Genetic Exchange in Natural Microbial Communities

  • Duncan A. Veal
  • H. W. Stokes
  • Grant Daggard
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)


Genetic exchange between bacteria was first observed over 60 years ago (Griffith, 1928). In recent years, considerable advances have been made in the understanding of the molecular mechanisms involved in bacterial gene transfer. We now have a clear understanding of the three basic mechanisms of genetic exchange in bacteria: conjugation, transformation, and transduction. Most of these studies were, however, performed using pure cultures of bacteria and genetic transfer was regarded largely as a laboratory phenomenon (De Flaun et al., 1990). More recently, genetic exchange by each of these mechanisms has been demonstrated in a variety of natural environments (Table I).


Gene Transfer Horizontal Gene Transfer Genetic Exchange Phage Particle Plasmid Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aardema, B. W., Lorenz, M. G., and Krumbein, W. E., 1983, Protection of sediment adsorbed transferring DNA against enzymatic inactivation, Appl. Environ. Microbiol. 46:417–420.PubMedGoogle Scholar
  2. Acea, A. J., Moore, C. R., and Alexander, M., 1988, Survival and growth of bacteria introduced into soil, Soil Biol. Biochem. 20:509–515.Google Scholar
  3. Aguero, M. E., Arow, L., DeLuca, A. G., Timmis, K. N., and Cabello, F. C., 1984, A plasmid-encoded outer membrane protein Tra T enhances resistance of Escherichia coli to phagocytes, Infect. Immun. 46:740–746.PubMedGoogle Scholar
  4. Al-Masaudi, S. B., Day, M. J., and Russell, A. D., 1991, A review: Antimicrobial resistance and gene transfer in Stephylococcus aureus, J. Appl. Bacteriol. 70:279–290.PubMedGoogle Scholar
  5. Altherr, M. R., and Kasweck, K. L., 1982, In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli, Appl. Environ. Microbiol. 44:838–843.PubMedGoogle Scholar
  6. Amin, M. K., and Day, M. J., 1988, Donor and recipient effects on transduction frequency in situ, REGEM 1:11.Google Scholar
  7. Amman, R. I., Binder, B. J., Olsen, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations, Appl. Environ. Microbiol. 56:1919–1925.Google Scholar
  8. Anderson, E. S., 1975, Problems and implications of chloramphenicol resistance in typhoid bacillus, J. Hyg. 74:289–299.Google Scholar
  9. Andorv, D. A., 1986, Dispersal of microorganisms with emphasis on bacteria, Environ. Manage. 10:470–487.Google Scholar
  10. Atlas, R. M., and Bartha, R. (ed.), 1987, Microbial Ecology, 2nd ed., Benjamin-Cummings, Menlo Park, Calif.Google Scholar
  11. Atwood, K. C., Schneider, L. K., and Ryan, F. J., 1951, Selective mechanisms in bacteria, Cold Spring Harbor Symp. Quant. Biol. 16:345–354.PubMedGoogle Scholar
  12. Baldini, M. M., Kaper, J. B., Levine, J. B., Candy, D. C., and Moon, H. W., 1983, Plasmid-mediated adhesion in enteropathogenic Escherichia coli, J. Pediatr. Gastroent. Nutr. 2:534–538.Google Scholar
  13. Bale, M. J., Fry, J. C., and Day, M. J., 1987, Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones, J. Gen. Microbiol. 133:3099–3107.PubMedGoogle Scholar
  14. Bale, M. J., Fry, J. C., and Day, M. J., 1988, Transfer and occurrence of large mercury resistance Plasmids in river epilithon, Appl. Environ. Microbiol. 54:972–978.PubMedGoogle Scholar
  15. Barkay, T., and Sayler, G. S., 1988, Gene probes as a tool for the detection of specific genomes in the environment, in: Aquatic Toxicology and Hazard Assessment (W. J. Adams, G. A. Chapman, and W. G. Landis, eds.), American Society for Testing and Materials, Philadelphia, pp. 29–36.Google Scholar
  16. Baross, J. A., Liston, J., and Morita, R. Y., 1974, Some implications of genetic exchange among marine Vibrio parahemolyticus, naturally occurring in the Pacific oyster, International Symposium on Vibrio parahemolyticus (T. Fujino, G. Sakaguchi, R. Sakazaki, and Y. Takeda eds.), Saikon, Tokyo, pp. 129–137.Google Scholar
  17. Barrow, P. A., and Lovell, M. A., 1988, The association between a large molecular mass plasmid and virulence in a strain of Salmonella pullorum, J. Gen. Microbiol. 134:2307–2316.PubMedGoogle Scholar
  18. Barry, G. F., 1986, Permanent insertion of foreign genes into the chromosomes of soil bacteria, Bio/Technology 4:446–449.Google Scholar
  19. Bender, C. L., and Cooksey, D. A., 1986, Indigenous plasmids in Pseudomonas syringae pv. tomato: Conjugative transfer and role in copper resistance, J. Bacteriol. 165:534–541.PubMedGoogle Scholar
  20. Benson, S. E., Partridge, L., and Morgan, M. J., 1988, Is bacterial evolution random or selective? Nature 336:21–22.Google Scholar
  21. Berg, D. E., 1989, Transposable elements in prokaryotes, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 99–138.Google Scholar
  22. Berg, G., and Trevors, J. T., 1990, Bacterial conjugation between Escherichia coli and Pseudomonas sp. donor and recipient cells in soil, J. Ind. Microbiol. 5:79–84.PubMedGoogle Scholar
  23. Bertram, J., and Durre, P., 1989, Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum, Arch. Microbiol. 151:551–557.Google Scholar
  24. Bertram, J., Strätz, M., and Durre, P., 1991, Natural transfer of conjugative transposon Tn916 between Gram-positive and Gram-negative bacteria, J. Bacteriol. 173:443–448.PubMedGoogle Scholar
  25. Betley, M. J., Miller, V. L., and Mekalanos, J. J., 1986, Genetics of bacterial enterotoxins, Annu. Rev. Microbiol. 40:577–605.PubMedGoogle Scholar
  26. Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N., and Hopwood, D. A., 1981, Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans, Mol. Gen. Genet. 184:230–240.PubMedGoogle Scholar
  27. Bopp, L. H., Chakrabarty, A. M., and Ehrlich, H. C., 1983, Chromate resistance plasmid in Pseudomonas fluorescens, J. Bacteriol. 155:1105–1109.PubMedGoogle Scholar
  28. Bowen, G. D., and Rovira, A. D., 1976, Microbial colonization of plant roots, Annu. Rev. Phytopathol. 14:121–144.Google Scholar
  29. Brewin, N. J., Beringer, J. E., Buchanou-Wollaston, A. V., Johnston, A. V., and Hirsch, P. R., 1980a, Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum, J. Gen. Microbiol. 116:216–270.Google Scholar
  30. Brewin, N. J., DeJong, T. M., Phillips, D. A., and Johnston, A. W. B., 1980b, Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum, Nature 288: 77–79.Google Scholar
  31. Brisson-Noel, A., Arthur, M., and Courvalin, P., 1988, Evidence for natural gene transfer from Gram-positive cocci to Escherichia coli, J. Bacteriol. 170:1739–1745.PubMedGoogle Scholar
  32. Broughton, W. J., Samrey, U., and Stanley, J., 1987, Ecological genetics of Rhizobium meliloti: Symbiotic plasmid transfer in the Medicago sativa rhizosphere, FEMS Microbiol. Lett. 40:251–255.Google Scholar
  33. Brown, D. P., Idler, K. B., and Katz, L., 1990, Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea, J. Bacteriol. 172:1877–1888.PubMedGoogle Scholar
  34. Burns, R. G., 1980, Microbial adhesion to soil surfaces: Consequences for growth and enzyme activities, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 249–262.Google Scholar
  35. Byrd, J. J., and Colwell, R. R., 1990, Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment, Appl. Environ. Microbiol. 56:2104–2107.PubMedGoogle Scholar
  36. Cairns, J., Overbaugh, J., and Miller, S., 1988, The origin of mutants, Nature 335:142–145.PubMedGoogle Scholar
  37. Caldwell, B. A., Ye, C., Griffiths, R. P., Moyer, C. L., and Morita, R. Y., 1989, Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water, Appl. Environ. Microbiol. 55:1860–1864.PubMedGoogle Scholar
  38. Cameron, F. H., Groot Obbink, D. J., Ackerman, V. P., and Hall, R. M., 1986, Nucleotide sequence of the AAD(2”) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388, Nucleic Acids Res. 14: 8625–8635.PubMedGoogle Scholar
  39. Campbell, A., Ma, D. P., Benedik, M., and Limberger, R., 1986, Reproductive isolation in prokaryotes and their accessory DNA elements, in: Antibiotic Resistance Genes: Ecology, Transfer and Expression (R. P. Novick and S. B. Levy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 337–345.Google Scholar
  40. Campell, A., 1977, Defective bacteriophages and incomplete prophages, in: Comprehensive Virology, Vol. 8 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum Press, New York, pp. 259–328.Google Scholar
  41. Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983, Pseudomonas stutzeri and related species undergo natural transformation, J. Bacteriol. 153:93–99.PubMedGoogle Scholar
  42. Caulcott, C. A., Dunn, A., Robertson, H. A., Cooper, N. S., Brown, M. E., and Rhodes, P. M., 1987, Investigation of the effect of growth environment on the stability of low copy-number plasmids in Escherichia coli, J. Gen. Microbiol. 133:1881–1889.PubMedGoogle Scholar
  43. Chakrabarty, A. M., 1972, Genetic basis of the biodegradation of salicylate in Pseudomonas, J. Bacteriol. 112:815–823.PubMedGoogle Scholar
  44. Chakrabarty, A. M., Chon, G., and Gansulas, I. C., 1973, Genetic regulation of octane dissimilation plasmid in Pseudomonas, Proc. Natl. Acad. Sci. USA 70:1137–1140.PubMedGoogle Scholar
  45. Chandler, P. M., and Krishnapillai, V., 1977, Characterization of Pseudomonas aeruginosa derepressed R plasmids, J. Bacteriol. 130:596–603.PubMedGoogle Scholar
  46. Chao, L., and Cox, E. C., 1983, Competition between high and low mutating strains of Escherichia coli, Evolution 37:125–134.Google Scholar
  47. Charlesworth, D., Charlesworth, B., Bull, J. J., Graffen, A., Holliday, R., Rosenberger, R. F., Velen, L. V. M., Danchin, A., Tessman, I., and Cairns, J., 1988, Origins of mutants disputed, Nature 336:525–528.Google Scholar
  48. Chen, J. D., and Morrison, D. A., 1987, Modulation of competence for genetic transformation in Streptococcus pneumoniae, J. Gen. Microbiol. 133:1959–1967.PubMedGoogle Scholar
  49. Clark, P. H., 1984, Evolution of new phenotypes, in: Current Perspectives in Microbial Ecology (M. J. Klugg and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 71–78.Google Scholar
  50. Clewell, D. B., and Gawron-Burke, M. C., 1986, Conjugative transposons and the dissemination of antibiotic resistance in streptococci, Annu. Rev. Microbiol. 40:635–659.PubMedGoogle Scholar
  51. Cohen, A., Bar-Nir, D., Goedeke, M., and Parag, Y., 1985, The integrated and free states of Streptomyces griseus plasmid pSG1, Plasmid 13:41–50.PubMedGoogle Scholar
  52. Colon, A. E., Cole, R. M., and Leonard, C. G., 1972, Intergroup lysis and transduction by Streptococcus bacteriophages, J. Virol. 9:551–553.PubMedGoogle Scholar
  53. Contente, S., and Dabnau, D., 1979, Characterization of plasmid transformation in Bacillus subtilis: Kinetic properties and the effect of DNA conformation, Mol. Gen. Genet. 167:251–258.PubMedGoogle Scholar
  54. Crow, J. F., and Kimura, M. (ed.), 1970, An Introduction to Population Genetics Theory, Harper & Row, New York, pp. 483–488.Google Scholar
  55. Cruz-cruz, N. E., Toranzos, G. A., Ahearn, D. G., and Hazen, T. C., 1988, In situ survival of plasmid-bearing and plasmidless Pseudomonas aeruginosa in pristine tropical waters, Appl. Environ. Microbiol. 54:2574–2577.PubMedGoogle Scholar
  56. Cruze, J. A., Singer, J. T., and Finnerty, W. R., 1979, Conditions for quantitative transformation in Acinetobacter calcoaceticus, Curr. Microbiol. 3:129–132.Google Scholar
  57. Datta, N., and Hughes, V. M., 1983, Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics, Nature 306:616–617.PubMedGoogle Scholar
  58. Day, M. J., 1987, The biology of plasmids, Sci. Prog. Oxf., 71:203–220.Google Scholar
  59. De Flaun, M. F., Paul, J. H., and Jeffrey, W. H., 1987, The distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments, Mar. Ecol. Prog. Ser. 33: 29–40.Google Scholar
  60. De Flaun, M. F., Davis, D., and Paul, J. H., 1988, Simplified method for dissolved DNA determinations in aquatic environments, Appl. Environ. Microbiol. 52:654–659.Google Scholar
  61. De Flaun, M. F., Tanzer, A. S., McAteer, A. L., Marshall, B., and Levy, S. B., 1990, Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluoresces, Appl. Environ. Microbiol. 56:112–119.Google Scholar
  62. Devanas, M. A., Rafaeli-Eshkol, D., and Stotzky, G., 1986, Survival of plasmid containing strains of Escherichia coli in soil: Effects of plasmid size and nutrients on survival of host and maintenance of plasmids, Curr. Microbiol. 13:269–277.Google Scholar
  63. De Vos, G. F., Finan, T. M., Signer, E. R., and Walker, G. C., 1984, Host dependent transposon Tn-5 mediated streptomycin resistance, J. Bacteriol. 159:395–399.PubMedGoogle Scholar
  64. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R., 1980, Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 77:7347–7351.PubMedGoogle Scholar
  65. Domsch, K. H., Driesel, A. J., Goebel, W., Andersch, W., Lindemaier, W., Lotz, W., Reber, H., and Schmidt, F., 1988, Considerations on release of gene-technology engineered microorganisms into the environment, FEMS Microbiol. Ecol. 53:261–272.Google Scholar
  66. Dowling, D. N., and Broughton, W. J., 1986, Competition for nodulation of legumes, Annu. Rev. Microbiol. 40:131–157.PubMedGoogle Scholar
  67. Drahos, D. J., Hemming, B. C., and McPherson, S., 1986, Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads, Bio/Technology 4:43–48.Google Scholar
  68. Drahos, D. J., Barry, G. F., Hemming, B. C., Brandt, E. J., Skipper, H. D., Kline, E. L., Kluepfel, D. A., Hughes, T. A., and Gooden, D. T., 1988, Pre-release testing procedures: US field test of a lacZY-engineered soil bacterium, in: The Release of Genetically Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 181–191.Google Scholar
  69. Dunn, N. W., and Gunsalus, I. C., 1973, Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida, J. Bacteriol. 114:974–979.PubMedGoogle Scholar
  70. Eberhard, W. G., 1990, Evolution in bacterial plasmids and levels of selection, Q. Rev. Biol. 65:3–22.PubMedGoogle Scholar
  71. Engels, W. R., 1986, On the evolution and population genetics of hybrid-dysgenesis-causing transposable elements in Drosophila, Philos. Trans. R. Soc. London Ser. B 312:205–215.Google Scholar
  72. Evans, D. J., and Evans, D. G., 1983, Classification of pathogenic Escherichia coli according to serotype and the production of virulence factors, with special reference to colonization factor antigens, Rev. Infect. Dis. 5:5692–5701.Google Scholar
  73. Falkenstein, H., Zeller, W., and Geider, K., 1989, The 29Kb plasmid, common in strains of Erwinia amylovora, modulates development of fireblight symptoms, J. Gen. Microbiol. 135:2643–2650.Google Scholar
  74. Falkow, S. (ed.), 1975, Infectious Multiple Drug Resistance, Pion, London.Google Scholar
  75. Farrand, S. K., Slota, J. E., Shim, J. S., and Kerr, A., 1985, Tn5 insertion in the agrocin 84 plasmid: The conjugal nature of pAgK84 and the location of determinants for transfer and agrocin 84 production, Plasmid 13:106–117.PubMedGoogle Scholar
  76. Ford, S., and Olsen, B. H., 1988, Methods for detecting genetically engineered microorganisms in the environment, Adv. Microb. Ecol. 10:45–79.Google Scholar
  77. Fredrickson, J. K., Bezdicek, D. F., Brickman, F. J., and Li, S. W., 1988, Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number DNA hybridization technique and antibiotic resistance, Appl. Environ. Microbiol. 54:446–453.PubMedGoogle Scholar
  78. Freeman, V. J., 1951, Studies on the virulence of bacteriophage infected strains of Corynebacterium diphtheriae, J. Bacteriol. 61:675–688.PubMedGoogle Scholar
  79. Friedrich, B., Hogrefe, C., and Schlegel, H. G., 1981, Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus, J. Bacteriol. 147:198–205.PubMedGoogle Scholar
  80. Frischer, M. E., Thurmond, J. M., and Paul, J. H., 1990, Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain, Appl. Environ. Microbiol. 56:3439–3444.PubMedGoogle Scholar
  81. Fry, J. C., and Day, M. J. (ed.), 1990, Bacterial Genetics in Natural Environments, Chapman & Hall, London.Google Scholar
  82. Fulthorpe, R. R., and Wyndham, R. C., 1991, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem, Appl. Environ. Microbiol. 57:1546–1553.PubMedGoogle Scholar
  83. Gabin-Gauthier, K., Gratadoux, J.-J., and Richard, J., 1991, Conjugal plasmid transfer between lactococci on solid surface matings and during cheese making, Microbiol. Ecol. 85:133–140.Google Scholar
  84. Gasson, M. J., and Willetts, N. S., 1975, Five control systems preventing transfer of Escherichia coli K12 sex factor F, J. Bacteriol. 122:518–525.PubMedGoogle Scholar
  85. Gealt, M. A., Chai, M. D., Alpert, K. B., and Boyer, J. C., 1985, Transfer of plasmids pBR322 and pBR325 in freshwater from laboratory strains of Escherichia coli to bacteria indigenous to the waste disposal system, Appl. Environ. Microbiol. 49:836–841.PubMedGoogle Scholar
  86. Germida, J. J., and Khachatourians, G. G., 1988, Transduction of Escherichia coli in soil, Can. J. Microbiol. 34:190–193.PubMedGoogle Scholar
  87. Glick, B. R., and Skof, Y. C., 1986, Environmental implication of recombinant DNA technology, Biotechnol. Adv. 4:261–277.PubMedGoogle Scholar
  88. Goldberg, R. B., Bender, R. A., and Streicher, S. L., 1974, Direct selection for P1-sensitive mutants of enteric bacteria, J. Bacteriol. 118:810–814.PubMedGoogle Scholar
  89. Gonzalez, J. M., Brown, B. J., and Carlton, B. C., 1983, Transfer of Bacillus thuringiensis plasmid coding for delta-endotoxin among strains of Bacillus thuringiensis and Bacillus cereus, Proc. Natl. Acad. Sci. USA 79:6951–6955.Google Scholar
  90. Gowland, P. C., and Slater, J. H., 1984, Transfer and stability of drug resistance plasmids in Escherichia coli K12, Microb. Ecol. 10:1–13.Google Scholar
  91. Goze, A., Sarasin, A., Moute, Y., and Devoret, R., 1975, Induction and mutagenesis of prophage lambda in E. coli K12 by metabolites of aflatoxin B1, Mutat. Res. 28:1–7.PubMedGoogle Scholar
  92. Grabow, W. O. K., Prozesky, O. W., and Berger, J. S., 1975, Behaviour in a river and dam of coliform bacteria with transferable or non-transferable drug resistance, Water Res. 9:777–782.Google Scholar
  93. Graham, S. B., and Ibstock, C. A., 1978, Genetic exchange in Bacillus subtilis in soil, Mol. Gen. Genet. 166:287–290.PubMedGoogle Scholar
  94. Graham, S. B., and Ibstock, C. A., 1979, Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture, Science 204:637–639.PubMedGoogle Scholar
  95. Greene, J., and Goldberg, R. B., 1985, Isolation and preliminary characterization of lytic and lysogenic phages with a wide host range within the Streptomycetes, J. Gen. Microbiol. 131:2454–2465.Google Scholar
  96. Griffith, F., 1928, The significance of pneumococcal types, J. Hyg. 27:113–159.Google Scholar
  97. Gross, M. D., and Siegel, E. C., 1981, Incidence of mutator strains in Escherichia coli and coliforms in nature, Mutat. Res. 91:107–110.PubMedGoogle Scholar
  98. Guiney, D. G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria (C. M. Thomas, ed.)., Academic Press, New York, pp. 27–56.Google Scholar
  99. Guiney, D. G., Jr., Hasegawa, P., and Davis, C. E., 1984, Expression in Escherichia coli of cryptic tetracycline resistance genes from R plasmids, Plasmid 11:248–252.PubMedGoogle Scholar
  100. Hada, H. S., and Sizemore, R. K., 1981, Incidence of plasmids in marine Vibrio spp. isolated from an oil field in the northwestern Gulf of Mexico, Appl. Environ. Microbiol. 41:199–202.PubMedGoogle Scholar
  101. Hales, B. A., and Amyes, S. K. B., 1986, The transfer of genes encoding production of mannose-resistant haemagglutinating fimbriae from uropathogenic Enterobacteria, J. Gen. Microbiol. 132:2243–2247.PubMedGoogle Scholar
  102. Hall, B. G., 1982, Chromosomal mutation for citrate utilization by Escherichia coli K-12, J. Bacteriol. 151:269–273.PubMedGoogle Scholar
  103. Hall, B. G., 1988, Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence, Genetics 120:887–897.PubMedGoogle Scholar
  104. Hall, B. G., 1989, Selection, adaptation, and bacterial operons, Genome 31:265–271.PubMedGoogle Scholar
  105. Hall, B. G., 1990, Spontaneous point mutations that occur more often when advantageous than when neutral, Genetics 126:5–16.PubMedGoogle Scholar
  106. Hall, B. G., 1991, Adaptive evolution that requires multiple spontaneous mutations—mutations involving base substitutions, Proc. Natl. Acad. Sci. USA 18:5882–5886.Google Scholar
  107. Hall, B. G., Yokoyama, S., and Calhoun, D. H., 1983, Role of cryptic genes in microbial evolution, Mol. Biol. Evol. 1:109–124.PubMedGoogle Scholar
  108. Hall, R. M., Brookes, D. E., and Stokes, H. W., 1991, Site-specific insertion of genes into integrons: Role of the 59-base element and determination of the recombination cross-over point, Mol. Microbiol. 5:1941–1959.PubMedGoogle Scholar
  109. Haiti, D. L., 1985, Engineered organisms in the environment: Inferences from population genetics, in: Engineered Organisms in the Environment: Scientific Issues (H. O. Halvorson, D. Pramer, and M. Rogul, eds.), American Society for Microbiology, Washington, D.C.Google Scholar
  110. Haiti, D. L., and Dykhuizen, D. E., 1984, The population genetics of Escherichia coli, Annu. Rev. Genet. 18:31–68.Google Scholar
  111. Haiti, D. L., Dykhuizen, D., Miller, R. D., Green, L., and DeFramond, J., 1983, Transposable element IS50 improves growth rate of E. coli cells without transposition, Gene 35:503–510.Google Scholar
  112. Hayes, W. (ed.), 1968, The Genetics of Bacteria and Their Viruses: Studies in Basic Genetics and Molecular Biology, Blackwell, Oxford.Google Scholar
  113. Hedges, R. W., 1972, Phenotypic characterization of fi R-factor determining restriction modification hsp11 specificity, Mol. Gen. Genet. 115:225–233.PubMedGoogle Scholar
  114. Helinski, D. R., Cohen, S. N., Clewell, D. B., Jackson, D. A., and Hollaender, A. (ed.), 1985, Plasmids in Bacteria, Plenum Press, New York.Google Scholar
  115. Helling, R. B., Kinney, T., and Adams, J., 1981, The maintenance of plasmid containing organisms in populations of Escherichia coli, J. Gen. Microbiol. 123:129–141.PubMedGoogle Scholar
  116. Helling, R. B., Vargas, C. N., and Adams, J., 1987, Evolution of Escherichia coli during growth in a constant environment, Genetics 116:349–358.PubMedGoogle Scholar
  117. Henschke, R. B., and Schmidt, F. R. S., 1990, Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil flora in situ, Curr. Microbiol. 20:105–110.Google Scholar
  118. Henschke, R. B., Nucken, E., and Schmidt, F. R., 1989, Fate and dispersal of recombinant bacteria in a soil microcosm containing the earthworm Lumbricus terrestris, Biol. Fertil. Soils 7:374–376.Google Scholar
  119. Herskowitz, I., and Hagen, D., 1980, The lysis-lysogeny decision of phage lambda: Explicit programming and responsiveness, Annu. Rev. Genet. 14:399–445.PubMedGoogle Scholar
  120. Heynen, C. E., Van Elsas, J. D., and Kuikman, P. J., 1988, Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa, Soil Biol. Biochem. 20:483–488.Google Scholar
  121. Hirsch, P. R., 1990, Factors limiting gene transfer in bacteria, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 31–40.Google Scholar
  122. Hodgson, J., and Sugden, A. M. (ed.), 1988, Planned Release of Genetically Engineered Organisms. Trends in Biotechnology/Trends in Ecology and Evolution Special Publication, Elsevier, Amsterdam.Google Scholar
  123. Holloway, B. W., and Krishnapillai, V., 1975, Bacteriophages and bacteriocins, in: Genetics and Biochemistry of Pseudomonas (P. H. Clarke and M. H. Richmond, eds.), Wiley, New York, pp. 99–132.Google Scholar
  124. Hughes, V. M., and Datta, N., 1983, Conjugative plasmids in bacteria of the “pre-antibiotic” era, Nature 302:725–726.PubMedGoogle Scholar
  125. Ippen-Ihler, K. A., and Minkley, E. G., 1986, The conjugation system of F, the fertility factor of Escherichia coli, Annu. Rev. Genet. 20:593–624.PubMedGoogle Scholar
  126. Ishigaro, N., and Sato, G., 1979, The distribution of plasmids determining citrate-positive variants of Escherichia coli from humans, domestic animals, feral birds and environment, J. Hyg. 83: 331–344.Google Scholar
  127. Jacobson, A., 1972, Role of F pilus in the penetration of bacteriophage F1, J. Virol. 10:835–843.PubMedGoogle Scholar
  128. Jain, R. K., Sayler, G. S., Wilson, J. T., Houston, L., and Pacia, D., 1987, Maintenance and stability of genotypes in groundwater aquifer material, Appl. Environ. Microbiol. 53:996–1002.PubMedGoogle Scholar
  129. Jain, R. K., Burlage, R. S., and Sayler, G. S., 1988, Methods for detecting recombinant DNA in the environment, Crit. Rev. Biotechnol. 8:33–84.PubMedGoogle Scholar
  130. Jarvis, B. D. W., Ward, L. J. H., and Slade, E. A., 1989, Expression by soil bacteria of nodulation genes from Rhizobium leguminosarum biovar trifola, Appi Environ. Microbiol. 55:1426–1434.Google Scholar
  131. Juni, E., 1978, Genetics and physiology of Acinetobacter, Annu. Rev. Microbiol. 32:349–371.PubMedGoogle Scholar
  132. Kamp, P. F., and Chakrabarty, A. M., 1974, Plasmids specifying p-chlorobiphenyl degradation in enteric bacteria, in: Plasmids of Medical, Environmental and Commercial Importance (K. N. Timmis and A. Punier, eds.), Elsevier/North-Holland, Amsterdam, pp. 275–285.Google Scholar
  133. Kelly, W. J., and Reanney, D. C., 1984, Mercury resistance among soil bacteria: Ecology and transferability of genes encoding resistance, Soil Biol. Biochem. 16:1–8.Google Scholar
  134. Kerr, A., 1971, Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter, Physiol. Plant Pathol. 1:241–246.Google Scholar
  135. Kerr, A., 1989, Commercial release of a genetically engineered bacterium for the control of crown gall, Agric. Sci. 89:41–44.Google Scholar
  136. Khanna, M., and Stotzky, G., 1991, Binding of DNA to the clay minerals, montmorillonite and kaolinite and the effect of DNase on transforming ability of bound DNA, Annual Meeting, American Society for Microbiology, Dallas, Abstract Q17, p. 279.Google Scholar
  137. Klingmueller, W., 1991, Plasmid transfer in natural soil: A case by case study with nitrogen-fixing Enterobacter, FEMS Microbiol Ecol. 85:107–116.Google Scholar
  138. Klingmueller, W., Heterich, S., and Min, B.W., 1989, Molecular analysis of N2-fixation in associative Enterobacter, in: Nitrogen Fixation with Non-legumes (F. A. Skinner, R. M. Boddey, and I. Fendrick, eds.), Kluwer, Dordrecht, pp. 173–178.Google Scholar
  139. Klintworth, R., Husemann, M., Salnikow, J., and Bowien, B., 1985, Chromosomal and plasmid location for phosphoribulokinase genes in Alcaligenes eutrophus, J. Bacteriol. 164:954–956.PubMedGoogle Scholar
  140. Kluepfel, D. A., Kline, E. L., Skipper, H. D., Hughes, T. A., Gooden, D. T., Drahos, D. J., Barry, G. F., Hemming, B. C., and Brandt, E. J., 1991, The release and tracking of genetically engineered bacteria in the environment, Phytopathology 81:348–352.Google Scholar
  141. Kokjohn, T. A., 1989, Transduction: Mechanisms and potential for gene transfer in the environment, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 73–98.Google Scholar
  142. Krasovsky, V. N., and Stotzky, G., 1987, Conjugation and genetic recombination in Escherichia coli in sterile and nonsterile soil, Soil Biol Biochem. 19:631–638.Google Scholar
  143. Lenski, R. E., 1989, Are some mutations directed? Trends Ecol. Evol. 4:148–150.PubMedGoogle Scholar
  144. Levin, M. A., Seidler, R., Borquin, A. L. W., Fowle, J. R., and Barkay, T., 1987, EPA developing methods to assess environmental release, Bio/Technology 5:38–45.Google Scholar
  145. Levy, S. B., and Marshall, B. M., 1988, Genetic transfer in the natural environment, in: Release of Genetically-Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 61–76.Google Scholar
  146. Levy, S. B., and Miller, R. V. (ed.), 1989, Gene Transfer in the Environment, McGraw-Hill, New York.Google Scholar
  147. Lin, E. C. C., Goldstein, R., and Syvanen, M. (ed.), 1984, Bacteria, Plasmids and Phages, Harvard University Press, Cambridge, Mass.Google Scholar
  148. Linder, K., and Oliver, J. D., 1989, Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus, Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  149. Lindow, S. E., 1987, Competitive exclusion of epiphytic bacteria by Ice mutants of Pseudomonas syringae, Appl. Environ. Microbiol. 53:2520–2527.PubMedGoogle Scholar
  150. Lindow, S. E., and Panopoulos, N. J., 1988, Field tests of recombinant Ice Pseudomonas syringae for biological frost control in potato, in: The Release of Genetically Engineered Microorganisms (M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull, eds.), Academic Press, New York, pp. 121–138.Google Scholar
  151. Lorenz, M. G., and Wackernagel, W., 1987, Adsorption of DNA to sand and variable degradation rates of adsorbed DNA, Appl. Environ. Microbiol. 53:2948–2952.PubMedGoogle Scholar
  152. Lorenz, M. G., Aardema, B.W., and Krumbein, W. E., 1981, Interaction of marine sediment with DNA and DNA availability to nucleases, Mar. Biol. 64:225–230.Google Scholar
  153. Lorenz, M. G., Aardema, B. W., and Wackernagel, W., 1988, Highly efficient genetic transformation of Bacillus subtilis attached to sand grains, J. Gen. Microbiol. 134:107–112.PubMedGoogle Scholar
  154. Lwoff, A., Siminovitch, L., and Kjeldgaard, N., 1950, Induction de la production de bacteriophages chez un bacterie lysogene, Ann. Inst. Pasteur 79:815.Google Scholar
  155. Lynch, J. M., 1990, Longevity of bacteria: Considerations in environmental release, Curr. Microbiol. 20:387–389.Google Scholar
  156. McCarty, M., 1980, Reminiscences of the early days of transformation, Annu. Rev. Genet. 14:1–15.PubMedGoogle Scholar
  157. McConnell, M. M., Smith, H. R., Willshaw, G. A., Field, A. M., and Rowe, B., 1981, Plasmids coding for colonization factor antigen I and heat-stable enterotoxin production isolated from enterotoxigenic Escherichia coli: Comparison of their properties, Infect. Immun. 32:927–936.PubMedGoogle Scholar
  158. Mach, P. A., and Grimes, D. J., 1982, R-plasmid transfer in a wastewater treatment plant, Appl. Environ. Microbiol. 44:1395–1403.PubMedGoogle Scholar
  159. McKenna, S., 1989, Genetic engineering inquiry, Friends of the Earth Newsletter 7:1–2.Google Scholar
  160. Mancini, P., Fertels, S., Nave, D., and Gealt, M. A., 1987, Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility, Appl. Environ. Microbiol. 53:665–671.PubMedGoogle Scholar
  161. Marshall, B., and Levy, S. B., 1990, Gene exchange in the natural environment, in: Advances in Biotechnology (E. Heseltine, ed.), AB Boktryck HBG, Stockholm, pp. 131–143.Google Scholar
  162. Marshall, B., Petrowski, D., and Levy, S. B., 1990, Inter-and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage, Proc. Natl. Acad. Sci. USA 87:6609–6613.PubMedGoogle Scholar
  163. Martinez, E., and De la Cruz, F., 1988, Transposon Tn21 encodes a RecA-independent site-specific integration system, Mol. Gen. Genet. 211:320–325.PubMedGoogle Scholar
  164. Martinez, E., and De la Cruz, F., 1990, Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes, EMBO J. 9:1275–1281.PubMedGoogle Scholar
  165. Martinez, L. Y., Arenus, M. M. P., Montes, M. Y. R., Martinez, L. J., and Baca, B. E., 1987, Antibiotic resistance and plasmid pattern of enterotoxigenic ST-a strains of Escherichia coli, Can. J. Microbiol. 33:816–819.PubMedGoogle Scholar
  166. Masden, E. L., and Alexander, M., 1982, Transport of Rhizobium and Pseudomonas through soil, Soil Sci. Soc. Am. J. 46:557–560.Google Scholar
  167. Masters, M., 1985, Generalized transduction, in: Genetics of Bacteria (J. Scuife, D. Lead, and A. Galizzi, eds.), Academic Press, New York, pp. 197–216.Google Scholar
  168. Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P., and Van Grijsegem, F., 1985, Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals, J. Bacteriol. 162:328–334.PubMedGoogle Scholar
  169. Mergeay, M., Lejeune, P., Sadouk, A., Gerits, J., and Fabry, L., 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113, Mol. Gen. Genet. 209:61–70.PubMedGoogle Scholar
  170. Miller, R. V., 1988, Potential for transfer and establishment of engineered genetic sequences, in: Planned Release of Genetically Engineered Organisms (Trends in Biotechnology/Trends in Ecology and Evolution special publication) (J. Hodgson and A. M. Sugden, eds.), Elsevier, Amsterdam, pp. 23–26.Google Scholar
  171. Miller, R. V., and Kokjohn, T. A., 1990, General microbiology of recA: Environmental and evolutionary significance, Annu. Rev. Microbiol. 44:365–394.PubMedGoogle Scholar
  172. Molak, V., and Stara, J. F., 1988, Genetically engineered microorganisms in the aquatic environment: Environmental safety assessment, in: Aquatic Toxicology and Hazard Assessment (W. J. Adams, G. A. Chapman, and W. G. Landis, eds.), American Society for Testing and Materials, Philadelphia, pp. 43–50.Google Scholar
  173. Morgan, J. A. W., Winstanley, C., Pickup, R. W., Jones, J. G., and Saunders, J. R., 1989, Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water, Appl. Environ. Microbiol. 55:2537–2544.PubMedGoogle Scholar
  174. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6:171–198.Google Scholar
  175. Morrison, W. D., Miller, R. V., and Sayler, G. S., 1978, Frequency of F116 mediated transduction of Pseudomonas aeruginosa in a natural freshwater environment, Appl. Environ. Microbiol. 36: 724–730.PubMedGoogle Scholar
  176. Muriana, P. M., and Klaenhammer, T. R., 1987, Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88, Appl. Environ. Microbiol. 53:553–560.PubMedGoogle Scholar
  177. Novick, R. P., 1987, Plasmid incompatibility, Microbiol. Rev. 51:381–395.PubMedGoogle Scholar
  178. Novick, R. P., 1989, Stephylococcal plasmids and their replication, Annu. Rev. Microbiol. 43:537–565.PubMedGoogle Scholar
  179. Ogunseitan, O. A., Sayler, G. S., and Miller, R. V., 1990, Dynamic interaction of Pseudomonas aeruginosa and bacteriophages in lake water, Microb. Ecol. 19:171–185.Google Scholar
  180. Olsen, B. H., 1991, Tracking and using genes in the environment, Environ. Sci. Technol. 25:604–611.Google Scholar
  181. O’Morchoe, S. B., Ogunseitan, O., Sayler, G. S., and Miller, R. V., 1988, Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment, Appl. Environ. Microbiol. 54:1923–1929.PubMedGoogle Scholar
  182. Orgram, A., Sayler, G. S., and Burkay, T., 1987, The extraction and purification of microbial DNA from sediments, J. Microbiol. Methods 7:57–60.Google Scholar
  183. Paul, J. H., DeFlaun, M. F., and Jeffrey, W. H., 1986, Elevated levels of microbial activity in the coral surface microlayer, Abstract, Annual Meeting American Society for Microbiology, N 72, p. 253.Google Scholar
  184. Paul, J. H., Frischer, M. E., and Thurmond, J. M., 1991, Gene transfer in marine water column and sediment microcosms by natural plasmid transformation, Appl. Environ. Microbiol. 57:1509–1515.PubMedGoogle Scholar
  185. Pemberton, J. M., and Fischer, P. R., 1977, 2,4-D plasmids and persistence, Nature 266:50–51.PubMedGoogle Scholar
  186. Pickup, R. W., 1989, Related plasmids found in an English lake district stream, Microb. Ecol. 18: 211–220.Google Scholar
  187. Pickup, R. W., 1991, Development of molecular methods for the detection of specific bacteria in the environment, J. Gen. Microbiol. 137:1009–1019.Google Scholar
  188. Pickup, R. W., and Saunders, J. R., 1990, Detection of genetically engineered traits among bacteria in the environment, Biotechnology 8:329–334.Google Scholar
  189. Pickup, R. W., Morgan, J. A. W., Winstanley, C., and Saunders, J. R., 1991, Implications for the release of genetically engineered organisms, J. Appl. Bacteriol. Symp. Suppl. 70:19s–30s.Google Scholar
  190. Radstrom, P., and Swedberg, G., 1988, RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase, Antimicrob. Agents Chemother. 32:1684–1692.PubMedGoogle Scholar
  191. Rattray, E. A., Prosser, J. I., Killham, K., and Glover, L. A., 1990, Luminescence-based non-extractive technique for in situ detection of Escherichia coli in soil, Appl. Environ. Microbiol. 56:3368–3374.PubMedGoogle Scholar
  192. Reanney, D. C., Gowland, P. C., and Slater, J. H., 1983, Genetic interactions among communities, in: Microbes in the Natural Environment (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge, pp. 379–421.Google Scholar
  193. Reiter, W. D., Palm, P., and Yeats, S., 1989, Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements, Nucleic Acids Res. 17:1907–1914.PubMedGoogle Scholar
  194. Rheinwald, J. G., Chakrabarty, A. M., and Gunsalus, I. C., 1973, A transmissible plasmid controlling camphor oxidation in Pseudomonas putida, Proc. Natl. Acad. Sci. USA 70:885–889.PubMedGoogle Scholar
  195. Richaume, A., Angle, S., and Sadowsky, M. J., 1989, Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii, Appl. Environ. Microbiol. 55:1730–1734.PubMedGoogle Scholar
  196. Ripp, S., and Miller, R. V., 1991, Importance of suspended particles in providing surfaces for genetic exchange among bacteria in fresh water environments, Abstracts, 91st General Meeting of the American Society for Microbiology, Dallas, Q15, p. 279.Google Scholar
  197. Roberts, M. C., and Kenny, G. E., 1987, Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis, J. Bacteriol. 169:3836–3839.PubMedGoogle Scholar
  198. Rochelle, P. A., Day, M. J., and Fry, J. C., 1988, Occurrence, transfer and mobilization in epilithic strains of Acinetobacter of mercury-resistance plasmids capable of transformation, J. Gen. Microbiol. 134:2933–2941.PubMedGoogle Scholar
  199. Rochelle, P. A., Fry, J. C., and Day, M. J., 1989a, Plasmid transfer between Pseudomonas spp. within epilithic films in a rotating disc microcosm, FEMS Microbiol. Ecol. 62:127–136.Google Scholar
  200. Rochelle, P. A., Fry, J. C., and Day, M. J., 1989b, Factors affecting conjugal transfer of plasmics encoding mercury resistance from pure cultures and mixed natural suspensions of epilithic bacteria, J. Gen. Microbiol. 135:409–424.PubMedGoogle Scholar
  201. Röemermann, D., and Friedrich, B., 1985, Denitrification by Alcaligenes eutrophus is plasmid dependent, J. Bacteriol. 162:852–854.Google Scholar
  202. Rolfe, B., and Holloway, B.W., 1966, Alterations in host specificity of bacterial deoxyribonucleic acid after increase in growth temperature of Pseudomonas aeruginosa, J. Bacteriol. 92:42–48.Google Scholar
