Advertisement

Ribosomal RNA Analysis of Microorganisms as They Occur in Nature

  • David M. Ward
  • Mary M. Bateson
  • Roland Weller
  • Alyson L. Ruff-Roberts
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)

Abstract

Advances in molecular biology are now providing the means for solving long-standing problems in microbiology. One of the best examples is the development of a rational approach to the phylogenetic classification of microorganisms, based on comparative analysis of slowly evolving molecular components, most notably ribosomal RNAs (Woese, 1987). Molecular biologists and microbiologists have been quick to recognize how rRNA sequence variation could be used to answer major questions limiting progress in microbial ecology. Only a few years after the initial rRNA-based phylogenetic observations were published (Woese and Fox, 1977), the 16S rRNA molecule was used to characterize Prochloron, an uncultivated symbiont of marine invertebrates (Seewaldt and Stackebrandt, 1982), and the smallest ribosomal RNA molecule, 5S rRNA, was used to analyze the composition of a few simple microbial communities (Stahl et al., 1984, 1985; Lane et al., 1985b). Some further ecologic work with 5S rRNA has appeared (Colwell et al., 1989), but extensive community analysis with this molecule is complicated by the difficulty of physically separating 5S rRNAs, and by the relatively small size and thus limited information content of this molecule. In the last few years, considerable emphasis has been given in both microbial phylogeny and microbial ecology to the development of methods for studying the larger and more informative rRNAs. Most of the work has been with small ribosomal subunit rRNA (SSU rRNA, 16S in prokaryotes and 18S in eukaryotes), though a limited amount of work has been done with the larger rRNAs of large ribosomal subunits (here termed LSU rRNA, 23S in prokaryotes and 28S in eukaryotes) and with internal transcribed spacer (ITS) regions separating rRNA genes.

Keywords

Internal Transcribe Spacer Sequence Type rRNA Sequence Oligonucleotide Probe rRNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter, L., Stetter, K. O., and Woese, C. R., 1987, A possible biochemical missing link among archaebacteria, Nature 327:348–349.PubMedGoogle Scholar
  2. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990a, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56:1919–1925.PubMedGoogle Scholar
  3. Amann, R. I., Krumholz, L., and Stahl, D. A. 1990b, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172:762–770.PubMedGoogle Scholar
  4. Amann, R., Springer, N., Ludwig, W., Gortz, H., and Schleifer, K., 1991, Identification in situ and phylogeny of uncultured bacterial endosymbionts, Nature 351:161–164.PubMedGoogle Scholar
  5. Amann, R. I., Lin, C., Key, R., Montgomery, L., and Stahl, D. A., 1992a, Diversity among Fibrobacter isolates: Towards a phylogenetic and habitat-based classification, Syst. Appl. Microbiol. 15, 23–31.Google Scholar
  6. Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., 1992b, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol. 58:614–623.PubMedGoogle Scholar
  7. Anderson, B. E., Dawson, J. E., Jones, D. C., and Wilson, K. H., 1991, Ehrlichia chaffeensis, a new species associated with human ehrlichiosis, J. Clin. Microbiol. 29:2838–2842.PubMedGoogle Scholar
  8. Anderson, B. E., Sumner, J. W., Dawson, J. E., Tzianabos, T., Greene, C. R., Olson, J. G., Fishbein, D. B., Olsen-Rasmussen, M., Holloway, B. P. George, E. H., and Azad, A. F., 1992, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction, J. Clin. Microbiol. 30:775–780.PubMedGoogle Scholar
  9. Angert, E. R., Cements, K. D., and Pace, N. R., 1992, The largest prokaryote, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 248.Google Scholar
  10. Asgari, M., Lai, S., and Henney, H. R., 1991, Acanthamoeba DNA probe, Abstr. Annu. Meet., Am. Soc. Microbiol., p. 83.Google Scholar
  11. Atlas, R. M., 1984, Use of microbial diversity measurements to assess environmental stress, in Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 540–545.Google Scholar
  12. Barry, T., Powell, R., and Gannon, F., 1990, A general method to generate DNA probes for microorganisms, Biotechnology 8:233–236.PubMedGoogle Scholar
  13. Barry, T., Colleran, G., Glennon, M., Dunican, L. K., and Gannon, F., 1991, The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria, PCR Meth. Appl. 1:51–56.Google Scholar
  14. Bateson, M. M., Wiegel, J., and Ward, D. M., 1989, Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats, Syst. Appl. Microbiol. 12:1–7.Google Scholar
  15. Bateson, M. M., Thibault, K. J., and Ward, D. M., 1990, Comparative analysis of 16S ribosomal RNA sequences of Thermus species, Syst. Appl. Microbiol. 13:8–13.Google Scholar
  16. Bauman, J. G. J., and Bentvelzen, P., 1988, Flow cytometric detection of ribosomal RNA in suspended cells by fluorescent in situ hybridization, Cytometry 9:517–524.PubMedGoogle Scholar
  17. Bertin, B., Broux, O., and van Hoegarden, M., 1990, Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe, J. Microbiol. Meth. 12:1–12.Google Scholar
  18. Betzl, D., Ludwig, W., and Schleifer, K. H., 1990, Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes, Appl. Environ. Microbiol. 56:2927–2929.PubMedGoogle Scholar
  19. Boddinghaus, B., Rogali, T., Flohr, T., Blocker, H., and Bottger, E. C., 1990, Detection and identification of mycobacteria by amplification of rRNA, J. Clin. Microbiol. 28:1751–1759.PubMedGoogle Scholar
  20. Bottger, E. C., 1989, Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA, FEMS Microbiol. Lett. 65:171–176.Google Scholar
  21. Bremer, H., and Dennis, P. P., 1987, Modulation of chemical composition and other parameters of the cell by growth rate, in: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2 (F. C. Neidhart, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Shaechter, and H. E. Umbarger, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 1527–1542.Google Scholar
  22. Briesacher, S. L., May, T. Grigsby, K. N., Kerley, M. S., Anthony, R. V., and Paterson, J. A., 1992, Use of DNA probes to monitor nutritional effects on ruminai prokaryotes and Fibrobacter succinogenes S85, J. Anim. Sci. 70:289–295.PubMedGoogle Scholar
  23. Britschgi, T. B., and Giovannoni, S. J., 1991, Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing, Appl. Environ. Microbiol. 57:1707–1713.PubMedGoogle Scholar
  24. Brock, T. D., 1978, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Berlin.Google Scholar
  25. Brock, T. D., 1987, The study of microorganisms in situ: Progress and problems, Symp. Soc. Gen. Microbiol. 41:1–17.Google Scholar
  26. Brosius, J., Palmer, M. L., Kennedy, P. J., and Noller, H. F., 1978, Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, Proc. Natl. Acad. Sci. USA 75:4801–4805.PubMedGoogle Scholar
  27. Bruns, T. D., Fogel, R., and Taylor, J. W., 1990, Amplification and sequencing of DNA from fungal herbarium specimens, Mycologia 82:175–184.Google Scholar
  28. Bruns, T. D., Cullings, K. W., and Szaro, T. M., 1991, Pine drops, Pterospora andromedia, is specifically associated with Rhizopogon or a closely related taxon over a broad geographic range, Mycol. Soc. Am. Newsl. 42:8.Google Scholar
  29. Chan, S. W., Vera-Garcia, M., Chen, P., Weisburg, W. G., Barns, S. M., and Klinger, J. D., 1991, Rapid detection of fungemia using a prototype Q-beta amplified nucleic acid hybridization assay, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 360.Google Scholar
  30. Cheema, M. A., Schumacher, H. R., and Hudson, A. P., 1991, RNA-directed molecular hybridization screening: evidence for inapparent chlamydial infection, Am. J. Med. Sci. 302:261–268.PubMedGoogle Scholar
  31. Chen, K., Neimark, H., Rumore, P., and Steinman, C. R., 1989, Broad range DNA probes for detecting and amplifying eubacterial nucleic acids, FEMS Microbiol. Lett. 57:19–24.Google Scholar
  32. Chuba, P. J., Pelz, K., Krekeler, G., De Isele, T. S., and Gobel, U., 1988, Synthetic oligodeoxy-nucleotide probes for the rapid detection of bacteria associated with human periodontitis, J. Gen. Microbiol. 134:1931–1938.PubMedGoogle Scholar
  33. Colwell, R. R., MacDonell, M. T., and Swartz, D., 1989, Identification of an antarctic endolithic microorganism by 5S rRNA sequence analysis, Syst. Appl. Microbiol. 11:182–186.Google Scholar
  34. DeLong, E. F., 1991, Molecular systematics, microbial ecology and single cell analysis, in: Oceanography, NATO ASI Series, Vol. 27 (S. Demers, ed.), Springer-Verlag, Berlin, pp. 237–257.Google Scholar
  35. DeLong, E. F., 1992, Archaea in coastal marine environments, Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedGoogle Scholar
  36. DeLong, E. F., and Shah, J., 1990, Fluorescent, ribosomal RNA probes for clinical application: A research review, Diagn. Clin. Test. 28:41–44.Google Scholar
  37. DeLong, E. F., Schmidt, T. M., and Pace, N. R., 1989a, Analysis of single cells and oligotrophic picoplankton populations using 16S rRNA sequences, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 697–701.Google Scholar
  38. DeLong, E. F., Wickham, G. S., and Pace, N. R., 1989b, Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells, Science 243:1360–1363.PubMedGoogle Scholar
  39. Deng, S., and Hiruki, C., 1991, Amplification of 16S rRNA genes from culturable and nonculturable mollicutes, J. Microbiol. Meth. 14:53–61.Google Scholar
  40. Devereux, R., Delaney, M., Widdel, F., and Stahl, D. A., 1989, Natural relationships among sulfate-reducing eubacteria, J. Bacteriol. 171:6689–6695.PubMedGoogle Scholar
  41. Devereux, R., Winfrey, J., Winfrey, M. R., and Stahl, D. A., 1990, Application of 16S rRNA probes to correlate communities of sulfate-reducing bacteria with sulfate reduction and mercury methylation in a marine sediment, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 328.Google Scholar
  42. Devereux, R., Liebert, C., Barkay, T., and Stahl, D. A., 1991, Hybridization of fluorescent dye-labeled rRNA probes to bacteria extracted from sandy marine sediment, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 297.Google Scholar
  43. Devereux, R., and Mundfrom, G., 1992, Amplification of 16S rRNA genes from microbial communities within marine sediments by the polymerase chain reaction, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 389.Google Scholar
  44. Distel, D., 1991, Analysis of the phylogenetic origins of autotrophic bacteria symbioses in marine bivalves by 16S rRNA sequence analysis, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 177.Google Scholar
  45. Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, S. J., Pace, B., Pace, N. R., Stahl, D. A., and Feibeck, H., 1988, Sulfur-oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences, J. Bacteriol. 170:2506–2510.PubMedGoogle Scholar
  46. Distel, D. L., DeLong, E. F., and Waterbury, J. B., 1991, Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalva) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization, Appl. Environ. Microbiol. 57:2376–2382.PubMedGoogle Scholar
  47. Dix, K., Watanabe, S. M., McArdle, S., Lee, D. I., Randolph, C., Moncla, B., and Schwartz, D. E., 1990, Species-specific oligodeoxynucleotide probes for the identification of periodontal bacteria, J. Clin. Microbiol. 28:319–323.PubMedGoogle Scholar
  48. Eckert, K. A., and Kunkel, T. A., 1990, High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase, Nucleic Acids Res. 18:3739–3744.PubMedGoogle Scholar
  49. Edelstein, P. H., 1986, Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture, J. Clin. Microbiol. 23:481–484.PubMedGoogle Scholar
  50. Edman, J. C., Kovacs, J. A., Masur, H., Santi, D. V., Elwood, H. J., and Sogin, M. L., 1988, Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi, Nature 334:519–522.PubMedGoogle Scholar
  51. Edwards, D. B., and Nelson, D. C., 1991, DNA-DNA solution hybridization studies of the bacterial symbionts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana), Appl. Environ. Microbiol. 57:1082–1088.PubMedGoogle Scholar
  52. Edwards, U., Rogali, T., Blocker, H., Emde, M., and Bottger, E. C., 1989, Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA, Nucleic Acids Res. 17:7843–7853.PubMedGoogle Scholar
  53. Eisenstein, B. I., 1990, New opportunistic infections—More opportunities, New Engl. J. Med. 323:1625–1627.PubMedGoogle Scholar
  54. Embley, T. M., Smida, J., and Stackebrandt, E., 1988, Reverse transcriptase sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta, three wall type IV actinomycetes which lack mycolic acids, J. Gen. Microbiol. 134:961–966.PubMedGoogle Scholar
  55. Endo, G., Koseki, T., and Oikawa, E., 1992, Quantitative detection of microorganism by PCR-MPN method, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 390.Google Scholar
  56. Ennis, P. D., Zemmour, J., Salter, R. D., and Parham, P., 1990, Rapid cloning of HLA-A, B cDNA by using the polymerase chain reaction: Frequency and nature of errors produced in amplification, Proc. Natl. Acad. Sci. USA 87:2833–2837.PubMedGoogle Scholar
  57. Felsenstein, J., 1985, Confidence limits on phylogenies: An approach using the bootstrap, Evolution 39:783–791.Google Scholar
  58. Festl, H., Ludwig, W., and Schleifer, K. H., 1986, DNA hybridization probe for the Pseudomonas fluorescens group, Appl. Environ. Microbiol. 52:1190–1194.PubMedGoogle Scholar
  59. Forsman, M., Sandstrom, G., and Jaurin, B., 1990, Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis, Appl. Environ. Microbiol. 56:949–955.PubMedGoogle Scholar
  60. Fuhrman, J. A., Comeau, D. E., Hagstrom, A., and Chan, A. M., 1988, Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies, Appl. Environ. Microbiol. 54:1426–1429.PubMedGoogle Scholar
  61. Fuhrman, J. A., McCallum, K., and Davis, A. A., 1992, Novel major archaebacterial group from marine plankton, Nature 356:148–149.PubMedGoogle Scholar
  62. Gall, J. G., and Pardue, M. L., 1969, Formation and detection of RNA-DNA hybrid molecules in cytological preparations, Proc. Natl. Acad. Sci. USA 63:378–383.PubMedGoogle Scholar
  63. Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D., and Taylor, J. W., 1991, Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA, Can. J. Bot. 69:180–190.Google Scholar
  64. Gaydos, C. A., Quinn, T. C., and Eiden, J. J., 1992, Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene, J. Clin. Microbiol. 30:796–800.PubMedGoogle Scholar
  65. Gevertz, D., 1992, Use of a chemiluminescent-labeled DNA probe to measure bacterial populations in oil field brines, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 389.Google Scholar
  66. Giovannoni, S. J., DeLong, E. F., Olsen, G. J., and Pace, N. R., 1988a, Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells, J. Bacteriol. 170:720–726.PubMedGoogle Scholar
  67. Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J., and Pace, N. R., 1988b, Evolutionary relationships among cyanobacteria and green chloroplasts, J. Bacteriol. 170:3584–3592.PubMedGoogle Scholar
  68. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G., 1990a, Genetic diversity in Sargasso Sea bacterioplankton, Nature 345:60–63.PubMedGoogle Scholar
  69. Giovannoni, S. J., DeLong, E. F., Schmidt, T. M., and Pace, N. R., 1990b, Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton, Appl. Environ. Microbiol. 56:2572–2575.PubMedGoogle Scholar
  70. Gobel, U. B., and Stanbridge, E. J., 1984, Cloned mycoplasma ribosomal RNA genes for the detection of mycoplasma contamination in tissue cultures, Science 226:1211–1213.PubMedGoogle Scholar
  71. Gobel, U. B., Geiser, A., and Stanbridge, E. J. 1987, Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species, J. Gen. Microbiol. 133:1969–1974.PubMedGoogle Scholar
  72. Goering, R. V., and Duensing, T. D., 1990, Rapid field inversion gel electrophoresis in combination with an rRNA gene probe in the epidemiological evaluation of staphylococci, J. Clin. Microbiol. 28:426–429.PubMedGoogle Scholar
  73. Gonzales, F. R., Deveze-Doyle, S., Kranig-Brown, D., Sherrill, S., Bee, G., Hammond, P., Shaw, S. B., and Johnson, R., 1991, A non-isotopic DNA probe for the specific detection of Ureaplasma, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 81.Google Scholar
  74. Gouy, M., and Li, W.-H., 1989, Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree, Nature 339:145–147.PubMedGoogle Scholar
  75. Gray, M. W., Sankoff, D., and Cedergren, R. J., 1984, On the evolutionary descent of organisms and organelles: A global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA, Nucleic Acids Res. 12:5837–5852.PubMedGoogle Scholar
  76. Gunderson, J. H., Sogin, M. L., Wollett, G., Hollingdale, M., de la Cruz, V. F., Waters, A. P., and McCutchan, T. F., 1987, Structurally distinct, stage-specific ribosomes occur in Plasmodium, Science 238:933–937.PubMedGoogle Scholar
  77. Gutell, R. R., Weiser, B., Woese, C. R., and Noller, H. F., 1985, Comparative anatomy of 16-S-like ribosomal RNA, Prog. Nucleic Acid Res. Mol. Biol. 32:155–216.PubMedGoogle Scholar
  78. Hahn, D., Dorsch, M., Stackebrandt, E., and Akkermans, A. D. L., 1989, Synthetic oligonucleotide probes for identification of Frankia strains, Plant Soil 118:211–219.Google Scholar
  79. Hahn, D., Kester, R., Starrenburg, M. J. C., and Akkermans, A. D. L., 1990a, Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes, Arch. Microbiol. 154:329–335.PubMedGoogle Scholar
  80. Hahn, D., Starrenburg, M. J. C., and Akkermans, A. D. L., 1990b, Oligonucleotide probes that hybridize with rRNA as a tool to study Frankia strains in root nodules, Appl. Environ. Microbiol. 56:1342–1346.PubMedGoogle Scholar
  81. Hammond, P. W., Gonzales, F. R., Deveze-Doyle, S., and Carter, N. M., 1991, Biotype specific probes for Ureaplasma urealyticum, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 81.Google Scholar
