Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics

  • Gary M. King
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)

Abstract

Methane oxidation became a subject of scientific inquiry when Alessandro Volta observed in 1776 that gas bubbles collected from a pond were combustible. Methane was subsequently exploited as a source of heat and light. However, in spite of its commercial significance, the biological and ecological aspects of methane oxidation were largely ignored until the pioneering work of Söhngen (1906), who first isolated methane-oxidizing bacteria (MOB). [Quayle (1987) notes that Lowe probably isolated the first MOB in 1892 without recognizing their ability to oxidize methane.] Little additional progress was made until the 1960s, at which time the systematic efforts of several groups provided methodological tools and details on the taxonomy, physiology, and biochemistry of C1 metabolism. Aside from purely academic motivations, this work was stimulated by: (1) the potential use of methanotrophic bacteria as sources of “single cell protein”; (2) the role of methylotrophic bacteria in food spoilage; (3) the possible use of methanotrophs in the bioremediation of certain halogenated organic pollutants or as agents for commercial biotransformations (Higgins et al., 1980). Ecological studies were slower in development, but a number of important observations established the ubiquity of methanotrophs, the impact of methane oxidation in freshwater and some marine systems, and the potential for anaerobic as well as aerobic methane oxidation (see Hanson, 1980, and Rudd and Taylor, 1980, for earlier reviews).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramochkina, F. N., Bezrukova, L. V., Koshelev, A. V., Gal’chenko, V. F., and Ivanov, M. V., 1987, Microbial oxidation of methane in a body of fresh water, Mikrobiologiya 56:464–471.Google Scholar
  2. Alperin, M. J., and Reeburgh, W. S., 1984, Geochemical observations supporting anaerobic methane oxidation, in: Microbial Growth on C-1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 282–289.Google Scholar
  3. Alperin, M. J., and Reeburgh, W. S., 1985, Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol. 50:940–945.PubMedGoogle Scholar
  4. Alperin, M. J., Reeburgh, W. S., and Whiticar, M. J., 1988, Carbon and hydrogen isotope fractionation rseulting from anaerobic methane oxidation, Global Biogeochem. Cycles 2:279–288.Google Scholar
  5. Alvarez-Cohen, L., and McCarty, P. L., 1991, Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture, Appl. Environ. Microbiol. 57:228–235.PubMedGoogle Scholar
  6. Anthony, C., 1982, The Biochemistry of Methylotrophs, Academic Press, New York.Google Scholar
  7. Arciera, D. T., Vannelli, T., Logan, M., and Hooper, A. B., 1989, Degradation of trichlorethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea, Biochem. Biophys. Res. Commun. 159:640–643.Google Scholar
  8. Aselmann, I., and Crutzen, P. J., 1989, Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem. 8:307–358.Google Scholar
  9. Barker, J. F., and Fritz, P., 1981, Carbon isotope fractionation during microbial methane oxidation, Nature 293:289–291.Google Scholar
  10. Barnes, R. O., and Goldberg, E. D., 1976, Methane production and consumption in anoxic marine sediments, Geology 4:297–300.Google Scholar
  11. Bédard, C., and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev. 53:68–84.PubMedGoogle Scholar
  12. Blake, D. R., and Rowland, F. S., 1988, Continuing worldwide increase in tropospheric methane, 1978–1987, Science 239:1129–1131.PubMedGoogle Scholar
  13. Born, M., Dörr, H., and Ingeborg, L., 1990, Methane consumption in aerated soils of the temperate zone, Tellus 42(B):2–8.Google Scholar
  14. Bowman, J. P., Skerratt, J. H., Nichols, P. D., and Sly, L. I., 1990, Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria, FEMS Microbiol. Ecol. 85:15–22.Google Scholar
  15. Brinch-Iversen, J., and King, G. M., 1990, Effects of substrate concentration, growth state, and oxygen availability on relationships among bacterial carbon, nitrogen and phospholipid phosphorous content, FEMS Microbiol. Ecol. 74:345–355.Google Scholar
  16. Brooks, J. M., Kennicutt, I. M. C., Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., and Vetter, R. D., 1987, Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources, Science 238:1138–1142.PubMedGoogle Scholar
  17. Brusseau, G. A., Tsien, H.-C., Hanson, R. S., and Wackett, L. P., 1990, Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity, Biodegradation 1:19–29.PubMedGoogle Scholar
  18. Bulygina, E. S., Galchenko, V. F., Govorukhina, N. I., Netrusov, A. I., Nikitin, D. I., Trotsenko, Y. A., and Chumakov, K. M., 1990, Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing, J. Gen. Microbiol. 136:441–446.PubMedGoogle Scholar
  19. Burke, R. A., Barber, T. R., and Sackett, W. M., 1988, Methane flux and stable hydrogen and carbon isotopic composition of sedimentary methane from the Florida Everglades, Global Biogeochem. Cycles 2:329–340.Google Scholar
  20. Burrows, K. J., Cornish, A., Scott, D., and Higgins, I. G., 1984, Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b, J. Gen. Microbiol. 130:3327–3333.Google Scholar
  21. Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G., Davidson, J. A., Lowe, D. C., Tyler, S. C., Cicerone, R. J., and Greenberg, J. P., 1990, Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res. 95:22455–22462.Google Scholar
  22. Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., 1991, The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene, Arch. Microbiol. 156:477–483.PubMedGoogle Scholar
  23. Cary, S. C., Fisher, C. R., and Feibeck, H., 1988, Mussel growth supported by methane as sole carbon and energy source, Science 240:78–80.PubMedGoogle Scholar
  24. Cary, S. C., Fry, B., Felbeck, H., and Vetter, R. D., 1989, Multiple trophic resources from a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment, Mar. Biol. 100:411–418.Google Scholar
  25. Cavanaugh, C. M., 1983, Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats, Nature 302:58–61.Google Scholar
  26. Cavanaugh, C. M., 1985, Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments, Bull. Biol. Soc. Wash. 6:373–388.Google Scholar
  27. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts, Science 213:340–342.PubMedGoogle Scholar
  28. Cavanaugh, C. M., Levering, P. R., Maki, J. S., Mitchell, R., and Lidstrom, M. E., 1987, Symbiosis of methylotrophic bacteria and deep-sea mussels, Nature 325:346–348.Google Scholar
  29. Chanton, J., Crill, P., Bartlett, K., and Martens, C. S., 1988a, Amazon capims (floating grassmats): A source of 13C enriched methane to the troposphere, Geophys. Res. Lett. 16:799–802.Google Scholar
  30. Chanton, J. P., Pauly, G. G., Martens, C. S., Blair, N. E., and Dacey, J. W. H., 1988b, Carbon isotopie composition of methane in Florida Everglades soils and fractionation during its transport to the troposphere, Global Biogeochem. Cycles 2:245–252.Google Scholar
  31. Chanton, J. P., Whiting, G. J., Showers, W. J., and Crill, P. M., 1992, Methane flux from Peltandra virginica: stable isotope tracing and chamber effects, Global Biogeochem. Cycles 6:15–32.Google Scholar
  32. Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1990, Ice-core record of atmospheric methane over the past 160,000 years, Nature 345:127–131.Google Scholar
  33. Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, I. M. C., Bidigare, R., and Andersen, A., 1986, A methanotrophic molluscan (Bivalvia: Mytilidae) symbiosis: Mussels fueled by gas, Science 233:1306–1308.PubMedGoogle Scholar
  34. Cicerone, R. J., and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles 2:299–327.Google Scholar
  35. Cicerone, R. J., and Shetter, J. D., 1981, Sources of atmospheric methane: Measurements in rice paddies and a discussion, J. Geophys. Res. 86:7203–7209.Google Scholar
  36. Colby, J., Stirling, D. I., and Dalton, H., 1977, The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds, Biochem. J. 165:395–402.PubMedGoogle Scholar
  37. Coleman, D. D., Risatti, J. B., and Schoell, M., 1981, Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria, Geochim. Cosmochim. Acta 45:1033–1037.Google Scholar
  38. Collins, M. L. P., Buchholz, L. A., and Remsen, C. C., 1991, Effect of copper on Methylomonas albus BG8, Appl. Environ. Microbiol. 57:1261–1264.PubMedGoogle Scholar
  39. Conrad, R., 1984, Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, and CH4), in: Perspectives on Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 461–467.Google Scholar
  40. Crill, P. M., 1991, Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil, Global Biogeochem. Cycles 5:319–334.Google Scholar
  41. Crutzen, P. J., 1991, Methane’s sinks and sources, Nature 350:380–381.Google Scholar
  42. Dacey, J. W. H., 1980, Internal winds in water lilies: An adaptation for life in anaerobic sediments, Science 210:1017–1019.PubMedGoogle Scholar
  43. Dacey, J. W. H., 1981, Pressurized ventilation in the yellow water lily, Ecology 62:1137–1147.Google Scholar
  44. Dacey, J. W. H., 1987, Knudsen-transitional flow and gas pressurization in leaves of Nelumbo, Plant Physiol. 85:199–203.PubMedGoogle Scholar
  45. Dacey, J. W. H., and Klug, M. J., 1979, Methane efflux from lake sediments through water lilies, Science 203:1253–1254.PubMedGoogle Scholar
  46. Dalton, H., 1977, Ammonia oxidation by the methane-oxidizing bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol. 114:272–279.Google Scholar
  47. Dalton, H., 1980, Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes, Adv. Appl. Microbiol. 26:71–87.Google Scholar
  48. Dalton, H., and Higgins, I. J., 1987, Physiology and biochemistry of methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Dordrecht, pp. 89–94.Google Scholar
  49. Dalton, H., Prior, S. D., Leak, D. J., and Stanley, S. H., 1984, Regulation and control of methane monooxygenase, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 75–82.Google Scholar
  50. Dando, P. R., and Southward, A. J., 1986, Chemoautotrophy in bivalve molluscs of the genus Thyasira, J. Mar. Biol. Assoc. U.K. 66:915–929.Google Scholar
  51. Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B., and Terwilliger, R. C., 1985, Sulphur-oxidizing bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera, Mar. Ecol. Prog. Ser. 23:85–98.Google Scholar
  52. Dando, P. R., Austen, M. C., Burke, J. R. A., Kendall, M. A., Kennicutt, I. M. C., Judd, A. G., Moore, D. C., O’Hara, S. C. M., Schmaljohann, R., and Southward, A. J., 1991, Ecology of a North Sea pockmark with an active methane seep, Mar. Ecol. Prog. Ser. 70:49–63.Google Scholar
  53. Davidson, J. A., Cantrell, C. A., Tyler, S. C., Shetter, R. E., Cicerone, R. J., and Calvert, J. G., 1987, Carbon kinetic isotope effect in the reaction of CH4 with HO, J. Geophys. Res. 92:2195–2199.Google Scholar
  54. DeBont, J. A. M., Lee, K. K., and Bouldin, D. F., 1978, Bacterial methane oxidation in a rice paddy, Ecol. Bull. 26:91–96.Google Scholar
  55. Devol, A. H., and Ahmed, S. I., 1981, Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291:407–408.Google Scholar
  56. Devol, A. H., Anderson, J. J., Kuivila, K., and Murray, J. W., 1984, A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet, Geochim. Cosmochim. Acta 48:993–1004.Google Scholar
  57. Diels, L., and Mergeay, M., 1990, DNA probe-mediated detection of resistant bacteria from soils highly polluted with metals, Appl. Environ. Microbiol. 56:1485–1491.PubMedGoogle Scholar
  58. Di Toro, D. M., Paquin, P. R., Subburamu, K., and Gruber, D. A., 1990, Sediment oxygen demand model: Methane and ammonia oxidation, J. Environ. Eng. 116:945–986.Google Scholar
  59. Ehhalt, D. H., 1985, Methane in the global atmosphere, Environment 27:6–33.Google Scholar
  60. Fechner, E. J., and Hemond, H. F., 1992, Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland, Global Biogeochem. Cycles 6:33–44.Google Scholar
  61. Fisher, C. R., Fisher, J. J., Oremland, R. S., and Bidigare, R. R., 1987, The importance of methane in the metabolism of the bacterial symbionts of two deep-sea mussels, Mar. Biol. 96:59–71.Google Scholar
  62. Fogel, M. M., Taddeo, A. R., and Fogel, S., 1986, Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture, Appl. Environ. Microbiol. 54:720–724.Google Scholar
  63. Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D., 1989, Methane monooxygenase from Methylosinus trichosporium OB3b, J. Biol. Chem. 264:10023–10033.PubMedGoogle Scholar
  64. Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D., 1990, Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental Applications, Biochemistry 29:6419–6427.PubMedGoogle Scholar
  65. Frenzel, P., Thebrath, B., and Conrad, R., 1990, Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance), FEMS Microbiol. Ecol. 73:149–158.Google Scholar
  66. Gal’chenko, V. F., Lein, A., and Ivanov, M., 1989, Biological sinks of methane, in: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (M. O. Andreae and D. S. Schimel, eds.), Wiley, New York, pp. 59–71.Google Scholar
  67. Green, J., and Dalton, H., 1986, Steady-state kinetic analysis of soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochem. J. 236:155–162.PubMedGoogle Scholar
  68. Griffiths, R. P., Caldwell, B. A., Cline, J. D., Broich, W. A., and Morita, R. Y., 1982, Field observations of methane concentrations and oxidation rates in the southeastern Bering Sea, Appl. Environ. Microbiol. 44:435–446.PubMedGoogle Scholar
  69. Guckert, J. D., Ringelberg, D. B., White, D. C., Bratina, B. J., and Hanson, R. S., 1991, Membrane fatty acids as phenotypic markers for the polyphasic taxonomy of methylotrophs within the proteobacteria, J. Gen. Microbiol. 137:2631–2641.PubMedGoogle Scholar
  70. Haber, C. L.,, Allen, L. N., Zhao, S., and Hanson, R. S., 1983, Methylotrophic bacteria biochemical diversity and genetics, Science 221:1147–1153.PubMedGoogle Scholar
  71. Hahn, D. Starrenburg, M. J. C., and Akkermans, A. D. L., 1990, Oligonucleotide probes that hybridize with rRNA as a tool to study Frankia strains in root nodules, Appl. Environ. Microbiol. 56: 1342–1346.PubMedGoogle Scholar
  72. Hanson, R. S., 1980, Ecology and diversity of methylotrophic bacteria, Adv. Appl. Microbiol. 26:3–39.Google Scholar
  73. Hanson, R. S., Tsuji, K., Bastien, C., Tsien, H. C., Bratina, B., Brusseau, G., and Machlin, S., 1990a, Genetic and biochemical studies of methylotrophic bacteria, in: Coal and Gas Biotechnology (C. Aiken and J. Smith, eds.), Institute for Gas Technology, Chicago, pp. 215–231.Google Scholar
  74. Hanson, R. S., Tsien, H. C., Tsuji, K., Brusseau, G. A., and Wackett, L. P., 1990b, Biodegradation of low-molecular weight halogenated hydrocarbons by methanotrophic bacteria, FEMS Microbiol. Rev. 87:273–278.Google Scholar
  75. Hanson, R. S., Netrusov, A. I., and Tsuji, K., 1991, The obligate methanotrophic bacteria Methylococcus, Methylomonas, and Methylosinus, in: The Prokaryotes (A. Balows, H. G. Truper, M. Dworkin, and K. Schliefer, eds.), Springer-Verlag, Berlin, pp. 2350–2364.Google Scholar
  76. Hao, W. M., Scharffe, D., Crutzen, P. J., and Sanhueza, E., 1988, Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season, J. Atmos. Chem. 7:93–105.Google Scholar
  77. Harms, N., de Vries, G. E., Maurer, K., Hoogendijk, J., and Stouthamer, A. H., 1987, Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans, J. Bacteriol. 169:3969–3975.PubMedGoogle Scholar
  78. Harriss, R. C., Sebacher, D. I., and Day, F. P., Jr., 1982, Methane flux in the Great Dismal Swamp, Nature (Lond.) 297:673–674.Google Scholar
  79. Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B., and Flebbe, P. A., 1985, Methane flux from northern peatlands, Nature 315:652–654.Google Scholar
  80. Harriss, R. C., Sebacher, D. L, Bartlett, K. B., Bartlett, D. S., and Crill, P. M., 1988, Sources of atmospheric methane in the south Florida environment, Global Biogeochem. Cycles 2:231–243.Google Scholar
  81. Harrits, S. M., and Hanson, R. S., 1980, Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin, Limnol. Oceanogr. 25:412–421.Google Scholar
  82. Hemond, H. F., Nuttle, W. K., Burke, R. W., and Stolzenbach, K. D., 1984, Surface infiltration in salt marshes: Theory, measurement, and biogeochemical implications, Water Resour. Res. 20:591–600.Google Scholar
  83. Henry, S. M., and Grbic-Galic, D., 1990, Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophs, Micob. Ecol. 20:151–169.Google Scholar
  84. Henry, S. M., and Grbic-Galic, D., 1991, Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer, Appl. Environ. Microbiol. 57:236–244.PubMedGoogle Scholar
  85. Henson, J. M., Yates, M. V., Cochran, J. W., and Shackleford, D. L., 1988, Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane, FEMS Microbiol. Ecol. 53:193–201.Google Scholar
  86. Heyer, J., and Suckow, R., 1985, Ökologische untersuchungen der methanoxydation in einem sauren Moorsee, Limnologica 16:247–266.Google Scholar
  87. Heyer, J., Malaschenko, Y., Berger, U., and Budkova, E., 1984, Verbreitung methanotropher Bakterien, Z. Allg. Mikrobiol. 24:725–744.Google Scholar
  88. Higgins, I. J., Best, D. J., and Hammond, R. C., 1980, New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential, Nature 286:561–564.PubMedGoogle Scholar
  89. Higgins, I. J., Best, D. J., Hammond, R. C., and Scott, D., 1981, Methane-oxidizing microorganisms, Microbial Rev. 45:556–590.Google Scholar
  90. Holtzapfel-Pschorn, A., Conrad, R., and Seiler, W., 1985, Production, oxidation and emission of methane in rice paddies, FEMS Microbiol. Ecol. 31:343–351.Google Scholar
  91. Holtzapfel-Pschorn, A., Conrad, R., and Seiler, W., 1986, Effects of vegetation on the emission of methane from submerged paddy soil, Plant Soil 92:223–233.Google Scholar
  92. Hovland, M., and Thomsen, E., 1989, Hydrocarbon-based communities in the North Sea? Sarsia 74:29–42.Google Scholar
  93. Hyman, M. R., and Wood, P. R., 1983, Methane oxidation by Nitrosomonas europaea, Biochem. J. 212:31–37.PubMedGoogle Scholar
  94. Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.PubMedGoogle Scholar
  95. Iversen, N., and Jørgensen, B. B., 1985, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr. 30:944–955.Google Scholar
  96. Iversen, N., Oremland, R. S., and Klug, M. J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation, Limnol. Oceanogr. 32:804–818.Google Scholar
  97. Janssen, D. B., Grobben, G., Hoekstra, R., Oldenhuis, R., and Witholt, B., 1988, Degradation of trans-1,2-dichloroethene by mixed and pure culture of methanotrophic bacteria, Appl. Microbiol. Biotechnol. 29:392–399.Google Scholar
  98. Joergensen, L., 1985, Methane oxidation by Methylosinus trichosporium measured by membrane inlet mass spectrometry, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), Academic Press, New York, pp. 287–294.Google Scholar
  99. Joergensen, L., and Degn, H., 1983, Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria, FEMS Microbiol. Lett. 20:331–335.Google Scholar
  100. Jones, R. D., and Morita, R. Y., 1983, Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea, Appl. Environ. Microbiol. 45:401–410.PubMedGoogle Scholar
  101. Jones, H. A., and Nedwell, D. B., 1990, Soil atmosphere concentration profiles and methane emission rates in the restoration covers above landfill sites: Equipment and preliminary results, Waste Manage. Res. 8:21–31.Google Scholar
  102. Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A., and McElroy, M. B., 1983, Production of nitrous oxide and consumption of methane by forest soil, Geophys. Res. Lett. 10:1156–1159.Google Scholar
  103. Keller, M., Kaplan, W. A., and Wofsy, S. C., 1986, Emissions of N2O, CH4 and CO2 from tropical forest soils, J. Geophys. Res. 91(D):11791–11802.Google Scholar
  104. Keller, M., Mitre, M. E., and Stallard, R. F., 1990, Consumption of atmospheric methane in tropical soils of central Panama: Effects of agricultural development, Glob. Biogeochem. Cyc. 4:21–28.Google Scholar
  105. Kennicutt, M. C., II, Brooks, J. M., Bidigare, R. R., Fay, R. R., Wade, T. L., and McDonald, T. J., 1985, Vent-type taxa in a hydrocarbon seep region on the Louisiana slope, Nature 317:351–353.Google Scholar
  106. Kennicutt, M. C., Brooks, J. M., Bidigare, R. R., McDonald, S. J., Adkison, D. L., and Macko, S. A., 1989, An upper slope “cold” seep community: Northern California, Limnol. Oceanogr. 34: 635–640.Google Scholar
  107. Khalil, M. A. K., and Rasmussen, R. A., 1983, Sources, sinks and seasonal cycles of atmospheric methane, J. Geophys. Res. 88:5131–5144.Google Scholar
  108. King, G. M., 1990a, Regulation by light of methane emission from a Danish wetland, Nature 345: 513–515.Google Scholar
  109. King, G. M., 1990b, Dynamics and controls of methane oxidation in a Danish wetland sediment, FEMS Microbiol. Ecol. 74:309–323.Google Scholar
  110. King, G. M., Skovgaard, H., and Roslev, P., 1990, Methane oxidation in sediments and peats of a subtropical wetland, the Florida Everglades, Appl. Environ. Microbiol. 56:2902–2911.PubMedGoogle Scholar
  111. King, G. M., Roslev, P., and Adamsen, A. P., 1991, Controls of methane oxidation in a Canadian wetland and forest soils, Trans. Am. Geophys. Union. 72:79.Google Scholar
  112. King, S. L., Quay, P. D., and Lansdown, J. M., 1989, The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations, J. Geophys. Res. 94(D): 18273–18277.Google Scholar
  113. Knowles, R., and Topp, E., 1988, Some factors affecting nitrification and the production of nitrous oxide by the methanotrophic bacterium Methylosinus trichosporium OB3b, in: Current Perspectives in Environmental Biogeochemistry (G. Giovannozzi-Sermanni and P. Nannipieri, eds.), Consiglio Nazionale delle Ricerche-I.P.R.A., Rome, pp. 383–393.Google Scholar
  114. Koch, A. L., 1990, Diffusion: The crucial process in many aspects of the biology of bacteria, Adv. Microb. Ecol. 11:37–70.Google Scholar
  115. Komagata, K., 1990, Taxonomy of facultative methylotrophs, in: Aerobic Photosynthetic Bacteria (K. Harashima, T. Shiba, and N. Murata, eds.), Springer-Verlag, Berlin, pp. 25–36.Google Scholar
  116. Krämer, M., Baumgärtner, M., Bender, M., and Conrad, R., 1990, Consumption of NO by methanotrophic bacteria in pure culture and in soil, FEMS Microbiol. Ecol. 73:345–350.Google Scholar
  117. Kuivila, K. M., Murray, J. W., Devol, A. H., Lidstrom, M. E., and Reimers, C. E., 1988, Methane cycling in the sediments of Lake Washington, Limnol. Oceanogr. 33:571–581.Google Scholar
  118. Lamb, S. C., and Garver, J. C., 1980, Batch-and continuous culture studies of a methane-utilizing mixed culture, Biotechnol. Bioeng. XXII:2097–2118.Google Scholar
  119. Lanzarone, N. A., and McCarty, P. L., 1990, Column studies on methanotrophic degradation of trichloroethene and 1,2-dichloroethane, Ground Water 28:910–919.Google Scholar
  120. Leak, D. J., and Dalton, H., 1986, Growth yields of methanotrophs. 2. A theoretical analysis, Appl. Microbiol. Biotechnol. 23:477–481.Google Scholar
  121. Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol. 56:739–746.PubMedGoogle Scholar
  122. Lees, V., Owens, N. J. P., and Murrell, J. C., 1991, Nitrogen metabolism in marine methanotrophs, Arch. Microbiol. 157:60–65.Google Scholar
  123. Lidstrom, M. E., 1983, Methane consumption in Framvaren, an anoxic marine fjord, Limnol. Oceanogr. 28:1247–1251.Google Scholar
  124. Lidstrom, M. E., 1988, Isolation and characterization of marine methanotrophs, Antonie van Leeuwenhoek J. Microbiol. Serol. 54:189–199.Google Scholar
  125. Lidstrom, M. E., 1990, Genetics of carbon metabolism in methylotrophic bacteria, FEMS Microbiol. Rev. 87:431–436.Google Scholar
  126. Lidstrom, M. E., and Somers, L., 1984, Seasonal study of methane oxidation in Lake Washington, Appl. Environ. Microbiol. 47:1255–1260.PubMedGoogle Scholar
  127. Lidstrom, M. E., Nunn, D. N., Anderson, D. J., Stephens, R. L., and Haygood, M. G., 1987, Molecular biology of methanol oxidation, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Amsterdam, pp. 246–254.Google Scholar
  128. Linton, J. D., and Buckee, J. C., 1977, Interactions in a methane-utilizing mixed bacterial culture in a chemostat, J. Gen. Microbiol. 101:219–225.Google Scholar
  129. Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium, Appl. Environ. Microbiol. 54:951–956.PubMedGoogle Scholar
  130. MacDonald, I. R., Calender, W. R., Burke, J. R. A., McDonald, S. J., and Carney, R. S., 1990, Finescale distribution of methanotrophic mussels at a Louisiana cold seep, Prog. Oceanogr. 24:15–24.Google Scholar
  131. Machlin, S. M., and Hanson, R. S., 1988, Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene, J. Bacteriol. 170:4739–4747.PubMedGoogle Scholar
  132. Machlin, S. M., Tam, P. E., Bastien, C. A., and Hanson, R. S., 1987, Genetic and physical analysis of Methylobacterium organophilum XX genes encoding methanol oxidation, J. Bacteriol. 170: 141–148.Google Scholar
  133. Martens, C. S., and Berner, R. A., 1977, Interstitial water chemistry of Long Island Sound sediments. I. Dissolved gases, Limnol. Oceanogr. 22:10–25.Google Scholar
  134. Matthews, E., and Fung, I. I., 1987, Methane emission from natural wetlands global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles 1:61–86.Google Scholar
  135. Mayer, L. M., Liotta, F. P., and Norton, S. A., 1982, Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine, Water Res. 16:1189–1196.Google Scholar
  136. Megraw, S. R., and Knowles, R., 1987a, Active methanotrophs suppress nitrification in a humisol, Biol. Fertil. Soils 4:205–212.Google Scholar
  137. Megraw, S. R., and Knowles, R., 1987b, Methane production and consumption in a cultivated humisol, Biol. Fertil. Soils 5:56–60.Google Scholar
  138. Megraw, S. R., and Knowles, R., 1989a, Isolation, characterization, and nitrification potential of a methylotroph and two heterotrophic bacteria from a consortium showing methane-dependent nitrification, FEMS Microbiol. Ecol. 62:367–374.Google Scholar
  139. Megraw, S. R., and Knowles, R., 1989b, Methane-dependent nitrate production by a microbial consortium enriched from a cultivated humisol, FEMS Microbiol. Ecol. 62:359–366.Google Scholar
  140. Megraw, S. R., and Knowles, R., 1990, Effect of picolinic acid (2-pyridine carboxylic acid) on the oxidation of methane and ammonia in soil and in liquid culture, Soil Biol. Biochem. 22:635–641.Google Scholar
  141. Moore, T. R., and Knowles, R., 1989, The influence of water table levels on methane and carbon dioxide emissions from peatland soils, Can. J. Soil Sci. 69:33–38.Google Scholar
  142. Mosier, A., Schimel, D., Valentine, D., Bronson, K., and Parton, W., 1991, Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature 350:330–332.Google Scholar
  143. Mountfort, D. O., White, D., and Asher, R. A., 1990, Oxidation of lignin-related aromatic alcohols by cell suspensions of Methylosinus trichosporium, Appl. Environ. Microbiol. 56:245–249.PubMedGoogle Scholar
  144. Nagai, S., Mori, T., and Aiba, S., 1973, Investigation and energetics of methane-utilizing bacteria in methane-and oxygen-limited chemostat cultures, J. Appl. Chem. Biotechnol. 23:549–562.Google Scholar
  145. Nichols, P. D., Smith, G. A., Antworth, C. P., Hanson, R. S., and White, D. C., 1985, Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria, FEMS Microbiol. Ecol. 31:327–335.Google Scholar
  146. Nichols, P. D., Henson, J. M., Antworth, C. P., Parsons, J., Wilson, J. T., and White, D. C., 1987, Detection of a microbial consortium including type II methanotrophs by use of phospholipid fatty acids in aerobic halogenated hydrocarbon-degrading soil column enriched with natural gas, Environ. Toxicol. Chem. 6:89–97.Google Scholar
  147. Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B., 1989, Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase, Appl. Environ. Microbiol. 55:2819–2826.PubMedGoogle Scholar
  148. Oldenhuis, R., Oedzes, J. Y., Waarde, J. J. v. d., and Janssen, D. B., 1991, Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Appl. Environ. Microbiol. 57:7–14.PubMedGoogle Scholar
  149. O’Neill, J. D., and Wilkinson, J. F., 1977, Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation, J. Gen. Microbiol. 100:407–412.Google Scholar
  150. Oremland, R. S., 1988, The biogeochemistry of methanogenic bacteria, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley-Interscience, New York, pp. 707–770.Google Scholar
  151. Oremland, R. S., and Marais, D. D., 1983, Distribution, abundance, and carbon isotope consumption of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake, Geochim. Cosmochim. Acta 47:2107–2114.Google Scholar
  152. Ott, J., Rieger, G., Rieger, R., and Enderes, F., 1982, New mouthless interstitial worms from the sulfide system: Symbiosis with prokaryotes. P.S.Z.N. I: Mar. Ecol. 3:313–333.Google Scholar
  153. Page, H. M., Fisher, C. R., and Childress, J. J., 1990, Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts, Mar. Biol. 104:251–257.Google Scholar
  154. Pauli, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, C., Corso, W. P., Colubic, S., Sook, J. E., Sikes, E., and Curray, J., 1984, Biological communities at the Florida Escarpment resemble hydrothermal vent taxa, Science 226:965–967.Google Scholar
  155. Pauli, C. K., Jull, A. J. T., Toolin, L. J., and Linick, T., 1985, Stable isotope evidence for chemosynthesis in an abyssal seep community, Nature 317:709–711.Google Scholar
  156. Pilkington, S. J., and Dalton, H. J., 1991, Purification and characterization of the soluble methane monooxygenase from Methylosinus sporium 5 demonstrates the highly conserved nature of this enzyme in methanotrophs, FEMS Microbiol. Lett. 78:103–108.Google Scholar
  157. Pütz, J., Meinert, F., Wyss, U., Ehlers, R.-U., and Stackebrandt, E., 1990, Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species, Appl. Environ. Microbiol. 56:181–186.PubMedGoogle Scholar
  158. Putzer, K. P., Buchholz, L. A., Lidstrom, M. E., and Remsen, C. C., 1991, Separation of methanotrophic bacteria by using percoll and its application to isolation of mixed and pure cultures, Appl. Environ. Microbiol. 57:3656–3659.PubMedGoogle Scholar
  159. Quay, P. D., King, S. L., Lansdown, J. M., and Wilbur, D. O., 1988, Isotopoic composition of methane released from wetlands: Implications for the increase in atmospheric methane, Global Biogeochem. Cycles 2:385–397.Google Scholar
  160. Quayle, J. R., 1987, An eightieth anniversary of the study of microbial C1 metabolism, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Dordrecht, pp. 1–5.Google Scholar
  161. Reeburgh, W. S., 1980, Anaerobic methane oxidation rate depth distribution in Skan Bay sediments, Earth Planet. Sci. Lett. 47:345–352.Google Scholar
  162. Reeburgh, W. S., 1989, Interaction of sulphur and carbon cycles in marine sediments, in: Evolution of the Global Biogeochemical Sulphur Cycle (P. Brimblecombe and A. Y. Lein, eds.), Wiley, New York, pp. 125–159.Google Scholar
  163. Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1992, Black Sea methane geochemistry, Deep-Sea Res. (Black Sea Issue) 38:1189–1210.Google Scholar
  164. Remsen, C. C., Minnich, E. C., Stephens, R. S., Buchholz, L., and Lidstrom, M. E., 19889, Methane oxidation in Lake Superior sediments, J. Great Lakes Res. 5:141–146.Google Scholar
  165. Ringelberg, D. B., Davis, J. D., Smith, G. A., Pfiffner, S. M., Nichols, P. D., Nickels, J. S., Henson, J. M., Wilson, J. T., Yates, M., Kampbell, D. H., Read, H. W., Stocksdale, T. T., and White, D. C., 1989, Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials, FEMS Microbiol. Ecol. 62:39–50.Google Scholar
  166. Roulet, N. T., Ash, R., and Moore, T. R., 1992, Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res. 97(D):3739–3749.Google Scholar
  167. Rudd, J. W. M., and Taylor, C. D., 1980, Methane cycling in aquatic environments, Adv. Aquat. Microbiol. 1:77–150.Google Scholar
  168. Rudd, J. W. M., Hamilton, R. D., and Campbell, N. E. R., 1974, Measurement of microbial oxidation of methane in lake water, Limnol. Oceanogr. 19:519–524.Google Scholar
  169. Rudd, J. W., Furutani, A., Flett, R. J., and Hamilton, R. D., 1976, Factors controlling methane oxidation in shield lakes: The role of nitrogen fixation and oxygen concentration, Limnol. Oceanogr. 21:357–364.Google Scholar
  170. Salvas, P. L., and Taylor, B. F., 1984, Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and Methylosinus trichosporium OB3b, Curr. Microbiol. 10:53–56.Google Scholar
  171. Sass, R. L., Fisher, F. M., and Harcombe, P. A., 1990, Methane production and emission in a Texas rice field, Global Biogeochem. Cycles 4:47–68.Google Scholar
  172. Schmaljohann, R., and Flügel, H. J., 1987, Methane-oxidizing bacteria in Pogonophora, Sarsia 72:91–98.Google Scholar
  173. Schmaljohann, R., Faber, E., Whiticar, M. J., and Dando, P. R., 1990, Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak, Mar. Ecol. Prog. Ser. 61:119–124.Google Scholar
  174. Schütz, H., Seiler, W., and Conrad, R., 1989a, Processes involved in formation and emission of methane in rice paddies, Biogeochemistry 7:33–53.Google Scholar
  175. Schütz, H., Holtzapfel-Pschorn, A., Conrad, R., Rennenberg, H., and Seiler, W., 1989b, A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy, J. Geophys. Res. 94(D)3:16405–16416.Google Scholar
  176. Scott, D., Brannan, J., and Higgins, I. J., 1981, The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b, J. Gen. Microbiol. 125:63–72.Google Scholar
  177. Sebacher, D. I., Harriss, R. C., and Bartlett, K. B., 1985. Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual. 14:40–46.Google Scholar
  178. Seiler, W., Conrad, R., and Scharffe, D., 1984, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmos. Chem. 1:171–186.Google Scholar
  179. Sexstone, A. J., and Mains, C. N., 1990, Production of methane and ethylene in organic horizons of spruce forest soils, Soil Biol. Biochem. 22:135–139.Google Scholar
  180. Sheppard, J. C., Westberg, H., Hopper, J. F., and Ganesan, K., 1982, Inventory of global methane sources and their production rates, J. Geophys. Res. 87(C):1305–1312.Google Scholar
  181. Sieburth, J. M., Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., Lidstrom, M., and Laux, D., 1987, The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean Methylomonas pelagica sp. nov., Curr. Microbiol. 14:285–293.Google Scholar
  182. Simonet, P., Normand, P., Moiroud, A., and Bardin, R., 1990, Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes, Arch. Microbiol. 153:235–240.PubMedGoogle Scholar
  183. Smith, R. L., Howes, B. L., and Garabedian, S. P., 1991, In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests, Appl. Environ. Microbiol. 57:1997–2004.PubMedGoogle Scholar
  184. Söhngen, N. L., 1906, Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen, Zentralbl. Bakteriol. Z. Abt. Bd. 15:513–517.Google Scholar
  185. Southward, A. J., Southward, E. C., Dando, P. R., Rau, G., Feibeck, H., and Flügel, H., 1981, Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism, Nature 293:616–620.Google Scholar
  186. Southward, A. J., Southward, E. C., Dando, P. R., Barret, R. L., and Ling, R. L., 1986, Chemoautotrophic function of bacterial symbionts in small pogonophora, J. Mar. Biol. Assoc. U.K. 66:415–437.Google Scholar
  187. Stainthorpe, A. C., Salmond, G. P. C., and Dalton, H., 1990, Screening of obligate methanotrophs for soluble methane monooxygenase genes, FEMS Microbiol. Lett. 70:211–218.Google Scholar
  188. Stanley, S. H., Prior, S. D., Leak, D. J., and Dalton, H., 1983, Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: Studies in batch and continuous cultures, Biotechnol. Lett. 5:487–492.Google Scholar
  189. Steudler, P. A., Bowden, R. D., Mellilo, J. M., and Aber, J. D., 1989, Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature 341:314–316.Google Scholar
  190. Stevens, C. M., and Engelkemeir, A., 1988, Stable carbon isotopic composition of methane from some natural and anthropogenic sources, J. Geophys. Res. 93:725–733.Google Scholar
  191. Stevens, C. M., and Rust, F., 1982, The carbon isotopic composition of atmospheric methane, J. Geophys. Res. 87:4879–4882.Google Scholar
  192. Strand, S. E., and Shippert, L., 1986, Oxidation of chloroform in an aerobic soil exposed to natural gas, Appl. Environ. Microbiol. 52:203–205.PubMedGoogle Scholar
  193. Sweerts, J.-P. R. A., 1990, Oxygen consumption processes, mineralization and nitrogen cycling at the sediment-water interface of north temperate lakes, Ph.D. dissertation, University of Groningen.Google Scholar
  194. Sweerts, J.-P. R. A., Bär-Gilissen, M.-J., Cornelase, A. A., and Cappenberg, T. E., 1991, Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands), Limnol. Oceanogr. 36:1124–1133.Google Scholar
  195. Topp, E., and Knowles, R., 1982, Nitrapyrin inhibits the obligate methylotophs Methylosinus trichosporium and Methylococcus capsulatus, FEMS Microbiol. Lett. 14:47–49.Google Scholar
  196. Topp, E., and Knowles, R., 1984, Effects of nitrapyrin [2-chloro-6-(trichloromethyl)pyridine] on the obligate methanotroph Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 47:258–262.PubMedGoogle Scholar
  197. Torsvik, V., Salte, K., Sørheim, R., and Goksøyr, J., 1990a, Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria, Appl. Environ. Microbiol. 56:776–781.PubMedGoogle Scholar
  198. Torsvik, V., Goksøyr, J., and Daae, F. L., 1990b, High diversity in DNA of soil bacteria, Appl. Environ. Microbiol. 56:782–787.PubMedGoogle Scholar
  199. Tsien, H.-C., Brusseau, G. A., Hanson, R. S., and Wackett, L. P., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55:3155–3161.PubMedGoogle Scholar
  200. Tsuji, K., Tsien, H.-C., Hanson, R. S., De Palma, S. R., Scholtz, R., and LaRoche, S., 1990, 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs, J. Gen. Microbiol. 136:1–10.PubMedGoogle Scholar
  201. Tyler, S. C., Zimmerman, P. R., Cumberbatch, C., Greenberg, J. P., Westberg, C., and Darlington, J. P. E. C., 1988, Measurements and interpretation of ∂13C of methane from termites, rice paddies and wetlands in Kenya, Global Biogeochem. Cycles 2:341–355.Google Scholar
  202. Vogel, T. M., and McCarty, P., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, Appl. Environ. Microbiol. 49:1080–1083.PubMedGoogle Scholar
  203. Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21:722–736.PubMedGoogle Scholar
  204. Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbiol. 55:2960–2964.PubMedGoogle Scholar
  205. Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, J., Shemesh, A., Fairbanks, R., and Broeker, W., 1989, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, Science 245:286–290.PubMedGoogle Scholar
  206. Ward, B. B., 1987, Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus, Arch. Microbiol. 147:126–133.Google Scholar
  207. Ward, B. B., 1990, Kinetics of ammonia oxidation by a marine nitrifying bacterium: Methane as a substrate analogue, Microb. Ecol. 19:211–225.Google Scholar
  208. Ward, B. B., and Kilpatrick, K. A., 1990, Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column, Cont. Shelf Res. 10:1193–1208.Google Scholar
  209. Ward, B. B., Kilpatrick, K. A., Novelli, P. C., and Scranton, M. I., 1987, Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters, Nature 327:226–229.Google Scholar
  210. Ward, B. B., Kilpatrick, K. A., Wopat, A. E., Minnich, E. C., and Lidstrom, M. E., 1989, Methane oxidation in Saanich Inlet during summer stratification, Com. Shelf Res. 9:65–75.Google Scholar
  211. Whalen, S. C., and Reeburgh, W. S., 1990, Consumption of atmospheric methane by tundra soils, Nature 346:160–162.Google Scholar
  212. Whalen, S. C., Reeburgh, W. S., and Sandbeck, K. A., 1990, Rapid methane oxidation in a landfill cover soil, Appl. Environ. Microbiol. 56:3405–3411.PubMedGoogle Scholar
  213. Whiticar, M. J., in press, Isotope tracking of microbial methane formation and oxidation, in: Cycling of Reduced Gases in the Hydrosphere (D. Adams, S. Seitzinger, and P. Crill, eds.).Google Scholar
  214. Whiticar, M. J., and Faber, E., 1986, Methane oxidation in sediment and water column environments-isotopic evidence, Adv. Org. Geochem. 10:759–768.Google Scholar
  215. Whittenbury, R., Phillips, K. C., and Wilkinson, J. F., 1970a, Enrichment, isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol. 61:205–218.PubMedGoogle Scholar
  216. Whittenbury, R., Davies, S. L., and Davey, J. F., 1970b, Exospores and cysts formed by methane-utilizing bacteria, J. Gen. Microbiol. 61:219–226.PubMedGoogle Scholar
  217. Widdel, F., 1988, Microbiology and ecology of sulfate and sulfur-reducing bacteria, in: The Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley-Interscience, New York, pp. 469–585.Google Scholar
  218. Wilson, J. T., and Wilson, B. H., 1985, Biotransformation of trichlorethylene in soil, Appl. Environ. Microbiol. 49:242–243.PubMedGoogle Scholar
  219. Wolfe, H. J., and Hanson, R. S., 1980, Identification of methane-utilizing yeasts, FEMS Microbiol. Lett. 7:177–179.Google Scholar
  220. Wood, A. P., and Kelly, D. P., 1989, Methylotrophic and autotrophic bacteria isolated from lucinid and thyasirid bivalves containing symbiotic bacteria in the gills, J. Mar. Biol. Assoc. U.K. 69:165–179.Google Scholar
  221. Yavitt, J. B., Lang, G. E., and Downey, D. M., 1988, Potential methane production and methane oxidation in peatland ecosystems of the Appalachian Mountains, United States, Global Biogeochem. Cycles 2:253–268.Google Scholar
  222. Yavitt, J. B., Downey, D. M., Lancaster, E., and Lang, G. E., 1990a, Methane consumption in decomposing sphagnum-derived peat, Soil Biol. Biochem. 22:441–447.Google Scholar
  223. Yavitt, J. B., Downey, D. M., Lang, G. E., and Sextone, A. J., 1990b, Methane consumption in two temperature forest soils, Biogeochemistry 9:39–52.Google Scholar
  224. Yoshinari, T., 1985, Nitrite and nitrous oxide production by Methylosinus trichosporium, Can. J. Microbiol. 31:139–144.PubMedGoogle Scholar
  225. Zajic, J. E., Volesky, B., and Wellman, A., 1969, Growth of Graphium sp. on natural gas, Can. J. Microbiol. 15:1231–1236.PubMedGoogle Scholar
  226. Zehnder, A. J. B., and Brock, T. D., 1980, Anaerobic methane oxidation: Occurrence and ecology, Appl. Environ. Microbiol. 39:194–204.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Gary M. King
    • 1
  1. 1.Darling Marine CenterUniversity of MaineWalpoleUSA

Personalised recommendations