  203. Rolfe, B. G., Brockwell, J., Bolton-Gibbs, J., Clark, K., Brown, T., and Weinman, J. J., 1989, Controlled field release of genetically manipulated Rhizobium strains, Aust. Microbiol. 10:364.Google Scholar
  204. Rolland, R. M., Hausfater, G., Marshall, B., and Levy, S. B., 1985, Antibiotic-resistant bacteria in wild primates: Increased prevalence in baboons feeding on human refuse, Appl. Environ. Microbiol. 49:791–794.PubMedGoogle Scholar
  205. Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  206. Rovira, A. D., Foster, R. C., and Martin, J. K., 1979, Note on terminology: Origin, nature and nomenclature of the organic materials in the rhizosphere, in: The Soil-Root Interface (J. C. Hartley and R. S. Russell, eds.), Academic Press, New York, pp. 1–4.Google Scholar
  207. Sancar, A., and Rupp, W. D., 1979, Cloning of uvrA, lexC and SSB genes of Escherichia coli, Biochem. Biophys. Res. Commun. 90:123–129.PubMedGoogle Scholar
  208. Sandt, C. H., and Herson, D. S., 1991, Mobilisation of the genetically engineered plasmid pHSV106 from Escherichia coli HB101(pHSV106) to Enterobacter cloacae in drinking water, Appl. Environ. Microbiol. 57:194–200.PubMedGoogle Scholar
  209. Saunders, J. R., and Saunders, V. A., 1988, Bacterial transformation with plasmid DNA, Methods Microbiol. 21:79–128.Google Scholar
  210. Saye, D. J., Ogunseitan, O., Sayler, G. S., and Miller, R. V., 1987, Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa, Appl. Environ. Microbiol. 53:987–995.PubMedGoogle Scholar
  211. Saye, D. J., Ogunseitan, O. A., Sayler, G. S., and Miller, R. V., 1990, Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat, Appl. Environ. Microbiol. 56:140–145.PubMedGoogle Scholar
  212. Schiffenbauer, M., and Stotzky, G., 1982, Adsorption of coliphages T1 and T7 to clay minerals, Appl. Environ. Microbiol. 43:590–596.PubMedGoogle Scholar
  213. Schmieger, H., 1990, Phage genetics and ecology, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 41–54.Google Scholar
  214. Schofield, P. R., Gibson, A. H., Dudman, W. F., and Watson, J. M., 1987, Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population, Appl. Environ. Microbiol. 53:2942–2947.PubMedGoogle Scholar
  215. Simonsen, L., 1990, Dynamics of plasmid transfer on surfaces, J. Gen. Microbiol. 136:1001–1007.PubMedGoogle Scholar
  216. Singer, J. T., Van Turjl, J. T., and Finnerty, W. R., 1986, Transformation and mobilization of cloning vectors in Acinetobacter spp., J. Bacteriol. 165:301–303.PubMedGoogle Scholar
  217. Singleton, P., and Anson, A. E., 1981, Conjugal transfer of R-plasmid Rldrd-19 in Escherichia coli below 22°C, Appl. Environ. Microbiol. 42:789–791.PubMedGoogle Scholar
  218. Slater, J. H., 1985, Gene transfer in microbial communities, in: Engineered Organisms in the Environment (H. O. Halvorson, D. Pramer, and M. Rogai, eds.), American Society for Microbiology, Washington, D. C., pp. 89–98.Google Scholar
  219. Smit, E., and Van Elsas, J. D., 1990, Determination of plasmid transfer frequency in soil: Consequences of bacterial mating on selective agar media, Curr. Microbiol. 21:151–157.Google Scholar
  220. Smith, H. O., Danner, D. B., and Deich, R. A., 1981, Genetic transformation, Annu. Rev. Biochem. 50:189–196.Google Scholar
  221. Steenson, L. R., and Klaenhammer, T. R., 1985, Streptococcus eremeris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages, Appl. Environ. Microbiol. 50:851–858.PubMedGoogle Scholar
  222. Steffan, R. J., and Atlas, R. M., 1988, DNA amplification to enhance detection of genetically engineered bacteria in environmental samples, Appl. Environ. Microbiol. 54:2185–2191.PubMedGoogle Scholar
  223. Steffan, R. J., and Atlas, R. M., 1990, Solution hybridization assay for detecting genetically engineered microorganisms in environmental samples, Biotechniques 8:316–318.PubMedGoogle Scholar
  224. Stewart, G. J., 1989, The mechanism of natural transformation, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 139–165.Google Scholar
  225. Stewart, G. J., and Carlson, C. A., 1986, The biology of natural transformation, Annu. Rev. Microbiol. 40:211–235.PubMedGoogle Scholar
  226. Stewart, G. J., and Cyr, D. H., 1987, Distribution of natural transformation ability among marine bacteria, Eos 68:1712.Google Scholar
  227. Stewart, G. J., and Sinigalliano, C. D., 1990, Detection of horizontal gene transfer by natural transformation in native and introduced species of bacteria in marine and synthetic sediments, Appl. Environ. Microbiol. 56:1818–1824.PubMedGoogle Scholar
  228. Stewart, G. J., Carlson, C. A., and Ingraham, J. L., 1983, Evidence for an active role of donor cells in natural transformation in Pseudomonas stutzeri, J. Bacteriol. 156:30–35.PubMedGoogle Scholar
  229. Stewart, K. R., and Koditschek, L., 1980, Drug resistance transfer in Escherichia coli in New York Bight sediment, Mar. Bull. 11:130–133.Google Scholar
  230. Stokes, H. W., and Hall, R. M., 1989, A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: Integrons, Mol. Microbiol. 3:1669–1683.PubMedGoogle Scholar
  231. Stotzky, G., 1980, Surface interactions between clay minerals and microbes, viruses and soluble organics and the probable importance of these interactions to the ecology of microbes in soil, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 231–249.Google Scholar
  232. Stotzky, G., 1989, Gene transfer among bacteria in soil, in: Gene Transfer in the Environment (S. B. Levy and R. V. Miller, eds.), McGraw-Hill, New York, pp. 165–222.Google Scholar
  233. Stotzky, G., 1990, Gene transfer by conjugation, transduction and transformation in soil, U.S. Environmental Protection Agency Publ. EPA/600/9-90/029, pp. 82–87.Google Scholar
  234. Stotzky, G., and Babich, H., 1986, Survival of, and genetic transfer by, genetically engineered bacteria in natural environments, Adv. Appl. Microbiol. 31:93–138.PubMedGoogle Scholar
  235. Stotzky, G., Devanas, M. A., and Zeph, L. R., 1990, Methods for studying bacterial gene transfer in soil by conjugation and transduction, Adv. Appl. Microbiol. 35:57–169.PubMedGoogle Scholar
  236. Stratz, M., Gottschalk, G., and Durre, P., 1990, Transfer and expression of the tetracycline resistance transposon Tn925 in Acetobacterium woodii, FEMS Microbiol. Lett. 68:171–176.Google Scholar
  237. Taylor, D. E., and Bradley, D. E., 1987, Location on RP4 of a tellurite resistance determinant not normally expressed in Inc P and plasmids, Antimicrob. Agents Chemother. 31:823–825.PubMedGoogle Scholar
  238. Thomas, C. M. (ed.), 1989, Promiscuous Plasmids of Gram-negative Bacteria, Academic Press, New York.Google Scholar
  239. Tiedje, J. M., Colwell, R. K., Grossman, Y. L., Hodson, R. E., Lenski, R. E., Mack, R. N., and Regal, P. J., 1989, The planned introduction of genetically engineered organisms: Ecological considerations and recommendations, Ecology 70:298–315.Google Scholar
  240. Torres, O. R., Korman, R. Z., Zahler, S. A., and Dunny, G. M., 1991, The conjugative transposon Tn925: Enhancement of conjugal transfer by tetracycline in Enterococcus faecalus and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis, Mol. Gen. Genet. 225:395–400.PubMedGoogle Scholar
  241. Trevors, J. T., and Starodub, M. E., 1987, R-plasmid transfer in non-sterile agricultural soil, Syst. Appl. Microbiol. 9:312–315.Google Scholar
  242. Trevors, J. T., and Van Elsas, J. D., 1989, A review of selected methods in environmental microbial genetics, Can. J. Microbiol. 35:895–902.Google Scholar
  243. Trevors, J. T., Van Elsas, J. D., Starodub, M. E., and Van Overbeek, L. S., 1990a, Pseudomonas fluorescens survival and plasmid RP4 transfer in agricultural water, Water Res. 24:751–755.Google Scholar
  244. Trevors, J. T., Van Elsas, J. D., Van Overbeek, L. S., and Starodub, M. E., 1990b, Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm, Appl. Environ. Microbiol. 56:401–408.PubMedGoogle Scholar
  245. Trieu-Cuot, P., Gerbaud, T., Lambert, T., and Courvalin, P., 1985, In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria, EMBO J. 4:3583–3587.PubMedGoogle Scholar
  246. Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, P., 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, Microbiol. Lett. 48:289–294.Google Scholar
  247. Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1988, Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli, J. Bacteriol. 170:4388–4391.PubMedGoogle Scholar
  248. Tzipori, S., 1985, The relative importance of enteric pathogens affecting neonates of domestic animals, Adv. Vet. Sci. Comp. Med. 29:103–206.PubMedGoogle Scholar
  249. Van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1988, Bacterial conjugation between pseudomonas in the rhizosphere of wheat, FEMS Microbiol. Ecol. 53:299–306.Google Scholar
  250. Van Elsas, J. D., Trevors, J. T., and Van Overbeek, L. S., 1991, Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms, Biol. Fertil. Soils 10:249–255.Google Scholar
  251. Van Larebeke, N., Gentello, C., Schell, J., Schilperoort, R. A., Hermans, A. K., Hernalsteens, J. P., and Van Montayu, M., 1975, Acquisition of tumour-inducing ability by non-oncogenic Agrobacteria as a result of plasmid transfer, Nature 255:742–743.PubMedGoogle Scholar
  252. Van Overbeek, L. S., Van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1990, Long-term survival of and plasmid stability in Pseudomonas and Klebsiella species and appearance of nonculturable cells in agricultural drainage water, Microb. Ecol. 19:239–249.Google Scholar
  253. Vedamuthu, E. R., and Neville, J. M., 1986, Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures of Stephylococcus cremoris MS, Appl. Environ. Microbiol. 51: 677–682.PubMedGoogle Scholar
  254. Voeykova, T. A., Orekhov, A. V., and Rebentish, B. A., 1980, New approaches to the study of restriction and modification systems in actinomycetes, Actinomycetes 15:152–166.Google Scholar
  255. Watson, B., Currier, T. C., Gorden, M. P., Chilton, M. D., and Nester, E. W., 1975, Plasmid required for virulence of Agrobacterium tumefaciens, J. Bacteriol. 123:255–264.PubMedGoogle Scholar
  256. Weinberg, S. R., and Stotzky, G., 1972, Conjugation and genetic recombination of Escherichia coli in soil, Soil Biol. Biochem. 4:171–180.Google Scholar
  257. Weisberg, R., and Landy, A., 1983, Site-specific recombination in lambda, in: Lambda II (R. W. Henrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 211–250.Google Scholar
  258. Wellington, E. M. H., Cresswell, N., Herron, P. R., Clewlow, L. J., Saunders, V. A., and Wipat, A., 1990a, Gene transfer between streptomyces in soil, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 216–230.Google Scholar
  259. Wellington, E. M. H., Cresswell, N., and Saunders, V. A., 1990b, Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil, Appl. Environ. Microbiol. 56:1413–1419.PubMedGoogle Scholar
  260. Wen-Hsiung, L., 1984, Retention of cryptic genes in microbial populations, Mol. Biol. Evol. 1:212–218.Google Scholar
  261. Willetts, N., and Crowther, C., 1981, Mobilization of the nonconjugative IncQ plasmid RSF1010, Genet. Res. 37:311–316.PubMedGoogle Scholar
  262. Willetts, N. S., Crowther, C., and Holloway, B. W., 1981, The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome, Plasmid 6:30–52.PubMedGoogle Scholar
  263. Williams, P. A., and Murry, K., 1974, Metabolism of benzoates and the methylbenzoates by Pseudomonas putida (arvilla) mt-2. Evidence for the existence of a TOL plasmid, J. Bacteriol. 120:416–423.PubMedGoogle Scholar
  264. Williams, P. H., 1979, Novel iron uptake system specific by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli, Infect. Immun. 26:925–932.PubMedGoogle Scholar
  265. Wong, C. L., and Dunn, N. W., 1974, Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas aravilla mt-2, Genet. Res. 23:227–230.PubMedGoogle Scholar
  266. Zabriskie, J. B., 1964, The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci, J. Exp. Med. 119:761–780.PubMedGoogle Scholar
  267. Zaulin, I. B., Tretyakova, S. E., and Ignatov, V. V., 1988, Chemotaxis of Azospirillum brasilense towards compounds typical of plant root exudates, Folia Microbiol. 33:277–280.Google Scholar
  268. Zeph, L. R., and Stotzky, G., 1989, Use of a biotinylated DNA probe to detect bacteria transduced by bacteriophage P1 in soil, Appl. Environ. Microbiol. 55:661–665.PubMedGoogle Scholar
  269. Zeph, L. R., Onaga, M. A., and Stotzky, G., 1988, Transduction of Escherichia coli by bacteriophage P1 in soil, Appl. Environ. Microbiol. 54:1731–1737.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Duncan A. Veal
    • 1
  • H. W. Stokes
    • 1
  • Grant Daggard
    • 1
  1. 1.School of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations