R. M., Stumm, C. K., and Vogels, G. D., 1984, Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich, Arch. Microbiol. 139: 1–7.CrossRefGoogle Scholar
  130. Van Bruggen, J. J. A., Stumm, C. K., Zwart, K. B., and Vogels, G. D., 1985, Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella, FEMS Microbiol. Ecol. 31: 187–192.CrossRefGoogle Scholar
  131. Van Bruggen, J. J. A., Zwart, K. B., Hermans, J. G. F., Van Hove, E. M., Stumm, C. K., and Vogels, G. D., 1986, Isolation and characterization of Methanoplanus endosymbiosus sp. nov., and endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt, Arch. Microbiol. 144: 367–374.CrossRefGoogle Scholar
  132. Vardy, P. H., Fisher, L. R., Smith, E., and Williams, K. L., 1986, Traction proteins in the extracellular matrix of Dictyostelium discoideum slugs, Nature (London) 320: 526–529.CrossRefGoogle Scholar
  133. Vareschi, E., 1982, The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production, Oecologia 55: 31–101.CrossRefGoogle Scholar
  134. Vogels, G. D., Hoppe, W. F., and Stumm, C. K., 1980, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol. 40: 608–612.PubMedGoogle Scholar
  135. Wagener, S., and Pfennig, N., 1987, Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey, Arch. Microbiol. 149: 4–11.CrossRefGoogle Scholar
  136. Weis, D., 1977, Synchronous development of symbiotic chlorellae within Paramecium bursaria, Trans. Am. Microsc. Soc. 96: 82–86.PubMedCrossRefGoogle Scholar
  137. Weis, D., 1983, Infection in Paramecium bursaria as an inductive process, in: Endocytobiology, Vol. II (H. E. A. Schenk and W. Schwemmler, eds.), pp. 523–532, Walter de Gruyter & Co., Berlin.Google Scholar
  138. Wetzel, R., 1983, Limnology, 2nd ed., W. B. Saunders, Philadelphia.Google Scholar
  139. Whatley, F. R., and Whatley, J. M., 1983, Pelomyxa palustris, in: Endocytobiology, Vol. II (H. E. A. Schenk and W. Schwemmler, eds.) pp. 413–426, Walter de Gruyter & Co., Berlin.Google Scholar
  140. Wilbert, N., and Kahan, D., 1981, Ciliates of Solar Lake on the Red Sea shore, Arch. Protistenkd. 124: 70–95.CrossRefGoogle Scholar
  141. Yarlett, N., Hann, A. C., Lloyd, D., and Williams, A. G., 1983, Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents, Comp. Biochem. Physiol. 74B: 357–364.Google Scholar
  142. Zaret, T. M., Surfern, J. S., 1976, Vertical migration in Zooplankton as a predator avoidance mechanism, Limnol. Oceanogr. 21: 804–813.CrossRefGoogle Scholar
  143. Zinder, S. H., and Koch, M., 1984, Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture, Arch. Microbiol. 138: 263–272.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • B. J. Finlay
    • 1
  1. 1.Institute of Freshwater EcologyAmbleside, CumbriaUK

Personalised recommendations