  82. Haun, G., and Gobel, U., 1987, Oligonucleotide probes for genus-, species-and subspecies-specific identification of representatives of the genus Proteus, FEMS Microbiol. Lett. 43:187–193.Google Scholar
  83. Haygood, M., Rosson, R., and Distel, D., 1991, Relationship of the unculturable luminous bacterial symbionts of anomalopid fishes to the culturable marine luminous bacteria determined by 16S rRNA phylogenetic analysis, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 177.Google Scholar
  84. Hensiek, R., Krupp, G., and Stackebrandt, E., 1992, Development of diagnostic oligonucleotide probes for four Lactobacillus species occurring in the intestinal tract, System. Appl. Microbiol. 15:123–128.Google Scholar
  85. Herrick, J. B., Madsen, E. L., and Ghiorse, W. C., 1992, PCR detection of biodegradation genes from environmental samples: an approach to the study of bacterial populations in their native habitats, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 350.Google Scholar
  86. Hertel, C., Ludwig, W., Obst, M., Vogel, R. F., Hammes, W. P., and Schleifer, K. H., 1991, 23S rRNA-targeted oligonucleotide probes for the rapid identification of meat lactobacilli, System. Appl. Microbiol. 14:173–177.Google Scholar
  87. Ho, S., Hoyle, J. A., Lewis, F. A., Secker, A. D., Cross, D., Mapstone, N. P., Dixon, M. F., Wyatt, J. I., Tompkins, D. S., Taylor, G. R., and Quirke, P., 1991, Direct polymerase chain reaction test for detection of Helicobacter pylori in humans and animals. J. Clin. Microbiol. 29:2543–2549.PubMedGoogle Scholar
  88. Holben, W. E., and Tiedje, J. M., 1988, Application of nucleic acid hybridization in microbial ecology, Ecology 69:561–568.Google Scholar
  89. Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M., 1988, DNA probe method for the detection of specific microorganisms in the soil bacterial community, Appl. Environ. Microbiol. 54:703–711.PubMedGoogle Scholar
  90. Hosein, I., Kaunitz, A., Craft, S., and Holland, R., 1991, Evaluation of the Gen Prob PACE 2 DNA probe for direct detection of C. trachomatis in female genital infections, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 80.Google Scholar
  91. Hoshina, S., Kahn, S. M., Jiang, W., Green, P. H. R., Neu, H. C., Chin, N., Morotomi, M., LoGerfo, P., and Weinstein, I. B., 1990, Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies, Diagn. Microbiol. Infect. Dis. 13:473–479.PubMedGoogle Scholar
  92. Jensen, N. S., Casey, T. A., and Stanton, T. B., 1990, Detection and identification of Treponema hyodysenteriae by using oligodeoxynucleotide probes complementary to 16S rRNA, J. Clin. Microbiol 28:2717–2721.PubMedGoogle Scholar
  93. John, H. A., Birnstiel, M. L., and Jones, K. W., 1969, RNA-DNA hybrids at the cytological level, Nature 223:582–587.PubMedGoogle Scholar
  94. Jones, J. G., 1987, Diversity in freshwater microbiology, Symp. Soc. Gen. Microbiol. 41:235–259.Google Scholar
  95. Ka, J. O., and Holben, W. E., 1991, Use of gene probes to detect 2,4-D degrading populations in soil microcosms maintained under selective pressure, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 296.Google Scholar
  96. Kane, M. D., Stromley, J. M., Raskin, L., and Stahl, D. A., 1991, Molecular analysis of the phylogenetic diversity and ecology of sulfidogenic and methanogenic biofilm communities, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 309.Google Scholar
  97. Kemmerling, C., Witt, D., Liesack, W., Weyland, H., and Stackebrandt, E., 1990, Approaches for the molecular identification of streptomycetes in marine environment, in: Current Topics in Marine Biotechnology (S. Miyachi, I. Karube, and Y. Eshida, eds.), Japan Soc. Mar. Biotechnol., Tokyo, pp. 423–426.Google Scholar
  98. Kirshtein, J. D., Paerl, H. W., and Zehr, J., 1991, Amplification, cloning and sequencing of a nifH segment from aquatic microorganisms and natural communities, Appl. Environ. Microbiol. 57:2645–2650.PubMedGoogle Scholar
  99. Klein, D. A., McGurk, S., Tiffney, W. N., and Eveleigh, D. E., 1992, Vesicular-arbuscular mycorrhizae of natural and restored sand dunes, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 398.Google Scholar
  100. Klijn, N., Weerkamp, A. H., and de Vos, W. M., 1991, Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes, Appl. Environ. Microbiol. 57:3390–3393.PubMedGoogle Scholar
  101. Krueger, C., DeGrugillier, M., and Narang, S., 1992, PCR amplification of prokaryotic 16S rRNA genes from moth-testes (Heliothis spp.) extracts, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 291.Google Scholar
  102. Lake, J. A., 1987, A rate-independent technique for analysis of nucleic acid sequences: Evolutionary parsimony, Mol. Biol. Evol. 4:167–191.PubMedGoogle Scholar
  103. Lane, D. J., and Collins, M. L., Current methods for detection of DNA/ribosomal RNA hybrids, in: Proc. 6th Int. Congress on Rapid Methods and Automation in Microbiology and Immunology (A. Vahen, R. C. Tilton, and A. Balows, eds.), Springer-Verlag, Berlin, pp. 54–75.Google Scholar
  104. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R., 1985a, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. USA 82:6955–6959.PubMedGoogle Scholar
  105. Lane, D. J., Stahl, D. A., Olsen, G. J., Heller, D. J., and Pace, N. R., 1985b, Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences, J. Bacteriol. 163:75–81.PubMedGoogle Scholar
  106. Lane, D. J., Field, K. G., Olsen, G. J., and Pace, N. R., 1988, Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis, Methods Enzymol. 167:138–144.PubMedGoogle Scholar
  107. Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol. 56:739–746.PubMedGoogle Scholar
  108. Leong, D. U., and Greisen, K. S., 1991, An assay for the detection of septicemia based on the polymerase chain reaction, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 361.Google Scholar
  109. Liesack, W., Weyland, H., and Stackebrandt, E., 1991, Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria, Microb. Ecol. 21:191–198.Google Scholar
  110. Liesack, W., and Stackebrandt, E., 1992, Unculturable microbes detected by molecular sequences and probes, Biodiversity and Conservation (in press).Google Scholar
  111. Liesack, W., and Stackebrandt, E., 1992, Occurrence of novel types of bacteria as revealed by analysis of the genetic material isolated from an Australian terrestrial environment, J. Bacteriol. (submitted).Google Scholar
  112. Lovell, C. R., and Hui, Y., 1989, Homology among formyltetrahydrofolate synthetase structural genes from acetogenic bacteria, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 234.Google Scholar
  113. Lovell, C. R., and Hui, Y., 1991, Development and testing of a functional group specific DNA probe for the acetogenic bacteria, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 300.Google Scholar
  114. Lu, S. Y., Kao, S.-Y., Silver, S., Purohit, A., Longiaru, M., and White, T. J., 1991, Detection of Neisseria gonorrhoeae and Chlamydia trachomatis in a combined system by PCR, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 361.Google Scholar
  115. Marconi, R. T., Lubke, L., Hauglum, W., and Garon, C. F., 1992, Species-specific identification of and distinction between Borrelia burgdorferi genomic groups by using 16S rRNA-directed oligonucleotide probes, J. Clin. Microbiol. 30:628–632.PubMedGoogle Scholar
  116. McCutchan, T. F., de la Cruz, V. F., Lal, A. A., Gunderson, J. H., Elwood, H. J., and Sogin, M. L., 1988, Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum, Mol. Biochem. Parasitol. 28:63–68.PubMedGoogle Scholar
  117. Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L., 1988, The characterization of enzymatically amplified eukaryotic 16 S-like rRNA-coding regions, Gene 71:491–499.PubMedGoogle Scholar
  118. Mizutani, S., and Temin, H. M., 1976, Incorporation of noncomplementary nucleotides at high frequencies by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I, Biochemistry 15:1510–1516.PubMedGoogle Scholar
  119. Moncla, B. J., Braham, P., Dix, K., Watanabe, S., and Schwartz, D., 1990, Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis, J. Clin. Microbiol. 28:324–327.PubMedGoogle Scholar
  120. Moncla, B. J., Motley, S. T., Braham, P., Ewing, L., Adams, T. H., and Vermeulen, N. M. J., 1991, Use of synthetic oligonucleotide DNA probes for identification and direct detection of Bacteroides forsythus in plaque samples, J. Clin. Microbiol. 29:2158–2162.PubMedGoogle Scholar
  121. Montgomery, L., Flesher, B., and Stahl, D., 1988, Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. Description of Fibrobacter intestinalis sp. nov., Int. J. Syst. Bacteriol. 38:430–435.Google Scholar
  122. Morotomi, M., Hoshina, S., Green, P., Neu, H. C., LoGerfo, P., Watanabe, I., Mutai, M., and Weinstein, I. B., 1989, Oligonucleotide probe for detection and identification of Campylobacter pylori, J. Clin. Microbiol. 27:2652–2655.PubMedGoogle Scholar
  123. Mylvaganam, S., and Dennis, P. P., 1992, Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui, Genetics 130:399–410.PubMedGoogle Scholar
  124. Odenyo, A. A., Mackie, R. I., and White, B. A., 1992, The use of 16S ribosomal RNA targeted oligonucleotide probes to study competition between ruminai fibrolytic bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 396.Google Scholar
  125. Olsen, G. J., 1987, Earliest phylogenetic branchings: Comparing rRNA-based evolutionary trees inferred with various techniques, Cold Spring Harbor Symp. Quant. Biol. 52:825–837.PubMedGoogle Scholar
  126. Olsen, G. J., 1988, Phylogenetic analysis using ribosomal RNA, Methods Enzymol. 164:793–812.PubMedGoogle Scholar
  127. Olsen, G. J., 1990, Variation among the masses, Nature 345:20.PubMedGoogle Scholar
  128. Olsen, G. J., Lane, D. J., Giovannoni, S. J., and Pace, N. R., 1986, Microbial ecology and evolution: A ribosomal RNA approach, Annu. Rev. Microbiol. 40:337–365.PubMedGoogle Scholar
  129. Olsen, G. J., Larsen, N., and Woese, C. R., 1991, The ribosomal RNA database project, Nucleic Acids Res. 19:2017–2021.PubMedGoogle Scholar
  130. Oyaizu, H., and Woese, C. R., 1985, Phylogenetic relationship among the sulfate respiring bacteria, myxobacteria, and purple bacteria, Syst. Appl. Microbiol. 6:257–263.Google Scholar
  131. Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J., 1986, The analysis of natural microbial populations by ribosomal RNA sequences, Adv. Microbiol. Ecol. 9:1–55.Google Scholar
  132. Patton, C. M., Wachsmuth, I. K., Evins, G. M., Kiehlbauch, J. A., Plikaytis, B. D., Troup, N., Tompkins, L., and Lior, H., 1991, Evaluation of 10 methods to distinguish epidemic-associated Campylobacter strains, J. Clin. Microbiol. 29:680–688.PubMedGoogle Scholar
  133. Pelletier, D. A., Paster, B. J., Weisburg, W. G., Dewhirst, F. E., Dannenberg, S., and Schroeder, I., 1991, Cristispira phylogeny by 16S rRNA sequence comparison of amplified bacterial DNA from crystalline styles, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 243.Google Scholar
  134. Persing, D. H., Telford, S. R., Rys, P. N., Dodge, D. E., White, T. J., Malawista, S. E., and Spielman, A., 1990, Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks, Science 249:1420–1423.PubMedGoogle Scholar
  135. Poulsen, L. K., Kane, M. D., and Stahl, D. A., 1992, Use of an oligonucleotide hybridization probe designed from environmentally derived 16S rRNA sequences to monitor enrichment and isolation of sulfate-reducing bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 345.Google Scholar
  136. Pratt-Rippin, K., Hall, G., and Rutherford, I., 1991, Evaluation of a chemiluminescent DNA probe assay for the identification of Histoplasma capsulatum isolates, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.Google Scholar
  137. Putz, J., Meinen, F., Wyss, U., Ehlers, R., and Stackebrandt, E., 1990, Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species, Appl. Environ. Microbiol. 56:181–186.PubMedGoogle Scholar
  138. Rand, K., and Houck, H., 1991, Identification of bacterial DNA contaminating Taq enzyme, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.Google Scholar
  139. Razin, S., Gross, M., Wormser, M., Pollack, Y., and Glaser, G., 1984, Detection of mycoplasmas infecting cell cultures by DNA hybridization, In Vitro 20:404–408.PubMedGoogle Scholar
  140. Reagan, D. R., Pfaller, M. A., Hollis, R. J., and Wenzel, R. P., 1990, Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe, J. Clin. Microbiol. 28:2733–2738.PubMedGoogle Scholar
  141. Regensburger, A., Ludwig, W., and Schleifer, K. H., 1988, DNA probes with different specificities from a cloned 23S rRNA gene of Micrococcus luteus, J. Gen. Microbiol. 134:1197–1204.PubMedGoogle Scholar
  142. Rehnstam, A., Norqvist, A., Wolf-watz, H., and Hagstrom, A., 1989, Identification of Vibrio anguillarum in fish by using partial 16S rRNA-sequences and a specific 16S rRNA oligonucleotide probe, Appl. Environ. Microbiol. 55:1907–1910.PubMedGoogle Scholar
  143. Relman, D. A., Loutit, J. S., Schmidt, T. M., Falkow, S., and Tompkins, L. S., 1990, The agent of bacillary angiomatosis: An approach to the identification of uncultured pathogens, N. Engl. J. Med. 323:1573–1580.PubMedGoogle Scholar
  144. Romaniuk, P. J., and Trust, T. J., 1987, Identification of Campylobacter species by Southern hybridization of genomic DNA using an oligonucleotide probe for 16S rRNA genes, FEMS Microbiol. Lett. 43:331–335.Google Scholar
  145. Rossau, R., Vanmechelen, E., De Ley, J., and Van Heuverswijn, H., 1989, Specific Neisseria gonorrhoeae DNA-probes derived from ribosomal RNA, J. Gen. Microbiol. 135:1735–1745.PubMedGoogle Scholar
  146. Rossau, R., Duhamel, M., Jannes, G., Decourt, J. L., and van Heuverswyn, H., 1991, The development of specific rRNA-derived oligonucleotide probes for Haemophilus ducreyi, the causative agent of chancroid, J. Gen. Microbiol. 137:277–285.PubMedGoogle Scholar
  147. Rosswall, T., and Kvillner, E., 1978, Principal-components and factor analysis for the description of microbial populations, Adv. Microb. Ecol. 2:1–48.Google Scholar
  148. Rowan, R., and Powers, D. A., 1991, A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses, Science 251:1348–1351.PubMedGoogle Scholar
  149. Ruff, A. L., and Ward, D. M., 1991, 16S rRNA-based oligonucleotide probe analysis of hot spring photosynthetic procaryotes, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 194.Google Scholar
  150. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A., 1988, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239:487–491.PubMedGoogle Scholar
  151. Salama, M., Sandine, W., and Giovannoni, S., 1991, Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris, Appl. Environ. Microbiol. 57:1313–1318.PubMedGoogle Scholar
  152. Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  153. Sandin, R. L., Hall, G., and Longworth, D. L., 1991, Confirmation of infection by an exo-antigen negative Blastomyces dermatitidis by way of a chemiluminescent-labelled DNA probe, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 83.Google Scholar
  154. Santo Domingo, J. W., Kaufman, M. G., and Klug, M. J., 1991, Use of 16S rRNA gene probes to study structural changes in bacterial communities in the hindgut of the house cricket, Acheta domesticus, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 313.Google Scholar
  155. Santo Domingo, J. W., Kaufman, M. G., and Klug, M. J., 1992, Effects of dietary perturbation on the hindgut bacterial community in crickets (Acheta domesticus) Abstr. Ann. Meet. Am. Soc. Microbiol. p. 396.Google Scholar
  156. Schleifer, K. H., Ludwig, W., Kraus, J., and Festl, H., 1985, Cloned ribosomal ribonucleic acid genes from Pseudomonas aeruginosa as probes for conserved deoxyribonucleic acid sequences, Int. J. Syst. Bacteriol. 35:231–236.Google Scholar
  157. Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991a, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173:4371–4378.PubMedGoogle Scholar
  158. Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991b, Phylogenetic identification of uncultivated microorganisms in natural habitats, in: Rapid Methods and Automation in Microbiology and Immunology (A. Vaheri, R. C. Tilton, and A. Balows, eds.), Springer-Verlag, Berlin, pp. 37–46.Google Scholar
  159. Schmidt, T. M., Pace, B., and Pace, N. R., 1991c, Detection of DNA contamination in Taq polymerase, Biotechniques 11:176–177.PubMedGoogle Scholar
  160. Schwartz, J., Daniels, T., Gazumyan, A., Weissensee, P., Fish, D., and Schwartz, I., 1991, Determination of B. burgdorferi infection rates in Ixodes dammini ticks by three methods, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 80.Google Scholar
  161. Seewaldt, E., and Stackebrandt, E., 1988, Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron, Nature 295:618–620.Google Scholar
  162. Simon, L., Lalonde, M., and Bruns, T. D., 1992, Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots, Appl. Environ. Microbiol. 58:291–295.PubMedGoogle Scholar
  163. Sneath, P. H. A., 1989, Analysis and interpretation of sequence data for bacterial systematics: The view of a numerical taxonomist, Syst Appl. Microbiol. 12:15–31.Google Scholar
  164. Somerville, C. C., Knight, I. T., Straube, W. L., and Colwell, R. R., 1989, Simple, rapid method for direct isolation of nucleic acids from aquatic environments, Appl. Environ. Microbiol. 55:548–554.PubMedGoogle Scholar
  165. Speer, C. A., and White, M. W., 1991, Bovine trichomoniasis, Large Anim. Vet. 46:18–20.Google Scholar
  166. Spring, S., Amann, R., Ludwig, W., Schleifer, K., and Petersen, N., 1992, Phylogenetic diversity and identification of nonculturable magnetotactic bacteria, System. Appl. Microbiol. 15:116–122.Google Scholar
  167. Srivastava, A. K., and Schlessinger, D., 1990, Mechanism and regulation of bacterial ribosomal RNA processing, Annu. Rev. Microbiol. 44:105–129.PubMedGoogle Scholar
  168. Stackebrandt, E., and Charfreitag, O., 1990, Partial 16S rRNA primary structure of five Actinomyces species: Phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe, J. Gen. Microbiol. 136:37–43.PubMedGoogle Scholar
  169. Stackebrandt, E., Witt, D., Kemmerling, C., Kroppenstedt, R., and Liesack, W., 1991, Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes, Appl. Environ. Microbiol. 57:1468–1477.PubMedGoogle Scholar
  170. Stahl, D. A., 1986, Evolution, ecology, and diagnosis: Unity in variety, Bio/Technology 4:623–628.Google Scholar
  171. Stahl, D. A., 1988, Phylogenetically based studies of microbial ecosystem perturbation, in: Biotechnology for Crop Protection (P. A. Hedin, J. J. Menn, and R. M. Hollingworth, eds.), Am. Chem. Soc., Washington, D.C., pp. 373–390.Google Scholar
  172. Stahl, D. A., and Amann, R., 1990, Development and application of nucleic acid probes, in: Molecular Biology Methods for Bacillus (C. R. Harwood and S. M. Cutting, eds.), Wiley, New York, pp. 203–245.Google Scholar
  173. Stahl, D. A., Lane, D. J., Olsen, G. J., and Pace, N. R., 1984, Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences, Science 224:409–411.PubMedGoogle Scholar
  174. Stahl, D. A., Lane, D. J., Olsen, G. J., and Pace, N. R., 1985, Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences, Appl. Environ. Microbiol. 49:1379–1384.PubMedGoogle Scholar
  175. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of ruminai microbial ecology, Appl. Environ. Microbiol. 54:1079–1084.PubMedGoogle Scholar
  176. Stahl, D. A., Devereux, R., Amann, R. I., Flesher, B., Lin, C., and Stromley, J., 1989, Ribosomal RNA based studies of natural microbial diversity and ecology, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 669–673.Google Scholar
  177. Staley, J. T., 1980, Diversity of aquatic heterotrophic bacterial communities, in: Microbiology—1980 (D. Schlessinger, ed.), Am. Soc. Microbiol., Washington, D.C., pp. 321–322.Google Scholar
  178. Steffan, R. J., Goksoyr, J., Bej, A. K., and Atlas, R. M., 1988, Recovery of DNA from soils and sediments, Appl. Environ. Microbiol. 54:2908–2915.PubMedGoogle Scholar
  179. Toranzos, G. A., and Alvarez, A. J., 1992, Quantifying PCR templates using the most probable number polymerase chain reaction (MPN-PCR), Abstr. Ann. Meet. Am. Soc. Microbiol. 390.Google Scholar
  180. Tram, C., Simonet, M., Nicolas, M.-H., Offredo, C., Grimont, F., LeFevre, M., Ageron, E., DeBure, A., and Grimont, P. A. D., 1990, Molecular typing of nosocomial isolates of Legionella pneumophila serogroup 3, J. Clin. Microbiol. 28:242–245.PubMedGoogle Scholar
  181. Tsai, Y., and Olson, B. H., 1992, Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction, Appl. Environ. Microbiol. 58:754–757.PubMedGoogle Scholar
  182. Tsai, Y., Palmer, C. J., Sangermano, L., and Olsen, B., 1992, A rapid method to purify bacterial DNA from humic substances for polymerase chain reaction, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 389.Google Scholar
  183. Tsien, H. C., Bratina, B. J., Tsuji, K., and Hanson, R. S., 1990, Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria, Appl. Environ. Microbiol. 56:2858–2865.PubMedGoogle Scholar
  184. Tsien, H. C., Alvarez-Cohen, L., McCarty, P. L., and Hanson, R. S., 1991, Use of soluble methane monooxygenase component B gene probe for the detection of trichloroethylene degrading methanotrophs, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 285.Google Scholar
  185. Tsuji, K., Tsien, H. C., Hanson, R. S., DePalma, S. R., Scholtz, R., and LaRoche, S., 1990, 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs, J. Gen. Microbiol. 136:1–10.PubMedGoogle Scholar
  186. Unterman, B. M., Baumann, P., and McLean, D. L., 1989, Pea aphid symbiont relationships established by analysis of 16S rRNAs, J. Bacteriol. 171:2970–2974.PubMedGoogle Scholar
  187. van Niel, C. B., 1949, The “Delft School” and the rise of general microbiology, Bacteriol. Rev. 13:161–174.PubMedGoogle Scholar
  188. van Niel, C. B., 1955, Natural selection in the microbial world, J. Gen. Microbiol. 13:201–217.Google Scholar
  189. Walch, M., Hamilton, W. A., Handley, P. S., Holm, N. C., Kuenen, J. G., Revsbech, N. P., Rubio, M. A., Stahl, D. A., Wanner, O., Ward, D. M., Wilderer, P. A., and Wimpenny, J. W. T., 1989, Spatial distribution of biotic and abiotic components in the biofilm, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley, New York, pp. 165–190.Google Scholar
  190. Wang, R.-F., Cao, W.-W., and Johnson, M. G., 1991, Development of a 16S RNA-based oligomer probe specific for Listeria monocytogenes, Appl. Environ. Microbiol. 57:3666–3670.PubMedGoogle Scholar
  191. Ward, D. M., 1989, Molecular probes for analysis of microbial communities, in: Structure and Function of Biofilms (W. G. Characklis and P. A. Wilderer, eds.), Wiley, New York, pp. 145–163.Google Scholar
  192. Ward, D. M., and Winfrey, M. R., 1985, Interactions between methanogenic and sulfate-reducing bacteria in sediments, Adv. Agric. Microbiol. 3:141–179.Google Scholar
  193. Ward, D. M., Brassell, S. C., and Eglinton, G., 1985, Archaebacterial lipids in hot spring microbial mats, Nature 318:656–659.Google Scholar
  194. Ward, D. M., Tayne, T. A., Anderson, K. L., and Bateson, M. M., 1987, Community structure and interactions among community members in hot spring cyanobacterial mats, Symp. Soc. Gen. Microbiol. 41:179–210.Google Scholar
  195. Ward, D. M., Shiea, J., Zeng, Y. B., Dobson, G., Brassell, S., and Eglinton, G., 1989a, Lipid biochemical markers and the composition of microbial mats, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 439–454.Google Scholar
  196. Ward, D. M., Weiler, R., Shiea, J., Castenholz, R. W., and Cohen, Y., 1989b, Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance, in: Microbial Mats: Physiological Ecology of Benthic Microbial Communities (Y. Cohen and E. Rosenberg, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 3–15.Google Scholar
  197. Ward, D. M., Weiler, R., and Bateson, M. M., 1990a, 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 345:63–65.PubMedGoogle Scholar
  198. Ward, D. M., Weiler, R., and Bateson, M. M., 1990b, 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community, FEMS Microbiol. Rev. 75:105–116.Google Scholar
  199. Waters, A. P., and McCutchan, T. F., 1989, Rapid, sensitive diagnosis of malaria based on ribosomal RNA, Lancet (Vol. 1) 1343–1346.PubMedGoogle Scholar
  200. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandier, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Truper, H. G., 1987, Report of the ad hoc committee on reconciliation of approaches to bacterial systematics, Int. J. Syst. Bacteriol. 37:463–464.Google Scholar
  201. Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J., 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173:697–703.PubMedGoogle Scholar
  202. Weiss, J. B., Nash, T. E., Jarroll, E., van Keulen, H., and White, T. J., 1991, Specific detection of Giardia lamblia (G. duodenalis) by the polymerase chain reaction, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 48.Google Scholar
  203. Weiler, R., and Ward, D. M., 1989, Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA, Appl. Environ. Microbiol. 55:1818–1822.Google Scholar
  204. Weiler, R., Weiler, J. W., and Ward, D. M., 1991, 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA, Appl. Environ. Microbiol. 57:1146–1151.Google Scholar
  205. Weiler, R., Bateson, M. M., Heimbuch, B. K., Kopczynski, E. D., and Ward, D. M., 1992, Uncultivated cyanobacteria, Chloroflexus-like and spirochete-like inhabitants of a hot spring microbial mat. Appl. Environ. Microbiol. (submitted).Google Scholar
  206. Wesley, I. V., Wesley, R. D., Cardella, M., Dewhirst, F. E., and Paster, B. J., 1991, Oligodeoxynucleotide probes for Campylobacter fetus and Campylobacter hyointestinalis based on 16S rRNA sequences, J. Clin. Microbiol. 29:1812–1817.PubMedGoogle Scholar
  207. Wickham, G. S., Lane, D. J., Kim, S., and Pace, N. R., 1992, Intervening sequences in the 16S ribosomal RNA genes of naturally occurring hyperthermophilic archaebacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 239.Google Scholar
  208. Wilkinson, H. W., Sampson, J. S., and Plikaytis, B. B., 1986, Evaluation of a commercial gene probe for identification of Legionella cultures, J. Clin. Microbiol. 23:217–220.PubMedGoogle Scholar
  209. Williams, S. T., Goodfellow, M., and Vickers, J. C., 1984, New Microbes from old habitats? Symp. Soc. Gen. Microbiol 36(2):219–256.Google Scholar
  210. Wilson, K. H., Blitchington, R., Hindenach, B., and Greene, R. C., 1988, Species-specific oligonucleotide probes for rRNA of Clostridium difficile and related species, J. Clin. Microbiol. 26:2484–2488.PubMedGoogle Scholar
  211. Wilson, K. H., Blitchington, R., Shah, P., McDonald, G., Gilmore, R. D., and Mallavia, L. P., 1989, Probe directed at a segment of Rickettsia rickettsii rRNA amplified with polymerase chain reaction, J. Clin. Microbiol. 27:2692–2696.PubMedGoogle Scholar
  212. Wilson, K. H., Blitchington, R. B., and Greene, R. C., 1990, Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction, J. Clin. Microbiol. 28:1942–1946.PubMedGoogle Scholar
  213. Winfrey, J., Devereux, R., and Winfrey, M. R., 1991, Use of 16S rRNA-targeted probes to correlate community structure of sulfate-reducing bacteria with mercury methylation in freshwater sediments, Abstr. Annu. Meet. Am. Soc. Microbiol. p. 319.Google Scholar
  214. Winker, S., and Woese, C. R., 1991, A definition of the domains Archaea, Bacteria, and Eucarya in terms of small subunit ribosomal RNA characteristics, System. Appl. Microbiol. 14:305–310.Google Scholar
  215. Winogradsky, S., 1949, Microbiologie du sol, problemes et methodes, Barneoud Freres, France.Google Scholar
  216. Witt, D., Liesack, W., and Stackebrandt, E., 1989, Identification of streptomycetes by 16S rRNA sequences and oligonucleotide probes, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Sci. Soc. Press, Tokyo, pp. 679–684.Google Scholar
  217. Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  218. Woese, C. R., and Fox, G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA 74:5088–5090.PubMedGoogle Scholar
  219. Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985, A phylogenetic definition of the major eubacterial taxa, Syst. Appl. Microbiol. 6:143–151.PubMedGoogle Scholar
  220. Woese, C. R., Kandier, O., and Wheelis, M. L., 1990, Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA 87:4576–4579.PubMedGoogle Scholar
  221. Wolfe, R. S., 1981, Foreword, in: The Procaryotes, Vol. I (M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. v–vi.Google Scholar
  222. Wolfe, C., and Haygood, M., 1992, Reduced copy number of ribosomal RNA genes in the luminous bacterial symbiont of Kryptophanaron alfredi relative to culturable luminous bacteria, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 196.Google Scholar
  223. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J., and Woese, C. R., 1985, Mitochondrial origins, Proc. Natl. Acad. Sci. USA 82:4443–4447.PubMedGoogle Scholar
  224. Young, C., Burghoff, R., Keim, L., Lute, J., and Hinton, S., 1992, Molecular characterization of soil bacterial populations using 16S ribosomal DNA sequence analysis, Abstr. Ann. Meet. Am. Soc. Microbiol. p. 293.Google Scholar
  225. Zarda, B., Amann, R., Wallner, G., and Schleifer, K., 1991, Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides, J. Gen. Microbiol. 137:2823–2830.PubMedGoogle Scholar
  226. Zeng, Y. B., Ward, D. M., Brassell, S., and Eglinton, G., 1992a, Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats, Chem. Geol. 95:327–345.Google Scholar
  227. Zeng, Y B., Ward, D. M., Brassell, S., and Eglinton, G., 1992b, Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat, Chem. Geol. 95:347–360.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • David M. Ward
    • 1
  • Mary M. Bateson
    • 1
  • Roland Weller
    • 1
  • Alyson L. Ruff-Roberts
    • 1
  1. 1.Department of MicrobiologyMontana State UniversityBozemanUSA

Personalised recommendations