Skip to main content

Genetic Exchange in Natural Microbial Communities

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 12))

Abstract

Genetic exchange between bacteria was first observed over 60 years ago (Griffith, 1928). In recent years, considerable advances have been made in the understanding of the molecular mechanisms involved in bacterial gene transfer. We now have a clear understanding of the three basic mechanisms of genetic exchange in bacteria: conjugation, transformation, and transduction. Most of these studies were, however, performed using pure cultures of bacteria and genetic transfer was regarded largely as a laboratory phenomenon (De Flaun et al., 1990). More recently, genetic exchange by each of these mechanisms has been demonstrated in a variety of natural environments (Table I).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aardema, B. W., Lorenz, M. G., and Krumbein, W. E., 1983, Protection of sediment adsorbed transferring DNA against enzymatic inactivation, Appl. Environ. Microbiol. 46:417–420.

    PubMed  CAS  Google Scholar 

  • Acea, A. J., Moore, C. R., and Alexander, M., 1988, Survival and growth of bacteria introduced into soil, Soil Biol. Biochem. 20:509–515.

    Google Scholar 

  • Aguero, M. E., Arow, L., DeLuca, A. G., Timmis, K. N., and Cabello, F. C., 1984, A plasmid-encoded outer membrane protein Tra T enhances resistance of Escherichia coli to phagocytes, Infect. Immun. 46:740–746.

    PubMed  CAS  Google Scholar 

  • Al-Masaudi, S. B., Day, M. J., and Russell, A. D., 1991, A review: Antimicrobial resistance and gene transfer in Stephylococcus aureus, J. Appl. Bacteriol. 70:279–290.

    PubMed  CAS  Google Scholar 

  • Altherr, M. R., and Kasweck, K. L., 1982, In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli, Appl. Environ. Microbiol. 44:838–843.

    PubMed  CAS  Google Scholar 

  • Amin, M. K., and Day, M. J., 1988, Donor and recipient effects on transduction frequency in situ, REGEM 1:11.

    Google Scholar 

  • Amman, R. I., Binder, B. J., Olsen, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations, Appl. Environ. Microbiol. 56:1919–1925.

    Google Scholar 

  • Anderson, E. S., 1975, Problems and implications of chloramphenicol resistance in typhoid bacillus, J. Hyg. 74:289–299.

    CAS  Google Scholar 

  • Andorv, D. A., 1986, Dispersal of microorganisms with emphasis on bacteria, Environ. Manage. 10:470–487.

    Google Scholar 

  • Atlas, R. M., and Bartha, R. (ed.), 1987, Microbial Ecology, 2nd ed., Benjamin-Cummings, Menlo Park, Calif.

    Google Scholar 

  • Atwood, K. C., Schneider, L. K., and Ryan, F. J., 1951, Selective mechanisms in bacteria, Cold Spring Harbor Symp. Quant. Biol. 16:345–354.

    PubMed  CAS  Google Scholar 

  • Baldini, M. M., Kaper, J. B., Levine, J. B., Candy, D. C., and Moon, H. W., 1983, Plasmid-mediated adhesion in enteropathogenic Escherichia coli, J. Pediatr. Gastroent. Nutr. 2:534–538.

    CAS  Google Scholar 

  • Bale, M. J., Fry, J. C., and Day, M. J., 1987, Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones, J. Gen. Microbiol. 133:3099–3107.

    PubMed  CAS  Google Scholar 

  • Bale, M. J., Fry, J. C., and Day, M. J., 1988, Transfer and occurrence of large mercury resistance Plasmids in river epilithon, Appl. Environ. Microbiol. 54:972–978.

    PubMed  CAS  Google Scholar 

  • Barkay, T., and Sayler, G. S., 1988, Gene probes as a tool for the detection of specific genomes in the environment, in: Aquatic Toxicology and Hazard Assessment (W. J. Adams, G. A. Chapman, and W. G. Landis, eds.), American Society for Testing and Materials, Philadelphia, pp. 29–36.

    Google Scholar 

  • Baross, J. A., Liston, J., and Morita, R. Y., 1974, Some implications of genetic exchange among marine Vibrio parahemolyticus, naturally occurring in the Pacific oyster, International Symposium on Vibrio parahemolyticus (T. Fujino, G. Sakaguchi, R. Sakazaki, and Y. Takeda eds.), Saikon, Tokyo, pp. 129–137.

    Google Scholar 

  • Barrow, P. A., and Lovell, M. A., 1988, The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum, J. Gen. Microbiol. 134:2307–2316.

    PubMed  CAS  Google Scholar 

  • Barry, G. F., 1986, Permanent insertion of foreign genes into the chromosomes of soil bacteria, Bio/Technology 4:446–449.

    CAS  Google Scholar 

  • Bender, C. L., and Cooksey, D. A., 1986, Indigenous plasmids in Pseudomonas syringae pv. tomato: Conjugative transfer and role in copper resistance, J. Bacteriol. 165:534–541.

    PubMed  CAS  Google Scholar 

  • Benson, S. E., Partridge, L., and Morgan, M. J., 1988, Is bacterial evolution random or selective? Nature 336:21–22.

    Google Scholar 

  • Berg, D. E., 1989, Transposable elements in prokaryotes, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 99–138.

    Google Scholar 

  • Berg, G., and Trevors, J. T., 1990, Bacterial conjugation between Escherichia coli and Pseudomonas sp. donor and recipient cells in soil, J. Ind. Microbiol. 5:79–84.

    PubMed  CAS  Google Scholar 

  • Bertram, J., and Durre, P., 1989, Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum, Arch. Microbiol. 151:551–557.

    CAS  Google Scholar 

  • Bertram, J., Strätz, M., and Durre, P., 1991, Natural transfer of conjugative transposon Tn916 between Gram-positive and Gram-negative bacteria, J. Bacteriol. 173:443–448.

    PubMed  CAS  Google Scholar 

  • Betley, M. J., Miller, V. L., and Mekalanos, J. J., 1986, Genetics of bacterial enterotoxins, Annu. Rev. Microbiol. 40:577–605.

    PubMed  CAS  Google Scholar 

  • Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N., and Hopwood, D. A., 1981, Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans, Mol. Gen. Genet. 184:230–240.

    PubMed  CAS  Google Scholar 

  • Bopp, L. H., Chakrabarty, A. M., and Ehrlich, H. C., 1983, Chromate resistance plasmid in Pseudomonas fluorescens, J. Bacteriol. 155:1105–1109.

    PubMed  CAS  Google Scholar 

  • Bowen, G. D., and Rovira, A. D., 1976, Microbial colonization of plant roots, Annu. Rev. Phytopathol. 14:121–144.

    Google Scholar 

  • Brewin, N. J., Beringer, J. E., Buchanou-Wollaston, A. V., Johnston, A. V., and Hirsch, P. R., 1980a, Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum, J. Gen. Microbiol. 116:216–270.

    Google Scholar 

  • Brewin, N. J., DeJong, T. M., Phillips, D. A., and Johnston, A. W. B., 1980b, Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum, Nature 288: 77–79.

    CAS  Google Scholar 

  • Brisson-Noel, A., Arthur, M., and Courvalin, P., 1988, Evidence for natural gene transfer from Gram-positive cocci to Escherichia coli, J. Bacteriol. 170:1739–1745.

    PubMed  CAS  Google Scholar 

  • Broughton, W. J., Samrey, U., and Stanley, J., 1987, Ecological genetics of Rhizobium meliloti: Symbiotic plasmid transfer in the Medicago sativa rhizosphere, FEMS Microbiol. Lett. 40:251–255.

    CAS  Google Scholar 

  • Brown, D. P., Idler, K. B., and Katz, L., 1990, Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea, J. Bacteriol. 172:1877–1888.

    PubMed  CAS  Google Scholar 

  • Burns, R. G., 1980, Microbial adhesion to soil surfaces: Consequences for growth and enzyme activities, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 249–262.

    Google Scholar 

  • Byrd, J. J., and Colwell, R. R., 1990, Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment, Appl. Environ. Microbiol. 56:2104–2107.

    PubMed  CAS  Google Scholar 

  • Cairns, J., Overbaugh, J., and Miller, S., 1988, The origin of mutants, Nature 335:142–145.

    PubMed  CAS  Google Scholar 

  • Caldwell, B. A., Ye, C., Griffiths, R. P., Moyer, C. L., and Morita, R. Y., 1989, Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water, Appl. Environ. Microbiol. 55:1860–1864.

    PubMed  CAS  Google Scholar 

  • Cameron, F. H., Groot Obbink, D. J., Ackerman, V. P., and Hall, R. M., 1986, Nucleotide sequence of the AAD(2”) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388, Nucleic Acids Res. 14: 8625–8635.

    PubMed  CAS  Google Scholar 

  • Campbell, A., Ma, D. P., Benedik, M., and Limberger, R., 1986, Reproductive isolation in prokaryotes and their accessory DNA elements, in: Antibiotic Resistance Genes: Ecology, Transfer and Expression (R. P. Novick and S. B. Levy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 337–345.

    Google Scholar 

  • Campell, A., 1977, Defective bacteriophages and incomplete prophages, in: Comprehensive Virology, Vol. 8 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum Press, New York, pp. 259–328.

    Google Scholar 

  • Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983, Pseudomonas stutzeri and related species undergo natural transformation, J. Bacteriol. 153:93–99.

    PubMed  CAS  Google Scholar 

  • Caulcott, C. A., Dunn, A., Robertson, H. A., Cooper, N. S., Brown, M. E., and Rhodes, P. M., 1987, Investigation of the effect of growth environment on the stability of low copy-number plasmids in Escherichia coli, J. Gen. Microbiol. 133:1881–1889.

    PubMed  CAS  Google Scholar 

  • Chakrabarty, A. M., 1972, Genetic basis of the biodegradation of salicylate in Pseudomonas, J. Bacteriol. 112:815–823.

    PubMed  CAS  Google Scholar 

  • Chakrabarty, A. M., Chon, G., and Gansulas, I. C., 1973, Genetic regulation of octane dissimilation plasmid in Pseudomonas, Proc. Natl. Acad. Sci. USA 70:1137–1140.

    PubMed  CAS  Google Scholar 

  • Chandler, P. M., and Krishnapillai, V., 1977, Characterization of Pseudomonas aeruginosa derepressed R plasmids, J. Bacteriol. 130:596–603.

    PubMed  CAS  Google Scholar 

  • Chao, L., and Cox, E. C., 1983, Competition between high and low mutating strains of Escherichia coli, Evolution 37:125–134.

    Google Scholar 

  • Charlesworth, D., Charlesworth, B., Bull, J. J., Graffen, A., Holliday, R., Rosenberger, R. F., Velen, L. V. M., Danchin, A., Tessman, I., and Cairns, J., 1988, Origins of mutants disputed, Nature 336:525–528.

    Google Scholar 

  • Chen, J. D., and Morrison, D. A., 1987, Modulation of competence for genetic transformation in Streptococcus pneumoniae, J. Gen. Microbiol. 133:1959–1967.

    PubMed  CAS  Google Scholar 

  • Clark, P. H., 1984, Evolution of new phenotypes, in: Current Perspectives in Microbial Ecology (M. J. Klugg and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 71–78.

    Google Scholar 

  • Clewell, D. B., and Gawron-Burke, M. C., 1986, Conjugative transposons and the dissemination of antibiotic resistance in streptococci, Annu. Rev. Microbiol. 40:635–659.

    PubMed  CAS  Google Scholar 

  • Cohen, A., Bar-Nir, D., Goedeke, M., and Parag, Y., 1985, The integrated and free states of Streptomyces griseus plasmid pSG1, Plasmid 13:41–50.

    PubMed  CAS  Google Scholar 

  • Colon, A. E., Cole, R. M., and Leonard, C. G., 1972, Intergroup lysis and transduction by Streptococcus bacteriophages, J. Virol. 9:551–553.

    PubMed  CAS  Google Scholar 

  • Contente, S., and Dabnau, D., 1979, Characterization of plasmid transformation in Bacillus subtilis: Kinetic properties and the effect of DNA conformation, Mol. Gen. Genet. 167:251–258.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Kimura, M. (ed.), 1970, An Introduction to Population Genetics Theory, Harper & Row, New York, pp. 483–488.

    Google Scholar 

  • Cruz-cruz, N. E., Toranzos, G. A., Ahearn, D. G., and Hazen, T. C., 1988, In situ survival of plasmid-bearing and plasmidless Pseudomonas aeruginosa in pristine tropical waters, Appl. Environ. Microbiol. 54:2574–2577.

    PubMed  CAS  Google Scholar 

  • Cruze, J. A., Singer, J. T., and Finnerty, W. R., 1979, Conditions for quantitative transformation in Acinetobacter calcoaceticus, Curr. Microbiol. 3:129–132.

    CAS  Google Scholar 

  • Datta, N., and Hughes, V. M., 1983, Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics, Nature 306:616–617.

    PubMed  CAS  Google Scholar 

  • Day, M. J., 1987, The biology of plasmids, Sci. Prog. Oxf., 71:203–220.

    CAS  Google Scholar 

  • De Flaun, M. F., Paul, J. H., and Jeffrey, W. H., 1987, The distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments, Mar. Ecol. Prog. Ser. 33: 29–40.

    Google Scholar 

  • De Flaun, M. F., Davis, D., and Paul, J. H., 1988, Simplified method for dissolved DNA determinations in aquatic environments, Appl. Environ. Microbiol. 52:654–659.

    Google Scholar 

  • De Flaun, M. F., Tanzer, A. S., McAteer, A. L., Marshall, B., and Levy, S. B., 1990, Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluoresces, Appl. Environ. Microbiol. 56:112–119.

    Google Scholar 

  • Devanas, M. A., Rafaeli-Eshkol, D., and Stotzky, G., 1986, Survival of plasmid containing strains of Escherichia coli in soil: Effects of plasmid size and nutrients on survival of host and maintenance of plasmids, Curr. Microbiol. 13:269–277.

    Google Scholar 

  • De Vos, G. F., Finan, T. M., Signer, E. R., and Walker, G. C., 1984, Host dependent transposon Tn-5 mediated streptomycin resistance, J. Bacteriol. 159:395–399.

    PubMed  Google Scholar 

  • Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R., 1980, Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 77:7347–7351.

    PubMed  CAS  Google Scholar 

  • Domsch, K. H., Driesel, A. J., Goebel, W., Andersch, W., Lindemaier, W., Lotz, W., Reber, H., and Schmidt, F., 1988, Considerations on release of gene-technology engineered microorganisms into the environment, FEMS Microbiol. Ecol. 53:261–272.

    Google Scholar 

  • Dowling, D. N., and Broughton, W. J., 1986, Competition for nodulation of legumes, Annu. Rev. Microbiol. 40:131–157.

    PubMed  CAS  Google Scholar 

  • Drahos, D. J., Hemming, B. C., and McPherson, S., 1986, Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads, Bio/Technology 4:43–48.

    Google Scholar 

  • Drahos, D. J., Barry, G. F., Hemming, B. C., Brandt, E. J., Skipper, H. D., Kline, E. L., Kluepfel, D. A., Hughes, T. A., and Gooden, D. T., 1988, Pre-release testing procedures: US field test of a lacZY-engineered soil bacterium, in: The Release of Genetically Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 181–191.

    Google Scholar 

  • Dunn, N. W., and Gunsalus, I. C., 1973, Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida, J. Bacteriol. 114:974–979.

    PubMed  CAS  Google Scholar 

  • Eberhard, W. G., 1990, Evolution in bacterial plasmids and levels of selection, Q. Rev. Biol. 65:3–22.

    PubMed  CAS  Google Scholar 

  • Engels, W. R., 1986, On the evolution and population genetics of hybrid-dysgenesis-causing transposable elements in Drosophila, Philos. Trans. R. Soc. London Ser. B 312:205–215.

    CAS  Google Scholar 

  • Evans, D. J., and Evans, D. G., 1983, Classification of pathogenic Escherichia coli according to serotype and the production of virulence factors, with special reference to colonization factor antigens, Rev. Infect. Dis. 5:5692–5701.

    Google Scholar 

  • Falkenstein, H., Zeller, W., and Geider, K., 1989, The 29Kb plasmid, common in strains of Erwinia amylovora, modulates development of fireblight symptoms, J. Gen. Microbiol. 135:2643–2650.

    CAS  Google Scholar 

  • Falkow, S. (ed.), 1975, Infectious Multiple Drug Resistance, Pion, London.

    Google Scholar 

  • Farrand, S. K., Slota, J. E., Shim, J. S., and Kerr, A., 1985, Tn5 insertion in the agrocin 84 plasmid: The conjugal nature of pAgK84 and the location of determinants for transfer and agrocin 84 production, Plasmid 13:106–117.

    PubMed  CAS  Google Scholar 

  • Ford, S., and Olsen, B. H., 1988, Methods for detecting genetically engineered microorganisms in the environment, Adv. Microb. Ecol. 10:45–79.

    CAS  Google Scholar 

  • Fredrickson, J. K., Bezdicek, D. F., Brickman, F. J., and Li, S. W., 1988, Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number DNA hybridization technique and antibiotic resistance, Appl. Environ. Microbiol. 54:446–453.

    PubMed  CAS  Google Scholar 

  • Freeman, V. J., 1951, Studies on the virulence of bacteriophage infected strains of Corynebacterium diphtheriae, J. Bacteriol. 61:675–688.

    PubMed  CAS  Google Scholar 

  • Friedrich, B., Hogrefe, C., and Schlegel, H. G., 1981, Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus, J. Bacteriol. 147:198–205.

    PubMed  CAS  Google Scholar 

  • Frischer, M. E., Thurmond, J. M., and Paul, J. H., 1990, Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain, Appl. Environ. Microbiol. 56:3439–3444.

    PubMed  CAS  Google Scholar 

  • Fry, J. C., and Day, M. J. (ed.), 1990, Bacterial Genetics in Natural Environments, Chapman & Hall, London.

    Google Scholar 

  • Fulthorpe, R. R., and Wyndham, R. C., 1991, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem, Appl. Environ. Microbiol. 57:1546–1553.

    PubMed  CAS  Google Scholar 

  • Gabin-Gauthier, K., Gratadoux, J.-J., and Richard, J., 1991, Conjugal plasmid transfer between lactococci on solid surface matings and during cheese making, Microbiol. Ecol. 85:133–140.

    CAS  Google Scholar 

  • Gasson, M. J., and Willetts, N. S., 1975, Five control systems preventing transfer of Escherichia coli K12 sex factor F, J. Bacteriol. 122:518–525.

    PubMed  CAS  Google Scholar 

  • Gealt, M. A., Chai, M. D., Alpert, K. B., and Boyer, J. C., 1985, Transfer of plasmids pBR322 and pBR325 in freshwater from laboratory strains of Escherichia coli to bacteria indigenous to the waste disposal system, Appl. Environ. Microbiol. 49:836–841.

    PubMed  CAS  Google Scholar 

  • Germida, J. J., and Khachatourians, G. G., 1988, Transduction of Escherichia coli in soil, Can. J. Microbiol. 34:190–193.

    PubMed  CAS  Google Scholar 

  • Glick, B. R., and Skof, Y. C., 1986, Environmental implication of recombinant DNA technology, Biotechnol. Adv. 4:261–277.

    PubMed  CAS  Google Scholar 

  • Goldberg, R. B., Bender, R. A., and Streicher, S. L., 1974, Direct selection for P1-sensitive mutants of enteric bacteria, J. Bacteriol. 118:810–814.

    PubMed  CAS  Google Scholar 

  • Gonzalez, J. M., Brown, B. J., and Carlton, B. C., 1983, Transfer of Bacillus thuringiensis plasmid coding for delta-endotoxin among strains of Bacillus thuringiensis and Bacillus cereus, Proc. Natl. Acad. Sci. USA 79:6951–6955.

    Google Scholar 

  • Gowland, P. C., and Slater, J. H., 1984, Transfer and stability of drug resistance plasmids in Escherichia coli K12, Microb. Ecol. 10:1–13.

    CAS  Google Scholar 

  • Goze, A., Sarasin, A., Moute, Y., and Devoret, R., 1975, Induction and mutagenesis of prophage lambda in E. coli K12 by metabolites of aflatoxin B1, Mutat. Res. 28:1–7.

    PubMed  CAS  Google Scholar 

  • Grabow, W. O. K., Prozesky, O. W., and Berger, J. S., 1975, Behaviour in a river and dam of coliform bacteria with transferable or non-transferable drug resistance, Water Res. 9:777–782.

    Google Scholar 

  • Graham, S. B., and Ibstock, C. A., 1978, Genetic exchange in Bacillus subtilis in soil, Mol. Gen. Genet. 166:287–290.

    PubMed  CAS  Google Scholar 

  • Graham, S. B., and Ibstock, C. A., 1979, Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture, Science 204:637–639.

    PubMed  CAS  Google Scholar 

  • Greene, J., and Goldberg, R. B., 1985, Isolation and preliminary characterization of lytic and lysogenic phages with a wide host range within the Streptomycetes, J. Gen. Microbiol. 131:2454–2465.

    Google Scholar 

  • Griffith, F., 1928, The significance of pneumococcal types, J. Hyg. 27:113–159.

    CAS  Google Scholar 

  • Gross, M. D., and Siegel, E. C., 1981, Incidence of mutator strains in Escherichia coli and coliforms in nature, Mutat. Res. 91:107–110.

    PubMed  CAS  Google Scholar 

  • Guiney, D. G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria (C. M. Thomas, ed.)., Academic Press, New York, pp. 27–56.

    Google Scholar 

  • Guiney, D. G., Jr., Hasegawa, P., and Davis, C. E., 1984, Expression in Escherichia coli of cryptic tetracycline resistance genes from R plasmids, Plasmid 11:248–252.

    PubMed  CAS  Google Scholar 

  • Hada, H. S., and Sizemore, R. K., 1981, Incidence of plasmids in marine Vibrio spp. isolated from an oil field in the northwestern Gulf of Mexico, Appl. Environ. Microbiol. 41:199–202.

    PubMed  CAS  Google Scholar 

  • Hales, B. A., and Amyes, S. K. B., 1986, The transfer of genes encoding production of mannose-resistant haemagglutinating fimbriae from uropathogenic Enterobacteria, J. Gen. Microbiol. 132:2243–2247.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1982, Chromosomal mutation for citrate utilization by Escherichia coli K-12, J. Bacteriol. 151:269–273.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1988, Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence, Genetics 120:887–897.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1989, Selection, adaptation, and bacterial operons, Genome 31:265–271.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1990, Spontaneous point mutations that occur more often when advantageous than when neutral, Genetics 126:5–16.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1991, Adaptive evolution that requires multiple spontaneous mutations—mutations involving base substitutions, Proc. Natl. Acad. Sci. USA 18:5882–5886.

    Google Scholar 

  • Hall, B. G., Yokoyama, S., and Calhoun, D. H., 1983, Role of cryptic genes in microbial evolution, Mol. Biol. Evol. 1:109–124.

    PubMed  CAS  Google Scholar 

  • Hall, R. M., Brookes, D. E., and Stokes, H. W., 1991, Site-specific insertion of genes into integrons: Role of the 59-base element and determination of the recombination cross-over point, Mol. Microbiol. 5:1941–1959.

    PubMed  CAS  Google Scholar 

  • Haiti, D. L., 1985, Engineered organisms in the environment: Inferences from population genetics, in: Engineered Organisms in the Environment: Scientific Issues (H. O. Halvorson, D. Pramer, and M. Rogul, eds.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Haiti, D. L., and Dykhuizen, D. E., 1984, The population genetics of Escherichia coli, Annu. Rev. Genet. 18:31–68.

    Google Scholar 

  • Haiti, D. L., Dykhuizen, D., Miller, R. D., Green, L., and DeFramond, J., 1983, Transposable element IS50 improves growth rate of E. coli cells without transposition, Gene 35:503–510.

    Google Scholar 

  • Hayes, W. (ed.), 1968, The Genetics of Bacteria and Their Viruses: Studies in Basic Genetics and Molecular Biology, Blackwell, Oxford.

    Google Scholar 

  • Hedges, R. W., 1972, Phenotypic characterization of fi R-factor determining restriction modification hsp11 specificity, Mol. Gen. Genet. 115:225–233.

    PubMed  CAS  Google Scholar 

  • Helinski, D. R., Cohen, S. N., Clewell, D. B., Jackson, D. A., and Hollaender, A. (ed.), 1985, Plasmids in Bacteria, Plenum Press, New York.

    Google Scholar 

  • Helling, R. B., Kinney, T., and Adams, J., 1981, The maintenance of plasmid containing organisms in populations of Escherichia coli, J. Gen. Microbiol. 123:129–141.

    PubMed  CAS  Google Scholar 

  • Helling, R. B., Vargas, C. N., and Adams, J., 1987, Evolution of Escherichia coli during growth in a constant environment, Genetics 116:349–358.

    PubMed  CAS  Google Scholar 

  • Henschke, R. B., and Schmidt, F. R. S., 1990, Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil flora in situ, Curr. Microbiol. 20:105–110.

    CAS  Google Scholar 

  • Henschke, R. B., Nucken, E., and Schmidt, F. R., 1989, Fate and dispersal of recombinant bacteria in a soil microcosm containing the earthworm Lumbricus terrestris, Biol. Fertil. Soils 7:374–376.

    Google Scholar 

  • Herskowitz, I., and Hagen, D., 1980, The lysis-lysogeny decision of phage lambda: Explicit programming and responsiveness, Annu. Rev. Genet. 14:399–445.

    PubMed  CAS  Google Scholar 

  • Heynen, C. E., Van Elsas, J. D., and Kuikman, P. J., 1988, Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa, Soil Biol. Biochem. 20:483–488.

    CAS  Google Scholar 

  • Hirsch, P. R., 1990, Factors limiting gene transfer in bacteria, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 31–40.

    Google Scholar 

  • Hodgson, J., and Sugden, A. M. (ed.), 1988, Planned Release of Genetically Engineered Organisms. Trends in Biotechnology/Trends in Ecology and Evolution Special Publication, Elsevier, Amsterdam.

    Google Scholar 

  • Holloway, B. W., and Krishnapillai, V., 1975, Bacteriophages and bacteriocins, in: Genetics and Biochemistry of Pseudomonas (P. H. Clarke and M. H. Richmond, eds.), Wiley, New York, pp. 99–132.

    Google Scholar 

  • Hughes, V. M., and Datta, N., 1983, Conjugative plasmids in bacteria of the “pre-antibiotic” era, Nature 302:725–726.

    PubMed  CAS  Google Scholar 

  • Ippen-Ihler, K. A., and Minkley, E. G., 1986, The conjugation system of F, the fertility factor of Escherichia coli, Annu. Rev. Genet. 20:593–624.

    PubMed  CAS  Google Scholar 

  • Ishigaro, N., and Sato, G., 1979, The distribution of plasmids determining citrate-positive variants of Escherichia coli from humans, domestic animals, feral birds and environment, J. Hyg. 83: 331–344.

    Google Scholar 

  • Jacobson, A., 1972, Role of F pilus in the penetration of bacteriophage F1, J. Virol. 10:835–843.

    PubMed  CAS  Google Scholar 

  • Jain, R. K., Sayler, G. S., Wilson, J. T., Houston, L., and Pacia, D., 1987, Maintenance and stability of genotypes in groundwater aquifer material, Appl. Environ. Microbiol. 53:996–1002.

    PubMed  CAS  Google Scholar 

  • Jain, R. K., Burlage, R. S., and Sayler, G. S., 1988, Methods for detecting recombinant DNA in the environment, Crit. Rev. Biotechnol. 8:33–84.

    PubMed  CAS  Google Scholar 

  • Jarvis, B. D. W., Ward, L. J. H., and Slade, E. A., 1989, Expression by soil bacteria of nodulation genes from Rhizobium leguminosarum biovar trifola, Appi Environ. Microbiol. 55:1426–1434.

    CAS  Google Scholar 

  • Juni, E., 1978, Genetics and physiology of Acinetobacter, Annu. Rev. Microbiol. 32:349–371.

    PubMed  CAS  Google Scholar 

  • Kamp, P. F., and Chakrabarty, A. M., 1974, Plasmids specifying p-chlorobiphenyl degradation in enteric bacteria, in: Plasmids of Medical, Environmental and Commercial Importance (K. N. Timmis and A. Punier, eds.), Elsevier/North-Holland, Amsterdam, pp. 275–285.

    Google Scholar 

  • Kelly, W. J., and Reanney, D. C., 1984, Mercury resistance among soil bacteria: Ecology and transferability of genes encoding resistance, Soil Biol. Biochem. 16:1–8.

    CAS  Google Scholar 

  • Kerr, A., 1971, Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter, Physiol. Plant Pathol. 1:241–246.

    Google Scholar 

  • Kerr, A., 1989, Commercial release of a genetically engineered bacterium for the control of crown gall, Agric. Sci. 89:41–44.

    Google Scholar 

  • Khanna, M., and Stotzky, G., 1991, Binding of DNA to the clay minerals, montmorillonite and kaolinite and the effect of DNase on transforming ability of bound DNA, Annual Meeting, American Society for Microbiology, Dallas, Abstract Q17, p. 279.

    Google Scholar 

  • Klingmueller, W., 1991, Plasmid transfer in natural soil: A case by case study with nitrogen-fixing Enterobacter, FEMS Microbiol Ecol. 85:107–116.

    CAS  Google Scholar 

  • Klingmueller, W., Heterich, S., and Min, B.W., 1989, Molecular analysis of N2-fixation in associative Enterobacter, in: Nitrogen Fixation with Non-legumes (F. A. Skinner, R. M. Boddey, and I. Fendrick, eds.), Kluwer, Dordrecht, pp. 173–178.

    Google Scholar 

  • Klintworth, R., Husemann, M., Salnikow, J., and Bowien, B., 1985, Chromosomal and plasmid location for phosphoribulokinase genes in Alcaligenes eutrophus, J. Bacteriol. 164:954–956.

    PubMed  CAS  Google Scholar 

  • Kluepfel, D. A., Kline, E. L., Skipper, H. D., Hughes, T. A., Gooden, D. T., Drahos, D. J., Barry, G. F., Hemming, B. C., and Brandt, E. J., 1991, The release and tracking of genetically engineered bacteria in the environment, Phytopathology 81:348–352.

    Google Scholar 

  • Kokjohn, T. A., 1989, Transduction: Mechanisms and potential for gene transfer in the environment, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 73–98.

    Google Scholar 

  • Krasovsky, V. N., and Stotzky, G., 1987, Conjugation and genetic recombination in Escherichia coli in sterile and nonsterile soil, Soil Biol Biochem. 19:631–638.

    Google Scholar 

  • Lenski, R. E., 1989, Are some mutations directed? Trends Ecol. Evol. 4:148–150.

    PubMed  CAS  Google Scholar 

  • Levin, M. A., Seidler, R., Borquin, A. L. W., Fowle, J. R., and Barkay, T., 1987, EPA developing methods to assess environmental release, Bio/Technology 5:38–45.

    Google Scholar 

  • Levy, S. B., and Marshall, B. M., 1988, Genetic transfer in the natural environment, in: Release of Genetically-Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 61–76.

    Google Scholar 

  • Levy, S. B., and Miller, R. V. (ed.), 1989, Gene Transfer in the Environment, McGraw-Hill, New York.

    Google Scholar 

  • Lin, E. C. C., Goldstein, R., and Syvanen, M. (ed.), 1984, Bacteria, Plasmids and Phages, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Linder, K., and Oliver, J. D., 1989, Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus, Appl. Environ. Microbiol. 55:2837–2842.

    PubMed  CAS  Google Scholar 

  • Lindow, S. E., 1987, Competitive exclusion of epiphytic bacteria by Ice mutants of Pseudomonas syringae, Appl. Environ. Microbiol. 53:2520–2527.

    PubMed  CAS  Google Scholar 

  • Lindow, S. E., and Panopoulos, N. J., 1988, Field tests of recombinant Ice Pseudomonas syringae for biological frost control in potato, in: The Release of Genetically Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 121–138.

    Google Scholar 

  • Lorenz, M. G., and Wackernagel, W., 1987, Adsorption of DNA to sand and variable degradation rates of adsorbed DNA, Appl. Environ. Microbiol. 53:2948–2952.

    PubMed  CAS  Google Scholar 

  • Lorenz, M. G., Aardema, B.W., and Krumbein, W. E., 1981, Interaction of marine sediment with DNA and DNA availability to nucleases, Mar. Biol. 64:225–230.

    CAS  Google Scholar 

  • Lorenz, M. G., Aardema, B. W., and Wackernagel, W., 1988, Highly efficient genetic transformation of Bacillus subtilis attached to sand grains, J. Gen. Microbiol. 134:107–112.

    PubMed  CAS  Google Scholar 

  • Lwoff, A., Siminovitch, L., and Kjeldgaard, N., 1950, Induction de la production de bacteriophages chez un bacterie lysogene, Ann. Inst. Pasteur 79:815.

    CAS  Google Scholar 

  • Lynch, J. M., 1990, Longevity of bacteria: Considerations in environmental release, Curr. Microbiol. 20:387–389.

    Google Scholar 

  • McCarty, M., 1980, Reminiscences of the early days of transformation, Annu. Rev. Genet. 14:1–15.

    PubMed  CAS  Google Scholar 

  • McConnell, M. M., Smith, H. R., Willshaw, G. A., Field, A. M., and Rowe, B., 1981, Plasmids coding for colonization factor antigen I and heat-stable enterotoxin production isolated from enterotoxigenic Escherichia coli: Comparison of their properties, Infect. Immun. 32:927–936.

    PubMed  CAS  Google Scholar 

  • Mach, P. A., and Grimes, D. J., 1982, R-plasmid transfer in a wastewater treatment plant, Appl. Environ. Microbiol. 44:1395–1403.

    PubMed  CAS  Google Scholar 

  • McKenna, S., 1989, Genetic engineering inquiry, Friends of the Earth Newsletter 7:1–2.

    Google Scholar 

  • Mancini, P., Fertels, S., Nave, D., and Gealt, M. A., 1987, Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility, Appl. Environ. Microbiol. 53:665–671.

    PubMed  CAS  Google Scholar 

  • Marshall, B., and Levy, S. B., 1990, Gene exchange in the natural environment, in: Advances in Biotechnology (E. Heseltine, ed.), AB Boktryck HBG, Stockholm, pp. 131–143.

    Google Scholar 

  • Marshall, B., Petrowski, D., and Levy, S. B., 1990, Inter-and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage, Proc. Natl. Acad. Sci. USA 87:6609–6613.

    PubMed  CAS  Google Scholar 

  • Martinez, E., and De la Cruz, F., 1988, Transposon Tn21 encodes a RecA-independent site-specific integration system, Mol. Gen. Genet. 211:320–325.

    PubMed  CAS  Google Scholar 

  • Martinez, E., and De la Cruz, F., 1990, Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes, EMBO J. 9:1275–1281.

    PubMed  CAS  Google Scholar 

  • Martinez, L. Y., Arenus, M. M. P., Montes, M. Y. R., Martinez, L. J., and Baca, B. E., 1987, Antibiotic resistance and plasmid pattern of enterotoxigenic ST-a strains of Escherichia coli, Can. J. Microbiol. 33:816–819.

    PubMed  CAS  Google Scholar 

  • Masden, E. L., and Alexander, M., 1982, Transport of Rhizobium and Pseudomonas through soil, Soil Sci. Soc. Am. J. 46:557–560.

    Google Scholar 

  • Masters, M., 1985, Generalized transduction, in: Genetics of Bacteria (J. Scuife, D. Lead, and A. Galizzi, eds.), Academic Press, New York, pp. 197–216.

    Google Scholar 

  • Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P., and Van Grijsegem, F., 1985, Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals, J. Bacteriol. 162:328–334.

    PubMed  CAS  Google Scholar 

  • Mergeay, M., Lejeune, P., Sadouk, A., Gerits, J., and Fabry, L., 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113, Mol. Gen. Genet. 209:61–70.

    PubMed  CAS  Google Scholar 

  • Miller, R. V., 1988, Potential for transfer and establishment of engineered genetic sequences, in: Planned Release of Genetically Engineered Organisms (Trends in Biotechnology/Trends in Ecology and Evolution special publication) (J. Hodgson and A. M. Sugden, eds.), Elsevier, Amsterdam, pp. 23–26.

    Google Scholar 

  • Miller, R. V., and Kokjohn, T. A., 1990, General microbiology of recA: Environmental and evolutionary significance, Annu. Rev. Microbiol. 44:365–394.

    PubMed  CAS  Google Scholar 

  • Molak, V., and Stara, J. F., 1988, Genetically engineered microorganisms in the aquatic environment: Environmental safety assessment, in: Aquatic Toxicology and Hazard Assessment (W. J. Adams, G. A. Chapman, and W. G. Landis, eds.), American Society for Testing and Materials, Philadelphia, pp. 43–50.

    Google Scholar 

  • Morgan, J. A. W., Winstanley, C., Pickup, R. W., Jones, J. G., and Saunders, J. R., 1989, Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water, Appl. Environ. Microbiol. 55:2537–2544.

    PubMed  CAS  Google Scholar 

  • Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6:171–198.

    Google Scholar 

  • Morrison, W. D., Miller, R. V., and Sayler, G. S., 1978, Frequency of F116 mediated transduction of Pseudomonas aeruginosa in a natural freshwater environment, Appl. Environ. Microbiol. 36: 724–730.

    PubMed  CAS  Google Scholar 

  • Muriana, P. M., and Klaenhammer, T. R., 1987, Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88, Appl. Environ. Microbiol. 53:553–560.

    PubMed  CAS  Google Scholar 

  • Novick, R. P., 1987, Plasmid incompatibility, Microbiol. Rev. 51:381–395.

    PubMed  CAS  Google Scholar 

  • Novick, R. P., 1989, Stephylococcal plasmids and their replication, Annu. Rev. Microbiol. 43:537–565.

    PubMed  CAS  Google Scholar 

  • Ogunseitan, O. A., Sayler, G. S., and Miller, R. V., 1990, Dynamic interaction of Pseudomonas aeruginosa and bacteriophages in lake water, Microb. Ecol. 19:171–185.

    Google Scholar 

  • Olsen, B. H., 1991, Tracking and using genes in the environment, Environ. Sci. Technol. 25:604–611.

    Google Scholar 

  • O’Morchoe, S. B., Ogunseitan, O., Sayler, G. S., and Miller, R. V., 1988, Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment, Appl. Environ. Microbiol. 54:1923–1929.

    PubMed  Google Scholar 

  • Orgram, A., Sayler, G. S., and Burkay, T., 1987, The extraction and purification of microbial DNA from sediments, J. Microbiol. Methods 7:57–60.

    Google Scholar 

  • Paul, J. H., DeFlaun, M. F., and Jeffrey, W. H., 1986, Elevated levels of microbial activity in the coral surface microlayer, Abstract, Annual Meeting American Society for Microbiology, N 72, p. 253.

    Google Scholar 

  • Paul, J. H., Frischer, M. E., and Thurmond, J. M., 1991, Gene transfer in marine water column and sediment microcosms by natural plasmid transformation, Appl. Environ. Microbiol. 57:1509–1515.

    PubMed  CAS  Google Scholar 

  • Pemberton, J. M., and Fischer, P. R., 1977, 2,4-D plasmids and persistence, Nature 266:50–51.

    PubMed  CAS  Google Scholar 

  • Pickup, R. W., 1989, Related plasmids found in an English lake district stream, Microb. Ecol. 18: 211–220.

    CAS  Google Scholar 

  • Pickup, R. W., 1991, Development of molecular methods for the detection of specific bacteria in the environment, J. Gen. Microbiol. 137:1009–1019.

    CAS  Google Scholar 

  • Pickup, R. W., and Saunders, J. R., 1990, Detection of genetically engineered traits among bacteria in the environment, Biotechnology 8:329–334.

    CAS  Google Scholar 

  • Pickup, R. W., Morgan, J. A. W., Winstanley, C., and Saunders, J. R., 1991, Implications for the release of genetically engineered organisms, J. Appl. Bacteriol. Symp. Suppl. 70:19s–30s.

    Google Scholar 

  • Radstrom, P., and Swedberg, G., 1988, RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase, Antimicrob. Agents Chemother. 32:1684–1692.

    PubMed  CAS  Google Scholar 

  • Rattray, E. A., Prosser, J. I., Killham, K., and Glover, L. A., 1990, Luminescence-based non-extractive technique for in situ detection of Escherichia coli in soil, Appl. Environ. Microbiol. 56:3368–3374.

    PubMed  CAS  Google Scholar 

  • Reanney, D. C., Gowland, P. C., and Slater, J. H., 1983, Genetic interactions among communities, in: Microbes in the Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, pp. 379–421.

    Google Scholar 

  • Reiter, W. D., Palm, P., and Yeats, S., 1989, Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements, Nucleic Acids Res. 17:1907–1914.

    PubMed  CAS  Google Scholar 

  • Rheinwald, J. G., Chakrabarty, A. M., and Gunsalus, I. C., 1973, A transmissible plasmid controlling camphor oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci. USA 70:885–889.

    PubMed  CAS  Google Scholar 

  • Richaume, A., Angle, S., and Sadowsky, M. J., 1989, Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii, Appl. Environ. Microbiol. 55:1730–1734.

    PubMed  CAS  Google Scholar 

  • Ripp, S., and Miller, R. V., 1991, Importance of suspended particles in providing surfaces for genetic exchange among bacteria in fresh water environments, Abstracts, 91st General Meeting of the American Society for Microbiology, Dallas, Q15, p. 279.

    Google Scholar 

  • Roberts, M. C., and Kenny, G. E., 1987, Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis, J. Bacteriol. 169:3836–3839.

    PubMed  CAS  Google Scholar 

  • Rochelle, P. A., Day, M. J., and Fry, J. C., 1988, Occurrence, transfer and mobilization in epilithic strains of Acinetobacter of mercury-resistance plasmids capable of transformation, J. Gen. Microbiol. 134:2933–2941.

    PubMed  CAS  Google Scholar 

  • Rochelle, P. A., Fry, J. C., and Day, M. J., 1989a, Plasmid transfer between Pseudomonas spp. within epilithic films in a rotating disc microcosm, FEMS Microbiol. Ecol. 62:127–136.

    Google Scholar 

  • Rochelle, P. A., Fry, J. C., and Day, M. J., 1989b, Factors affecting conjugal transfer of plasmics encoding mercury resistance from pure cultures and mixed natural suspensions of epilithic bacteria, J. Gen. Microbiol. 135:409–424.

    PubMed  CAS  Google Scholar 

  • Röemermann, D., and Friedrich, B., 1985, Denitrification by Alcaligenes eutrophus is plasmid dependent, J. Bacteriol. 162:852–854.

    Google Scholar 

  • Rolfe, B., and Holloway, B.W., 1966, Alterations in host specificity of bacterial deoxyribonucleic acid after increase in growth temperature of Pseudomonas aeruginosa, J. Bacteriol. 92:42–48.

    Google Scholar 

  • Rolfe, B. G., Brockwell, J., Bolton-Gibbs, J., Clark, K., Brown, T., and Weinman, J. J., 1989, Controlled field release of genetically manipulated Rhizobium strains, Aust. Microbiol. 10:364.

    Google Scholar 

  • Rolland, R. M., Hausfater, G., Marshall, B., and Levy, S. B., 1985, Antibiotic-resistant bacteria in wild primates: Increased prevalence in baboons feeding on human refuse, Appl. Environ. Microbiol. 49:791–794.

    PubMed  CAS  Google Scholar 

  • Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51:365–379.

    PubMed  CAS  Google Scholar 

  • Rovira, A. D., Foster, R. C., and Martin, J. K., 1979, Note on terminology: Origin, nature and nomenclature of the organic materials in the rhizosphere, in: The Soil-Root Interface (J. C. Hartley and R. S. Russell, eds.), Academic Press, New York, pp. 1–4.

    Google Scholar 

  • Sancar, A., and Rupp, W. D., 1979, Cloning of uvrA, lexC and SSB genes of Escherichia coli, Biochem. Biophys. Res. Commun. 90:123–129.

    PubMed  CAS  Google Scholar 

  • Sandt, C. H., and Herson, D. S., 1991, Mobilisation of the genetically engineered plasmid pHSV106 from Escherichia coli HB101(pHSV106) to Enterobacter cloacae in drinking water, Appl. Environ. Microbiol. 57:194–200.

    PubMed  CAS  Google Scholar 

  • Saunders, J. R., and Saunders, V. A., 1988, Bacterial transformation with plasmid DNA, Methods Microbiol. 21:79–128.

    CAS  Google Scholar 

  • Saye, D. J., Ogunseitan, O., Sayler, G. S., and Miller, R. V., 1987, Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa, Appl. Environ. Microbiol. 53:987–995.

    PubMed  CAS  Google Scholar 

  • Saye, D. J., Ogunseitan, O. A., Sayler, G. S., and Miller, R. V., 1990, Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat, Appl. Environ. Microbiol. 56:140–145.

    PubMed  CAS  Google Scholar 

  • Schiffenbauer, M., and Stotzky, G., 1982, Adsorption of coliphages T1 and T7 to clay minerals, Appl. Environ. Microbiol. 43:590–596.

    PubMed  CAS  Google Scholar 

  • Schmieger, H., 1990, Phage genetics and ecology, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 41–54.

    Google Scholar 

  • Schofield, P. R., Gibson, A. H., Dudman, W. F., and Watson, J. M., 1987, Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population, Appl. Environ. Microbiol. 53:2942–2947.

    PubMed  CAS  Google Scholar 

  • Simonsen, L., 1990, Dynamics of plasmid transfer on surfaces, J. Gen. Microbiol. 136:1001–1007.

    PubMed  CAS  Google Scholar 

  • Singer, J. T., Van Turjl, J. T., and Finnerty, W. R., 1986, Transformation and mobilization of cloning vectors in Acinetobacter spp., J. Bacteriol. 165:301–303.

    PubMed  CAS  Google Scholar 

  • Singleton, P., and Anson, A. E., 1981, Conjugal transfer of R-plasmid Rldrd-19 in Escherichia coli below 22°C, Appl. Environ. Microbiol. 42:789–791.

    PubMed  CAS  Google Scholar 

  • Slater, J. H., 1985, Gene transfer in microbial communities, in: Engineered Organisms in the Environment (H. O. Halvorson, D. Pramer, and M. Rogai, eds.), American Society for Microbiology, Washington, D. C., pp. 89–98.

    Google Scholar 

  • Smit, E., and Van Elsas, J. D., 1990, Determination of plasmid transfer frequency in soil: Consequences of bacterial mating on selective agar media, Curr. Microbiol. 21:151–157.

    CAS  Google Scholar 

  • Smith, H. O., Danner, D. B., and Deich, R. A., 1981, Genetic transformation, Annu. Rev. Biochem. 50:189–196.

    Google Scholar 

  • Steenson, L. R., and Klaenhammer, T. R., 1985, Streptococcus eremeris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages, Appl. Environ. Microbiol. 50:851–858.

    PubMed  CAS  Google Scholar 

  • Steffan, R. J., and Atlas, R. M., 1988, DNA amplification to enhance detection of genetically engineered bacteria in environmental samples, Appl. Environ. Microbiol. 54:2185–2191.

    PubMed  CAS  Google Scholar 

  • Steffan, R. J., and Atlas, R. M., 1990, Solution hybridization assay for detecting genetically engineered microorganisms in environmental samples, Biotechniques 8:316–318.

    PubMed  CAS  Google Scholar 

  • Stewart, G. J., 1989, The mechanism of natural transformation, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 139–165.

    Google Scholar 

  • Stewart, G. J., and Carlson, C. A., 1986, The biology of natural transformation, Annu. Rev. Microbiol. 40:211–235.

    PubMed  CAS  Google Scholar 

  • Stewart, G. J., and Cyr, D. H., 1987, Distribution of natural transformation ability among marine bacteria, Eos 68:1712.

    Google Scholar 

  • Stewart, G. J., and Sinigalliano, C. D., 1990, Detection of horizontal gene transfer by natural transformation in native and introduced species of bacteria in marine and synthetic sediments, Appl. Environ. Microbiol. 56:1818–1824.

    PubMed  CAS  Google Scholar 

  • Stewart, G. J., Carlson, C. A., and Ingraham, J. L., 1983, Evidence for an active role of donor cells in natural transformation in Pseudomonas stutzeri, J. Bacteriol. 156:30–35.

    PubMed  CAS  Google Scholar 

  • Stewart, K. R., and Koditschek, L., 1980, Drug resistance transfer in Escherichia coli in New York Bight sediment, Mar. Bull. 11:130–133.

    CAS  Google Scholar 

  • Stokes, H. W., and Hall, R. M., 1989, A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: Integrons, Mol. Microbiol. 3:1669–1683.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., 1980, Surface interactions between clay minerals and microbes, viruses and soluble organics and the probable importance of these interactions to the ecology of microbes in soil, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 231–249.

    Google Scholar 

  • Stotzky, G., 1989, Gene transfer among bacteria in soil, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 165–222.

    Google Scholar 

  • Stotzky, G., 1990, Gene transfer by conjugation, transduction and transformation in soil, U.S. Environmental Protection Agency Publ. EPA/600/9-90/029, pp. 82–87.

    Google Scholar 

  • Stotzky, G., and Babich, H., 1986, Survival of, and genetic transfer by, genetically engineered bacteria in natural environments, Adv. Appl. Microbiol. 31:93–138.

    PubMed  CAS  Google Scholar 

  • Stotzky, G., Devanas, M. A., and Zeph, L. R., 1990, Methods for studying bacterial gene transfer in soil by conjugation and transduction, Adv. Appl. Microbiol. 35:57–169.

    PubMed  CAS  Google Scholar 

  • Stratz, M., Gottschalk, G., and Durre, P., 1990, Transfer and expression of the tetracycline resistance transposon Tn925 in Acetobacterium woodii, FEMS Microbiol. Lett. 68:171–176.

    Google Scholar 

  • Taylor, D. E., and Bradley, D. E., 1987, Location on RP4 of a tellurite resistance determinant not normally expressed in Inc P and plasmids, Antimicrob. Agents Chemother. 31:823–825.

    PubMed  CAS  Google Scholar 

  • Thomas, C. M. (ed.), 1989, Promiscuous Plasmids of Gram-negative Bacteria, Academic Press, New York.

    Google Scholar 

  • Tiedje, J. M., Colwell, R. K., Grossman, Y. L., Hodson, R. E., Lenski, R. E., Mack, R. N., and Regal, P. J., 1989, The planned introduction of genetically engineered organisms: Ecological considerations and recommendations, Ecology 70:298–315.

    Google Scholar 

  • Torres, O. R., Korman, R. Z., Zahler, S. A., and Dunny, G. M., 1991, The conjugative transposon Tn925: Enhancement of conjugal transfer by tetracycline in Enterococcus faecalus and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis, Mol. Gen. Genet. 225:395–400.

    PubMed  CAS  Google Scholar 

  • Trevors, J. T., and Starodub, M. E., 1987, R-plasmid transfer in non-sterile agricultural soil, Syst. Appl. Microbiol. 9:312–315.

    CAS  Google Scholar 

  • Trevors, J. T., and Van Elsas, J. D., 1989, A review of selected methods in environmental microbial genetics, Can. J. Microbiol. 35:895–902.

    CAS  Google Scholar 

  • Trevors, J. T., Van Elsas, J. D., Starodub, M. E., and Van Overbeek, L. S., 1990a, Pseudomonas fluorescens survival and plasmid RP4 transfer in agricultural water, Water Res. 24:751–755.

    CAS  Google Scholar 

  • Trevors, J. T., Van Elsas, J. D., Van Overbeek, L. S., and Starodub, M. E., 1990b, Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm, Appl. Environ. Microbiol. 56:401–408.

    PubMed  CAS  Google Scholar 

  • Trieu-Cuot, P., Gerbaud, T., Lambert, T., and Courvalin, P., 1985, In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria, EMBO J. 4:3583–3587.

    PubMed  CAS  Google Scholar 

  • Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, P., 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, Microbiol. Lett. 48:289–294.

    CAS  Google Scholar 

  • Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1988, Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli, J. Bacteriol. 170:4388–4391.

    PubMed  CAS  Google Scholar 

  • Tzipori, S., 1985, The relative importance of enteric pathogens affecting neonates of domestic animals, Adv. Vet. Sci. Comp. Med. 29:103–206.

    PubMed  CAS  Google Scholar 

  • Van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1988, Bacterial conjugation between pseudomonas in the rhizosphere of wheat, FEMS Microbiol. Ecol. 53:299–306.

    Google Scholar 

  • Van Elsas, J. D., Trevors, J. T., and Van Overbeek, L. S., 1991, Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms, Biol. Fertil. Soils 10:249–255.

    Google Scholar 

  • Van Larebeke, N., Gentello, C., Schell, J., Schilperoort, R. A., Hermans, A. K., Hernalsteens, J. P., and Van Montayu, M., 1975, Acquisition of tumour-inducing ability by non-oncogenic Agrobacteria as a result of plasmid transfer, Nature 255:742–743.

    PubMed  Google Scholar 

  • Van Overbeek, L. S., Van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1990, Long-term survival of and plasmid stability in Pseudomonas and Klebsiella species and appearance of nonculturable cells in agricultural drainage water, Microb. Ecol. 19:239–249.

    Google Scholar 

  • Vedamuthu, E. R., and Neville, J. M., 1986, Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures of Stephylococcus cremoris MS, Appl. Environ. Microbiol. 51: 677–682.

    PubMed  CAS  Google Scholar 

  • Voeykova, T. A., Orekhov, A. V., and Rebentish, B. A., 1980, New approaches to the study of restriction and modification systems in actinomycetes, Actinomycetes 15:152–166.

    Google Scholar 

  • Watson, B., Currier, T. C., Gorden, M. P., Chilton, M. D., and Nester, E. W., 1975, Plasmid required for virulence of Agrobacterium tumefaciens, J. Bacteriol. 123:255–264.

    PubMed  CAS  Google Scholar 

  • Weinberg, S. R., and Stotzky, G., 1972, Conjugation and genetic recombination of Escherichia coli in soil, Soil Biol. Biochem. 4:171–180.

    Google Scholar 

  • Weisberg, R., and Landy, A., 1983, Site-specific recombination in lambda, in: Lambda II (R. W. Henrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 211–250.

    Google Scholar 

  • Wellington, E. M. H., Cresswell, N., Herron, P. R., Clewlow, L. J., Saunders, V. A., and Wipat, A., 1990a, Gene transfer between streptomyces in soil, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 216–230.

    Google Scholar 

  • Wellington, E. M. H., Cresswell, N., and Saunders, V. A., 1990b, Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil, Appl. Environ. Microbiol. 56:1413–1419.

    PubMed  CAS  Google Scholar 

  • Wen-Hsiung, L., 1984, Retention of cryptic genes in microbial populations, Mol. Biol. Evol. 1:212–218.

    Google Scholar 

  • Willetts, N., and Crowther, C., 1981, Mobilization of the nonconjugative IncQ plasmid RSF1010, Genet. Res. 37:311–316.

    PubMed  CAS  Google Scholar 

  • Willetts, N. S., Crowther, C., and Holloway, B. W., 1981, The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome, Plasmid 6:30–52.

    PubMed  CAS  Google Scholar 

  • Williams, P. A., and Murry, K., 1974, Metabolism of benzoates and the methylbenzoates by Pseudomonas putida (arvilla) mt-2. Evidence for the existence of a TOL plasmid, J. Bacteriol. 120:416–423.

    PubMed  CAS  Google Scholar 

  • Williams, P. H., 1979, Novel iron uptake system specific by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli, Infect. Immun. 26:925–932.

    PubMed  CAS  Google Scholar 

  • Wong, C. L., and Dunn, N. W., 1974, Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas aravilla mt-2, Genet. Res. 23:227–230.

    PubMed  CAS  Google Scholar 

  • Zabriskie, J. B., 1964, The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci, J. Exp. Med. 119:761–780.

    PubMed  CAS  Google Scholar 

  • Zaulin, I. B., Tretyakova, S. E., and Ignatov, V. V., 1988, Chemotaxis of Azospirillum brasilense towards compounds typical of plant root exudates, Folia Microbiol. 33:277–280.

    Google Scholar 

  • Zeph, L. R., and Stotzky, G., 1989, Use of a biotinylated DNA probe to detect bacteria transduced by bacteriophage P1 in soil, Appl. Environ. Microbiol. 55:661–665.

    PubMed  CAS  Google Scholar 

  • Zeph, L. R., Onaga, M. A., and Stotzky, G., 1988, Transduction of Escherichia coli by bacteriophage P1 in soil, Appl. Environ. Microbiol. 54:1731–1737.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Veal, D.A., Stokes, H.W., Daggard, G. (1992). Genetic Exchange in Natural Microbial Communities. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7609-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7609-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7611-8

  • Online ISBN: 978-1-4684-7609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics