Ecology of Polyprosthecate Bacteria

  • Alexandre Semenov
  • James T. Staley
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)


Several reviews have been written about the hyphomicrobia and caulobacters, the prosthecate bacteria with which bacteriologists are most familiar (Dow et al., 1976; Whittenbury and Dow, 1977; Dow and Lawrence, 1980; Dow and Whittenbury, 1980; Harder and Attwood, 1978; Hirsch, 1974b; Moore, 1981a,b; Poindexter, 1964, 1981a,b). In contrast, the multiple-appendaged or polyprosthecate bacteria have not been so often reviewed (Schmidt, 1971). There are two reasons for this lack of attention. First, these organisms were discovered and isolated later than most other prosthecate bacteria. And second, members of this group have been, in general, more difficult to isolate in pure culture and to cultivate and study in the laboratory. Recently, however, a number of new genera and species have been isolated and named (Vasilyeva and Semenov, 1984, 1986; Bauld et al., 1983; Schlesner, 1983, 1987a,b; Staley, 1984; Vasilyeva et al., 1991), and these bacteria have become the subjects of greater investigation. This review briefly considers the biological characteristics of these bacteria and discusses in greater detail what is known about their ecological role(s).


Substrate Concentration Dilution Rate Rice Paddy Dissolve Oxygen Tension USSR Acad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, Y., and Taga, N., 1980, Uptake of D-glucose and L-proline by oligotrophic and heterotrophic marine bacteria, Can. J. Microbiol. 26:454–459.PubMedGoogle Scholar
  2. Akpemado, K. M., and Bracquart, P. A., 1983, Uptake of branched-chain amino acids by Streptococcus thermophilus, Appl. Environ. Microbiol. 45:136–140.PubMedGoogle Scholar
  3. Albrecht, W., Fischer, A., Smida, J., and Stackebrandt, E., 1987, Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent, Syst. Appl. Microbiol. 10:57–62.Google Scholar
  4. Bauld, J., Bigford, R., and Staley, J. T., 1983, Prosthecomicrobium litoralum, a new species from marine habitats, Int. J. Syst. Bacteriol. 33:613–617.Google Scholar
  5. Blagoveschenskaya, G.G., 1989, Microbial Cenoses of the Meadow-Black Soils During the Long-Term Rice Growing, Thesis, Moscow (in Russian).Google Scholar
  6. Brooke, A. G., and Attwood, M. M., 1984, Methylamine uptake by the facultative methylotroph Hyphomicrobium X, J. Gen. Microbiol. 130:459–463.Google Scholar
  7. Button, D. K., 1985, Kinetics of nutrient limited transport and microbial growth, Microbiol. Rev. 156:122–129.Google Scholar
  8. Chapman, J. S., and Meeks, J. S., 1983, Glutamine and glutamate transport by Anabaena variabilis, J. Bacteriol. 156:122–129.PubMedGoogle Scholar
  9. Chernykh, N. A., Vasilyeva, L. V., Ginijatullina, A. I., and Semenov, A. M., 1990, DNA-DNA hybridization of new Prosthecomicrobium strains, Microbiology 59:127–132 (in Russian).Google Scholar
  10. Cruden, D. C., and Markovetz, A. J., 1981, Relative numbers of selected bacterial forms in different regions of the cockroach hindgut, Arch. Microbiol. 121:129–134.Google Scholar
  11. Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers, Adv. Microb. Physiol. 10:135–266.PubMedGoogle Scholar
  12. Dijkhuizen, L., de Boek, L., Boers, R. H., Harder, W., and Konings, W. H., 1982, Uptake of methylamine via an inducible energy-dependent transport system in the facultative methylotroph Arthrobacter P. 1, Arch. Microbiol 133:261–266.Google Scholar
  13. Dow, C. S., and Lawrence, A., 1980, Microbial growth and survival in oligotrophic freshwater environments, Microbial growth and survival in extremes of environment, Autumn, Demonstr., Meet, London, pp. 1–20.Google Scholar
  14. Dow, C. S., and Whittenbury, R., 1979, Prosthecate bacteria, in: Developmental Biology of Prokaryotes, Oxford, pp. 139–165.Google Scholar
  15. Dow, C. S., and Whittenbury, R., 1980, Prokaryotic form and function, in: Contemporary Microbial Ecology (D. C. Ellwood, J. M. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, New York, pp. 391–417.Google Scholar
  16. Dow, C. S., Westmacott, D., and Whittenbury, R., 1976, Ultrastructure of budding and prosthecate bacteria, in: Microbial Ultrastructure (R. Fuller and D. W. Loverlock, eds.), Academic Press, New York, pp. 187–221.Google Scholar
  17. Duchow, E., and Douglas, H. S., 1949, Rhodomicrobium vannielii, a new photoheterotrophic bacterium, J. Bacteriol. 58:409–416.Google Scholar
  18. Finan, T. M., Wood, J. M., and Jordan, D. C., 1981, Succinate transport in Rhizobium leguminosarum, J. Bacteriol. 148:193–202.PubMedGoogle Scholar
  19. Fischer, A., Roggentin, T., Schlesner, H., and Stackebrandt, E., 1985, 16S ribosomal RNA oligonucleotide cataloguing and the phylogenetic position of Stella humosa, Syst. Appl. Microbiol. 6:43–47.Google Scholar
  20. Gebers, R., Moore, R. L., and Hirsch, P., 1981a, DNA/DNA reassociation studies on the genus Pedomicrobium, FEMS Microbiol. Lett. 11:283–286.Google Scholar
  21. Gebers, R., Moore, R. L., and Hirsch, P., 1981b, Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium spp., Zentralbl. Bakteriol. Parasitenkd, Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:332–338.Google Scholar
  22. Gebers, R., Moore, R. L., and Hirsch, P., 1984, Physiological properties and DNA/DNA homologies of Hyphomonas polymorpha and Hyphomonas neptunium, Syst. Appl. Microbiol. 5:510–517.Google Scholar
  23. Gebers, R., Wehmeyer, U., Roggentin, T., Schlesner, H., Kölbel-Boelke, J., and Hirsch, P., 1985, Deoxyribonucleic acid base compositions and nucleotide distribution of 65 strains of budding bacteria, Int. J. Syst. Bacteriol. 35:260–269.Google Scholar
  24. Golovlev, E. L., 1985, The metabolic limitation of microbiological synthesis, in: Problems of Biochemistry and Physiology of Microorganisms, Puschino on Oka, pp. 76–84 (in Russian).Google Scholar
  25. Gorlenko, V. M., 1968, A new species of green thiobacteria, Rep. USSR Acad. Sci. 179:1229–1231 (in Russian).Google Scholar
  26. Gorlenko, V. M., and Lebedeva, E. V., 1971, New green sulphur bacteria with apophyses, Microbiology 40:1035–1039.PubMedGoogle Scholar
  27. Harder, W., and Attwood, M. M., 1978, Biology, physiology, and biochemistry of Hyphomicrobium, Adv. Microb. Physiol. 17:303–359.PubMedGoogle Scholar
  28. Henrici, A. T., and Johnson, D. E., 1935, Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes, J. Bacteriol. 30:61–93.PubMedGoogle Scholar
  29. Hirsch, P., 1974a, Budding and/or appendaged bacteria, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), Williams & Wilkins, Baltimore, pp. 148–151.Google Scholar
  30. Hirsch, P., 1974b, Budding bacteria, Annu. Rev. Microbiol. 28:391–444.PubMedGoogle Scholar
  31. Hirsch, P., and Schlesner, H., 1981, The genus Stella, in: The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 1 (M. P. Starr and H. Stolp, eds.), Springer-Verlag, Berlin, pp. 461–465.Google Scholar
  32. Hodson, R. E., Carlucci, A. F., and Azam, F., 1979, Glucose transport in a low nutrient marine bacterium, Abstr. 79th Annu. Meet. ASM, Los Angeles, p. 189.Google Scholar
  33. Hofle, M. G., 1982, Glucose uptake of Cytophaga johnsonae studied in batch and chemostat culture, Arch. Microbiol. 133(4):289–294.Google Scholar
  34. Houwink, A. L., 1951, Caulobacter versus Bacillus spec. div., Nature 168:654–655.PubMedGoogle Scholar
  35. Hutchinson, G. E., 1943, Thiamine in lake waters and aquatic organisms, Arch. Biochem. 2:143–150.Google Scholar
  36. Hutchinson, G. E., 1967, A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton, Wiley, New York.Google Scholar
  37. Ierusalimsky, N. D., 1966, Principles of regulation of microorganisms’ growth rate, in: Controlling Biosynthesis, Nauka, pp. 5–19 (in Russian).Google Scholar
  38. Ishida, Y., Imai, J., and Kadota, H., 1979, Growth and activity of an aquatic bacterium in low nutrient media, Abstr. 79th Annu. Meet. ASM, Los Angeles, p. 195.Google Scholar
  39. Jackson, F., and Dawes, E., 1976, Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation, J. Can. Microbiol. 97:303–312.Google Scholar
  40. Jannasch, H. W., 1963, Bacteriales Wachstum bei geringen substraktkonzentrationen, Arch. Mikrobiol. 45(2):323–342.Google Scholar
  41. Jennings, A. V., 1899, On a new genus of bacteria (Astrobacter), Proceedings of the Royal Irish Academy, Third Series, Vol. 5, No. 2, pp. 312–316.Google Scholar
  42. Jones, M., 1905, A peculiar microorganism showing rosette formation, Zentralbl. Bakteriol. Parasitenkd. Abt. II 14:459–463.Google Scholar
  43. Jordan, T. L., Porter, J. S., and Pate, J. L., 1974, Isolation and characterization of prosthecae of Asticcacaulis biprosthecum, Arch. Microbiol. 96(2):1–16.Google Scholar
  44. Kanamaru, K., Hieda, T., Iwamura, Y., Mikami, Y., Kisaki, T., 1982, Isolation and characterization of Hyphomicrobium sp. and its polysaccharide formation from methanol, Agric. Biol. Chem. 46(10):2411–2417.Google Scholar
  45. Kanbe, C., and Uchida, K., 1985, Oxygen consumption by Pediococcus halophilus, Agric. Biol. Chem. 49(10):2931–2937.Google Scholar
  46. Kölbel-Boelke, J., Gebers, R., and Hirsch, P., 1985, Genome size determinations for 33 strains of budding bacteria, Int. J. Syst. Bacteriol. 35:270–273.Google Scholar
  47. Larson, R. J., and Pate, J. L., 1976, Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum, J. Bacteriol. 126(1):282–293.PubMedGoogle Scholar
  48. Loeffler, F., 1890, Weitere Untersuchungen über die Beizung and Färbung der Geisselen bei den Bakterien, Centralbl. Bakteriol. 7:625–639.Google Scholar
  49. Lysenko, A. M., Semenov, A. M., and Vasilyeva, L. V., 1984, DNA nucleotide composition of prosthecate bacteria with radial cell symmetry, Microbiology 53(5):859–861 (in Russian).Google Scholar
  50. Midgley, M., Noor, M. A., and Mohd, A., 1984, The interaction of oxygen with Propionibacterium acnes, FEMS Microbiol. Lett. 23(2–3): 183–186.Google Scholar
  51. Mishustin, E. N., 1975, Associations of soil microorganisms, Nauka, p. 107 (in Russian).Google Scholar
  52. Mishustin, E. N., 1981, Current problems in investigations of the soil microbial populations, in: Microbial Communities and Their Functioning in the Soils, Kiev, pp. 3–13 (in Russian).Google Scholar
  53. Mishustin, E. N., 1982, The development of studies on the cenoses of the soil microorganisms, Advances in Microbiology, Nauka, No. 17, pp. 117–136 (in Russian).Google Scholar
  54. Moaledj, K., and Overbeck, J., 1980, Studies on uptake kinetics of oligotrophic carbophilic bacteria, Arch. Hydrobiol. 89(3):303–312.Google Scholar
  55. Monod, J., 1949, The growth of bacterial cultures, Annu. Rev. Microbiol. 3:371–394.Google Scholar
  56. Moore, R. L., 1977, Ribosomal ribonucleic acid cistron homologues among Hyphomicrobium and various other bacteria, Can. J. Microbiol. 23:478–481.PubMedGoogle Scholar
  57. Moore, R. L., 1981a, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria (M. P. Starr and H. Stolp, eds.), Springer-Verlag, Berlin, Vol. 1, pp. 480–487.Google Scholar
  58. Moore, R. L., 1981b, The biology of Hyphomicrobium and other prosthecate, budding bacteria, Annu. Rev. Microbiol. 35:567–594.PubMedGoogle Scholar
  59. Moore, R. L., and Hirsch, P., 1972, Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria, J. Bacteriol. 110(1):256–261.PubMedGoogle Scholar
  60. Moore, R. L., and Staley, J. T., 1976, Deoxyribonucleic acid homology in Prosthecomicrobium and Ancalomicrobium strains, Int. J. Syst. Bacteriol. 26:283–285.Google Scholar
  61. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Adv. Microb. Ecol. (K. C. Marshall, ed.), Plenum Press, New York, Vol. 6, pp. 171–198.Google Scholar
  62. Nelidov, S. N., Vasilyeva, L. V., and Mishustin, E. N., 1986, Application of crop residues for increased rice yield in alkaline soils under amelioration, Proc. USSR Acad. Sci. Biol. Ser. 1:43–57 (in Russian).Google Scholar
  63. Nicholls, D. G., 1982, Bioenergetics: An Introduction to the Chemiosmotic Theory, Academic Press, New York.Google Scholar
  64. Nikitin, D. I., 1985, The biology of oligotrophic bacteria, Doctoral thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).Google Scholar
  65. Nikitin, D. I., and Kuznetsov, S. I., 1967, Water microflora studied by electron microscopy, Microbiology 36(5):938–941 (in Russian).PubMedGoogle Scholar
  66. Nikitin, D. I., and Vasilyeva, L. V., 1967, Rod-shaped organisms with spherical inflations, Proc. USSR Acad. Sci. Biol. Ser. 2:296–301 (in Russian).Google Scholar
  67. Nikitin, D. I., and Vasilyeva, L. V., 1968, The new species of the soil organism Agrobacterium polyspheroidum, Proc. Acad. Sci. USSR, Biol. Ser. 3:443–444 (in Russian).Google Scholar
  68. Nikitin, D. I., Vasilyeva, L. V., and Lokhmacheva, R. A., 1966, New and rare forms of the soil microorganisms, Nauka (in Russian).Google Scholar
  69. Nikitin, D. I., Andreeva, L. V., and Kotova, O. M., 1979, Conditions of medium and the cycles of development of oligotrophic soil microorganisms, in: Ontogenesis of Microorganisms, Nauka, pp. 217–234 (in Russian).Google Scholar
  70. Nur, I., Okon, Y., and Henis, Y., 1982, Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture, J. Gen. Microbiol. 128(12):2937–2943.Google Scholar
  71. Ostrovskaya, T. A., 1986, The number and morphological peculiarities of water bacteria—the indications of lake eutrophication, in: Structure and Function of Communities of Water Microorganisms, Nauka, pp. 85–88 (in Russian).Google Scholar
  72. Panikov, N. S., and Zvyagintsev, D. G., 1983a, Kinetic approach to the evaluation of the diversity of microbial habitat types in soil, Rep. USSR Acad. Sci. 268(5): 1241–1244 (in Russian).Google Scholar
  73. Panikov, N. S., and Zvyagintsev, D. G., 1983b, The role of different cultivation conditions for physiological studies of microorganisms, Microbiology 52(1):161–166 (in Russian).Google Scholar
  74. Pedros-Alio, C., Mas, J., and Cinezzero, R., 1985, The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus, Arch. Microbiol. 143(2): 178–184.Google Scholar
  75. Pfennig, N., and Trüper, H. G., 1989, Anoxygenic phototrophic bacteria, in: Bergey’s Manual of Systematic Bacteriology (J. T. Staley, M. Bryant, and N. Pfennig, eds.), Williams & Wilkins, Baltimore, Vol. III, pp. 1635–1709.Google Scholar
  76. Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, Oxford.Google Scholar
  77. Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 133(4):300–302.PubMedGoogle Scholar
  78. Poindexter, J. S., 1964, Biological properties and classification of the Caulobacter group, Bacteriol. Rev. 28:231–295.PubMedGoogle Scholar
  79. Poindexter, J. S., 1981a, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45(1): 123–179.PubMedGoogle Scholar
  80. Poindexter, J. S., 1981b, Oligotrophy. Feast and famine existence, Adv. Microb. Ecol. 5:63–89.Google Scholar
  81. Poindexter, J. S., 1984a, The role of calcium in stalk development and in phosphate acquisition in Caulobacter crescentus, Arch. Microbiol. 138(2):140–152.PubMedGoogle Scholar
  82. Poindexter, J. S., 1984b, The role of prostheca development in oligotrophic aquatic bacteria, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), ASM, pp. 33–40.Google Scholar
  83. Porter, J. S., and Pate, J. L., 1975, Prosthecae of Asticcacaulis biprosthecum: System for the study of membrane transport, J. Bacteriol. 122(3):976–986.PubMedGoogle Scholar
  84. Schlesner, H., 1983, Isolierung und Beschreibung knospender und prostecater Bacterien aus der Kiel Forde, dissertation zur Ellanging des Doctorgrades, Der Christianalbrechta-Universität, Kiel.Google Scholar
  85. Schlesner, H., 1987a, Verrumicrobium spinosum gen. nov., sp. nov.: A fimbriated prosthecate bacterium, Syst. Appl. Microbiol. 10:54–56.Google Scholar
  86. Schlesner, H., 1987b, Filomicrobium fusiforme gen. nov., sp. nov., a slender budding hyphal bacterium from brackish water, Syst. Appl. Microbiol. 10:63–67.Google Scholar
  87. Schlesner, H., Kath, T., Fischer, A., and Stackebrandt, E., 1989, Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, P. enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-like bacteria, Syst. Appl. Microbiol. 12:150–155.Google Scholar
  88. Schmidt, J. M., 1971, Prosthecate bacteria, Annu. Rev. Microbiol. 25:92–110.Google Scholar
  89. Semenov, A. M., 1986, The respiration activity of oligotrophous prosthecate bacteria, Microbiology 55(6):929–932 (in Russian).Google Scholar
  90. Semenov, A. M., 1987a, The morpho-physiological characteristics of a group of Polyprosthecobacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow, p. 203 (in Russian).Google Scholar
  91. Semenov, A. M., 1987b, Characteristics of soil Prosthecobacteria, Proc. 9th Int. Symp. Soil Biol. Conserv. Biosphere (J. Szegi, ed.), Acad. Kiado, Budapest, pp. 697–702.Google Scholar
  92. Semenov, A. M., and Botvinko, J. V., 1988, Exoglycan by Prosthecomicrobium pneumaticum, Microbiology 57(3):511–512 (in Russian).Google Scholar
  93. Semenov, A. M., and Vasilyeva, L. V., 1985, Morpho-physiological characteristics of budding Prosthemicrobium Labrys monachus with radial symmetry of cell under periodical and uninterrupted cultivation, Proc. USSR Acad. Sci. Biol. Ser. 2:288–293 (in Russian).Google Scholar
  94. Semenov, A. M., and Vasilyeva, L. V., 1986a, The morphological and physiological characteristics of the oligotrophic prosthecobacterium Prosthecomicrobium hirschii grown under the conditions of batch and continuous cultivation, Microbiology 55(2):248–252 (in Russian).Google Scholar
  95. Semenov, A. M., and Vasilyeva, L. V., 1986b, Stella vacuolata growth upon batch and continuous cultivation, Proc. USSR Acad. Sci. Biol. Ser. 6:959–963 (in Russian).Google Scholar
  96. Semenov, A. M., Okorokov, L. A., and Vasilyeva, L. V., 1986, Discovery of the extremely high affinity to substrate of Prosthecobacteria, Rep. USSR Acad. Sci. 291(1):225–227 (in Russian).Google Scholar
  97. Semenov, A. M., Okorokov, L. A., and Vasilyeva, L. V., 1988, Glucose uptake by Labrys monachus, a budding prosthecate bacterium with radial cell symmetry, Microbiology 6:912–916 (in Russian).Google Scholar
  98. Semenov, A. M., Hanzlikova, A., and Jandera, A., 1989a, Quantitative estimation of poly-β-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria, Folia Microbiol. 34(3):267–270.Google Scholar
  99. Semenov, A. M., Hanzlikova, A., and Tenov, N., 1989b, Accumulation of poly-β-hydroxybutyrate by some oligotrophic polyprosthecate bacteria, Microbiology 58(6):923–926 (in Russian).Google Scholar
  100. Sonnleitner, B., Heinzle, E., Braunegg, G., and Lafferty, R. M., 1979, Formation kinetics of poly-β-hydroxybutyric acid (PHB) production in Alkaligenes eutrophus H 16 and Mycoplana; the dissolved oxygen tension in ammonium-limited batch culture, Eur. J. Appl. Microbiol. Biotechnol. 7(1): 1–10.Google Scholar
  101. Stackebrandt, E., Fischer, A., Roggentin, T., Wehmeyer, U., Bomaz, D., and Smida, J., 1988a, A phylogenetic survey of budding and/or prosthecate, non-phototrophic eubacteria; membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter, and “Dichotomicrobium” to the alpha-subdivision of purple-non-sulfur bacteria, Arch. Microbiol. 149: 547–556.PubMedGoogle Scholar
  102. Stackebrandt, E., Murray, R. G. E., and Trüper, H. G., 1988b, Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “Purple Bacteria and their Relatives,” Int. J. Syst. Bacteriol. 38:321–325.Google Scholar
  103. Staley, J. T., 1968, Prosthecomicrobium and Ancalomicrobium: New prosthecate freshwater bacteria, J. Bacteriol. 95(5): 1921–1942.PubMedGoogle Scholar
  104. Staley, J. T., 1971, Incidence of prosthecate bacteria in a polluted stream, J. Appl. Microbiol. 22(4): 496–502.Google Scholar
  105. Staley, J. T., 1984, Prosthecomicrobium hirschii, a new species in a redefined genus, Int. J. Syst. Bacteriol. 34(3):304–308.Google Scholar
  106. Staley, J. T., and Fuerst, J. A., 1989, The budding and/or appendaged bacteria, in: Bergey’s Manual of Systematic Bacteriology, Vol. III (J. T. Staley, M. Bryant, and N. Pfennig, eds.), Williams & Wilkins, Baltimore.Google Scholar
  107. Staley, J. T., and Mandel, M., 1973, Deoxyribonucleic acid base composition of Prosthecomicrobium and Ancalomicrobium strains, Int. J. Syst. Bacteriol. 23(3):271–273.Google Scholar
  108. Staley, J. T., Marshall, K. C., and Skerman, V. B. D., 1980, Budding and prosthecate bacteria from freshwater habitats of various trophic states, Microb. Ecol. 5(4):245–252.Google Scholar
  109. Stanley, P. M., Ordal, E. J., and Staley, J. T., 1979, High numbers of prosthecate bacteria in pulp mill waste aeration lagoons, Appl. Environ. Microbiol. 37(5): 1007–1011.PubMedGoogle Scholar
  110. Stepanovich, T. V., 1985, Physiologo-biochemical peculiarities of oligotrophic bacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).Google Scholar
  111. Tamm, E., and Pate, J. L., 1985, Amino acid transport by prosthecae of Asticcacaulis biprosthecum. Evidence of a broad-range transport system, J. Gen. Microbiol. 131(10):2687–2699.Google Scholar
  112. Tarakanov, B. V., 1971, Fimbria and unusual appendages in microorganisms inhabiting cattle rumen, Microbiology 40(2):335–341 (in Russian).PubMedGoogle Scholar
  113. Vadeboncoeur, C., and Trahan, L., 1982, Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of α-methylglucoside, Can. J. Microbiol. 28(2):190–199.PubMedGoogle Scholar
  114. Vasilyeva, L. V., 1970, A starshaped soil microorganism, Proc. USSR Acad. Sci. Biol. Ser. 2:308–309 (in Russian).Google Scholar
  115. Vasilyeva, L. V., 1972a, The peculiarities of the ultrastructure and the cycle of development of the bacterium Stella humosa, Proc. USSR Acad. Sci. Biol. Ser. 5:782–785 (in Russian).Google Scholar
  116. Vasilyeva, L. V., 1972b, On the cycle of development and cytological properties of a new soil microorganism possessing prosthecae, Proc. USSR Acad. Sci. Biol. Ser. 6:860–864 (in Russian).Google Scholar
  117. Vasilyeva, L. V., 1975, The soil Prosthecobacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).Google Scholar
  118. Vasilyeva, L. V., 1980, Morphological grouping of Prosthecobacteria, Proc. USSR Acad. Sci. Biol. Ser. 5:719–737 (in Russian).Google Scholar
  119. Vasilyeva, L. V., 1984, Oligotrophs as components of biocenosis, in: Soil Organisms as Components of Biogeocenosis, Nauka, pp. 232–241 (in Russian).Google Scholar
  120. Vasilyeva, L. V., and Semenov, A. M., 1984, Labrys monachus, a genus of budding and prosthecate bacteria with radial cell symmetry, Microbiology 53(1):85–92 (in Russian).Google Scholar
  121. Vasilyeva, L. V., and Semenov, A. M., 1986, Prosthecobacteria of the genus Stella and description of a new species, Stella vacuolata, Proc. USSR Acad. Sci. Biol. Ser. 4:534–540 (in Russian).Google Scholar
  122. Vasilyeva, L. V., Lafitskaya, T. N., Aleksandrushkina, N. J., and Krasilnikova, E. N., 1974, Physiologo-biochemical peculiarities of Prosthecobacteria Stella humosa and Prosthecomicrobium sp., Proc. USSR Acad. Sci. Biol. Ser. 5:699–714 (in Russian).Google Scholar
  123. Vasilyeva, L. V., Semenov, A. M., and Giniyatullina, A. J., 1991, A new species of soil bacteria of Prosthecomicrobium genus, Microbiology 60(2):350–359 (in Russian).Google Scholar
  124. Ward, A. C., Rawley, B. I., and Dawes, E. A., 1977, Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium growth of Azotobacter beijerinckii, J. Gen. Microbiol. 102(1):61–68.Google Scholar
  125. Wetzel, R. G., 1975, Limnology, Saunders, Philadelphia, pp. 310–312.Google Scholar
  126. Whiteman, P. A., Iijima, T., Diesterhaft, M., and Freese, E., 1978, Evidence for a low affinity but high velocity aspartate transport system needed for rapid growth of Bacillus subtilis and aspartate as sole carbon source, J. Gen. Microbiol. 107(2):297–307.Google Scholar
  127. Whittenbury, R., and Dow, C. S., 1977, Morphogenesis and differentiation in Rhodomicrobium vanniellii and other budding and prosthecate bacteria, Bacteriol. Rev. 41(2):754–808.PubMedGoogle Scholar
  128. Whittenbury, R., and McLee, A. G., 1967, Rhodopseudomonas palustris and Rhodopseudomonas viridis—Photosynthetic budding bacteria, Arch. Microbiol. 59(1–3):324–334.Google Scholar
  129. Zavarzin, G. A., 1970, The notion of microflora of dispersion in the carbon cycle, J. Gen. Biol. 31(4):386–393 (in Russian).Google Scholar
  130. Zavarzin, G. A., 1973, Incompatibility of characters in the systems of bacterial genera, J. Gen. Biol. 34(4):530–538 (in Russian).Google Scholar
  131. Zavarzin, G. A., 1984, Bacteria and composition of atmosphere, Nauka, Moscow (in Russian).Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Alexandre Semenov
    • 1
  • James T. Staley
    • 2
  1. 1.Institute of MicrobiologyUSSR Academy of SciencesMoscowUSSR
  2. 2.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations