Oceanic Bacterial Production

  • Hugh W. Ducklow
  • Craig A. Carlson
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)


There has been an explosion of research on marine microbial foodweb processes in the past decade. Today it is widely accepted that about 50% of the primary production in marine and fresh water is processed by bacteria each day (Williams, 1981; Cole et al., 1988). This striking finding was stimulated, as others have noted, by the introduction of convenient methods for the estimation of microbial biomass and activities in natural waters. Hobbie et al. (1977) and Watson et al. (1977) demonstrated conclusively that bacterial populations in the sea were large. By 1980, in addition to the pioneering and prescient work by Sorokin (e.g., Sorokin, 1971, 1973), reports of bacterial production measurements had begun to emerge (Sieburth et al., 1977; Karl, 1979; Larsson and Hagstrom, 1979; Fuhrman and Azam, 1980). Brock (1971) and Sieburth (1977) wrote early reviews on the subject, and Pomeroy (1974) introduced the importance of marine microbial processes to a large audience. In this chapter we review recent research on bacterial production in the ocean. The emphasis is on the open sea, but we will also discuss other marine habitats, partly because there are still few comprehensive studies of oceanic bacterial production. There is an equally large and rapidly growing literature on bacterial production in fresh waters (Cole et al., 1988; Currie, 1990) which deserves a review of its own, as well as comparison with the marine findings (Hobbie, 1988). We will not review related work in sediments, nor for the most part, related work on bacteriovores.


Dissolve Organic Nitrogen Bacterial Production Fecal Pellet Dissolve Organic Matter Bacterial Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiraal, W., Beukema, J., and van Es, F. B., 1985, Seasonal fluctuations in the biomass and metabolic activity of bacterioplankton and phytoplankton in a well-mixed estuary: The Ems-Dollard Wadden Sea, J. Plank. Res. 76:877–890.Google Scholar
  2. Albright, L. J., and McCrae, S. K., 1987, Annual cycle of bacterial specific biovolumes in Howe Sound, a Canadian West Coast Fjord Sound, Appl. Environ. Microbiol. 53:2739–2744.PubMedGoogle Scholar
  3. Alldredge, A. L., 1976, Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments, Limnol. Oceanogr. 21:14–23.Google Scholar
  4. Alldredge, A. L., and Youngbluth, M. J., 1985, The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic, Deep-Sea Res. 32:1445–1456.Google Scholar
  5. Alldredge, A. L., Cole, J. J., and Caron, D. A., 1986, Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters, Limnol. Oceanogr. 31:68–78.Google Scholar
  6. Anderson, M. R., Rivkin, R. B., and Gustafson, D. E., 1991, The fate of bacterial production in McMurdo Sound in the austral spring, Antarct. J. U.S. (in press).Google Scholar
  7. Andersson, A., Lee, C., Azam, F., and Hagstrom, A., 1985, Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates, Mar. Ecol. Prog. Ser. 23:99–106.Google Scholar
  8. Azam, F., and Cho, B. C., 1987, Bacterial utilization of organic matter in the sea, in: Ecology of Microbial Communities (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), Cambridge University Press, Cambridge, pp. 262–281.Google Scholar
  9. Azam, F., and Fuhrman, J. A., 1984, Measurement of bacterioplankton growth in the sea and its regulation by environmental conditions, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 179–196.Google Scholar
  10. Azam, F., and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr. 22:492–501.Google Scholar
  11. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, T. F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.Google Scholar
  12. Bailiff, M. D., and Karl, D. M., 1991, Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87, Deep Sea Res. 38:1077–1095.Google Scholar
  13. Banse, K., 1974, On the role of bacterioplankton in the tropical ocean, Mar. Biol. 24:1–5.Google Scholar
  14. Banse, K., 1987, Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea, Deep-Sea Res. 34:713–723.Google Scholar
  15. Banse, K., 1990, New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea, Deep-Sea Res. 37:1177–1195.Google Scholar
  16. Barber, R. T., 1967, Dissolved organic carbon from deep waters resists microbial oxidation, Nature 220:274–275.Google Scholar
  17. Bell, R. T., 1990, An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]-thymidine, Limnol. Oceanogr. 35:910–915.Google Scholar
  18. Berger, W. H., Fischer, K., Lai, C., and Wu, G., 1987, Ocean productivity and organic carbon flux, Pt. 1 Overview and maps of primary production and export production, SIO Reference Series 87-30, Scripps Inst. Oceanogr., La Jolla.Google Scholar
  19. Biddanda, B., 1985, Microbial synthesis of macroparticulate matter, Mar. Ecol. Prog. Ser. 20:241–251.Google Scholar
  20. Biddanda, B. A., 1988, Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial metabolism, Mar. Ecol. Prog. Ser. 42:89–95.Google Scholar
  21. Biddanda, B. A., and Pomeroy, L. R., 1988, Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession, Mar. Ecol. Prog. Ser. 42:79–88.Google Scholar
  22. Billen, G., 1984, Heterotrophic utilization and regeneration of nitrogen, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 313–356.Google Scholar
  23. Billen, G., and Fontigny, A., 1987, Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. II. Bacterioplankton dynamics, Mar. Ecol. Prog. Ser. 37:249–257.Google Scholar
  24. Billen, G., Servais, P., and Becquevort, S., 1990, Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: Bottom-up or top-down control? Hydrobiologia 207:37–42.Google Scholar
  25. Billet, D. S. M., Lampitt, R. S., Rice, A. L., and Mantoura, R. F. C., 1983, Seasonal sedimentation of phytoplankton to the deep-sea benthos, Nature 302:520–522.Google Scholar
  26. Bird, D. F., and Kalff, J., 1984, Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters, Can. J. Fish. Aquat. Sci. 41:1015–1023.Google Scholar
  27. Bishop, J. K. B., Collier, R. W., Ketten, D. R., and Edmond, J. M., 1980, The chemistry, biology and vertical flux of particulate matter from the upper 1500 m of the Panama Basin, Deep-Sea Res. 27:615–640.Google Scholar
  28. Bjornsen, P. K., 1986, Bacterioplankton growth yield in continuous seawater cultures, Mar. Ecol. Prog. Ser. 30:191–196.Google Scholar
  29. Bjornsen, P. K., 1988, Phytoplankton exudation of organic matter: Why do healthy cells do it? Limnol. Oceanogr. 33:151–154.Google Scholar
  30. Bjornsen, P. K., Riemann, B., Horsted, S. J., Nielsen, T. G., and Pock-Stein, J., 1988, Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures, Limnol. Oceanogr. 33:409–420.Google Scholar
  31. Borsheim, K. Y., 1990, Bacterial biomass and production rates in the Gulf Stream front regions, Deep-Sea Res. 37:1297–1309.Google Scholar
  32. Bratbak, G., 1985, Bacterial biovolume and biomass estimates, Appl. Environ. Microbiol. 49:1488–1493.PubMedGoogle Scholar
  33. Bratbak, G., and Dundas, I., 1984, Bacterial dry matter content and biomass estimations, Appl. Environ. Microbiol. 48:755–757.PubMedGoogle Scholar
  34. Bratbak, G., and Thingstad, T. F., 1985, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism, Mar. Ecol. Prog. Ser. 25:23–30.Google Scholar
  35. Bratbak, G., Heldal, M., Norland, S., and Thingstad, T. F., 1990, Viruses as partners in spring bloom microbial trophodynamics, Appl. Environ. Microbiol. 56:1400–1405.PubMedGoogle Scholar
  36. Brock, T. D., 1971, Microbial growth rates in nature, Bacteriol. Rev. 35:39–58.PubMedGoogle Scholar
  37. Bronk, D., and Glibert, P. M., 1991, A 15N tracer method for the measurement of dissolved organic nitrogen release by photoplankton, Mar. Ecol. Prog. Ser. 77:171–182.Google Scholar
  38. Burney, C. M., Davis, P. G., Johnson, K. M., and Sieburth, J. M., 1982, Diel relationship of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea, Mar. Biol. 67:311–322.Google Scholar
  39. Button, D. K., 1985, The kinetics of nutrient-limited transport and microbial growth, Microbiol. Rev. 49:270–297.PubMedGoogle Scholar
  40. Caron, D. A., Davis, P. G., Madin, L. P., and Sieburth, J. M., 1982, Heterotrophic bacteria and bacteriovorous protozoa in oceanic macroaggregates, Science 218:795–797.PubMedGoogle Scholar
  41. Caron, D. A., Goldman, J. C., Andersen, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling, Mar. Ecol. Prog. Ser. 24:243–254.Google Scholar
  42. Caron, D. A., Davis, P. G., Madin, L. P., and Sieburth, J. M., 1986, Enrichment of microbial populations in macroaggregates marine snow from surface waters of the North Atlantic, J. Mar. Res. 44:543–565.Google Scholar
  43. Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R., 1985, Cascading trophic interactions and lake productivity, BioScience 35:634–639.Google Scholar
  44. Chin-Leo, G., and Kirchman, D. L., 1988, Estimating bacterial production in natural waters from the simultaneous incorporation of thymidine and leucine, Appl. Environ. Microbiol. 54:1934–1939.PubMedGoogle Scholar
  45. Cho, B. C., and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature 332:441–443.Google Scholar
  46. Cho, B. C., and Azam, F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser. 63:253–259.Google Scholar
  47. Chrzanowski, T. H., 1988, Consequences of accounting for isotopic dilution in thymidine incorporation assays, Appl. Environ. Microbiol. 54:1868–1870.PubMedGoogle Scholar
  48. Chrzanowski, T. H., and Zingmark, R. F., 1989, Bacterial abundance, biomass, and secondary production along a forest-to-ocean landscape gradient, J. Exp. Mar. Biol. Ecol. 125:253–266.Google Scholar
  49. Coffin, R. B., 1989, Bacterial uptake of dissolved free and combined amino acids in estuarine waters, Limnol. Oceanogr. 34:531–542.Google Scholar
  50. Coffin, R. B., and Sharp, J. H., 1987, Microbial trophodynamics in the Delaware Estuary, Mar. Ecol. Prog. Ser. 41:253–266.Google Scholar
  51. Coffin, R. B., Fry, B., Peterson, B. J., and Wright, R. T., 1989, Carbon isotopic composition of estuarine bacteria, Limnol. Oceanogr. 34:1305–1310.Google Scholar
  52. Coffin, R. B., Velinsky, D. J., Devereux, R., Price, W. A., and Cifuentes, L. A., 1990, Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria, Appl. Environ. Microbiol. 56:2012–2020.PubMedGoogle Scholar
  53. Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser. 43:1–10.Google Scholar
  54. Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol. Oceanogr. 25:873–882.Google Scholar
  55. Corner, E. D. S., and Newell, B. S., 1967, On the nutrition and metabolism of zooplankton. IV. The forms of nitrogen excreted by Calanus, J. Mar. Biol. Assoc. U.K. 47:113–120.Google Scholar
  56. Cota, G. F., Kottmeier, S. T., Robinson, D. H., Smith, W. O., and Sullivan, C. W., 1990, Bacterioplankton in the marginal ice zone of the Weddell Sea: Biomass, production and metabolic activities during austral autumn, Deep-Sea Res. 37:1145–1167.Google Scholar
  57. Currie, D., 1990, Large-scale variability and interactions among phytoplankton, bacterioplankton and phosphorus, Limnol. Oceanogr. 35:1437–1455.Google Scholar
  58. Davis, P. G., Caron, D. A., Johnson, P. W., and Sieburth, J. M., 1985, Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: Geographic, vertical, seasonal and diel distributions, Mar. Ecol. Prog. Ser. 21:15–26.Google Scholar
  59. Davoll, P. J., and Youngbluth, M. J., 1990. Heterotrophic activity on appendicularian Tunicata: Appendicularia houses in mesopelagic regions and their potential contribution to particle flux, Deep-Sea Res. 37:285–294.Google Scholar
  60. Decho, A. W., 1990, Microbial exopolymer secretions in ocean environments: Their roles in food webs and marine processes, Oceanogr. Mar. Biol. Annu. Rev. 28:73–154.Google Scholar
  61. Delille, D., Bouvy, M., and Cahet, G., 1988, Short-term variations of bacterioplankton in Antarctic zone: Terre Adelie area, Microb. Ecol. 15:293–309.Google Scholar
  62. Derenbach, J. B., and Williams, P. J. L., 1974, Autotrophic and bacterial production: Fractionation of plankton populations by differential filtration of samples from the English Channel, Mar. Biol. 25:263–269.Google Scholar
  63. Douglas, D. J., Novitsky, J. A., and Fournier, R. O., 1987, Microautoradiography-based enumeration of bacteria with estimates of thymidine-specific growth and production rates, Mar. Ecol. Prog. Ser. 36:91–99.Google Scholar
  64. Druffel, E. R. M., and Williams, P. M., 1990, Identification of a deep marine source of particulate organic carbon using bomb 14C, Nature 347:172–174.Google Scholar
  65. Ducklow, H. W., 1982, Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during spring tidal destratification in the York River, Virginia Estuary, Limnol. Oceanogr. 27:651–659.Google Scholar
  66. Ducklow, H. W., 1983, Production and fate of bacteria in the oceans, BioScience 33:494–499.Google Scholar
  67. Ducklow, H. W., 1984, Geographical ecology of marine bacteria: Physical and biological variability at the mesoscale, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), Amer. Soc. Microbiol., Washington, D.C., pp. 22–30.Google Scholar
  68. Ducklow, H. W., 1986, Bacterial biomass in warm core Gulf Stream ring 82B: Mesoscale distributions, temporal changes, and production, Deep-Sea Res. 33:1789–1812.Google Scholar
  69. Ducklow, H. W., 1990, The biomass, production and fate of bacteria in coral reefs, in: Coral Reefs (Z. Dubinsky, ed.), Elsevier, Amsterdam, pp. 265–289.Google Scholar
  70. Ducklow, H. W., 1991, The passage of carbon through microbial foodwebs: Results from flow network models, Mar. Microb. Foodwebs 5:1–16.Google Scholar
  71. Ducklow, H. W., 1992, Bacterioplankton distributions and production in the northwestern Indian Ocean and Gulf of Oman, September, 1986, Deep-Sea Res. (in press).Google Scholar
  72. Ducklow, H. W., and Hill, S. M., 1985a, The growth of heterotrophic bacteria in the surface waters of warm core rings, Limnol. Oceanogr. 30:239–259.Google Scholar
  73. Ducklow, H. W., and Hill, S. M., 1985b, Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings, Limnol. Oceanogr. 30:260–272.Google Scholar
  74. Ducklow, H. W., and Kirchman, D. L., 1983, Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River Plume, J. Plank. Res. 5:333–355.Google Scholar
  75. Ducklow, H. W., and Shiah, F.-K., 1992, Estuarine bacterial production, in: Aquatic Microbiology: An Ecological Approach (T. Ford, ed.), Blackwell, Cambridge, Massachussets (in press).Google Scholar
  76. Ducklow, H. W., Hill, S. M., and Gardner, W. D., 1985, Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps, Cont. Shelf. Res. 44:445–464.Google Scholar
  77. Ducklow, H. W., Purdie, D. A., Williams, P. J. L., and Davies, J. M., 1986, Bacterioplankton: A sink for carbon in a coastal plankton community, Science 232:865–867.PubMedGoogle Scholar
  78. Ducklow, H. W, Peele, E. R., Hill, S. M., and Quinby, H. L., 1988, Fluxes of carbon, nitrogen and oxygen through estilarme bacterioplankton, in: CRC Symposium Perspectives on Research in Chesapeake Bay (M. P. Lynch and E. C. Krome, eds.), Chesapeake Research Consortium, Baltimore, pp. 511–523.Google Scholar
  79. Ducklow, H. W., Fasham, M. J. R., and Vezina, A. F., 1989, Flow analysis of open sea plankton networks, in: Network Analysis in Marine Ecology (F. Wulff, J. G. Field, and K. H. Mann, eds.), Springer-Verlag, Berlin, pp. 159–205.Google Scholar
  80. Ducklow, H. W., Kirchman, D. L., Quinby, H. L., Carlson, C. A., and Dam, H. G., 1992, Stocks and dynamics of bacterioplankton carbon during the spring phytoplankton bloom in the North Atlantic Ocean, Deep-Sea Res. (in press).Google Scholar
  81. Duursma, E. K., 1961, Dissolved organic carbon, nitrogen and phosphorus in the sea, Neth. J. Sea Res. 1:1–147.Google Scholar
  82. Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific ocean, Mar. Biol. 39:111–120.Google Scholar
  83. Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Selber, K., 1981, Origins of dissolved organic matter in Southern California coastal waters: Experiments on the role of zooplankton, Mar. Ecol. Prog. Ser. 6:149–159.Google Scholar
  84. Fasham, M. J. R., 1985, Flow analysis of materials in the marine euphotic zone, Can. Bull. Fish. Aquat. Sci. 213(Suppl.):139–162.Google Scholar
  85. Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res. 48:591–639.Google Scholar
  86. Fenchel, T., 1984, Suspended marine bacteria as a food source, in: Flow of Energy and Materials in Marine Ecosystems (M. J. Fasham, ed.), Plenum Press, New York, pp. 301–316.Google Scholar
  87. Fenchel, T., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.Google Scholar
  88. Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling, Academic Press, New York.Google Scholar
  89. Ferguson, R. L., and Palumbo, A. V., 1979, Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions, Limnol. Oceanogr. 24:697–705.Google Scholar
  90. Ferguson, R. L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr. 21:141–145.Google Scholar
  91. Ferguson, R. L., and Sunda, W. G., 1984, Utilization of amino acids by planktonic marine bacteria: Importance of clean technique and low substrate additions, Limnol. Oceanogr. 29:258–274.Google Scholar
  92. Fischer, B., 1894, Die bakterien des meeres nach den Untersuchungen der Plankton-Expedition unter gleikzeitiger Berucksichtigung einiger alterer und neverer Untersuchungen, Ergeb. Plankton-Expedition Humboldt-Stiftung 4:1–83.Google Scholar
  93. Floodgate, G. D., Fogg, G. D., Jones, D. A., Lochte, K., and Turley, C. M., 1981, Microbiological and zooplankton activity at a front in Liverpool Bay, Nature 290:133–136.Google Scholar
  94. Fuhrman, J. A., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser. 37:45–52.Google Scholar
  95. Fuhrman, J. A., 1990, Dissolved free amino acid cycling in an estuarine outflow plume, Mar. Ecol. Prog. Ser. 66:197–203.Google Scholar
  96. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl. Environ. Microbiol. 39:1085–1095.PubMedGoogle Scholar
  97. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol. 66:109–120.Google Scholar
  98. Fuhrman, J. A., Ammerman, J. W., and Azam, F., 1980, Bacterioplankton in the coastal euphotic zone: Distribution, activity, and possible relationships with phytoplankton, Mar. Biol. 60:201–207.Google Scholar
  99. Fuhrman, J. A., Eppley, R. W., Hagstrom, A., and Azam, F., 1985, Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight, Mar. Ecol. Prog. Ser. 27:9–20.Google Scholar
  100. Fuhrman, J. A., Horrigan, S. G., and Capone, D. G., 1988, Use of 13N as tracer for bacterial and algal uptake of ammonium from sea water, Mar. Ecol. Prog. Ser. 45:271–278.Google Scholar
  101. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso Sea and its ecological implications, Mar. Ecol. Prog. Ser. 57:207–217.Google Scholar
  102. Fukami, K., Simidu, U., and Taga, N., 1985, Microbial decomposition of phyto-and zooplankton in seawater. II. Changes in organic matter, Mar. Ecol. Prog. Ser. 21:1–5.Google Scholar
  103. Gifford, D. J., 1991, The protozoan-metazoan trophic link in pelagic ecosystems, J. Protozool. 38:81–87.Google Scholar
  104. Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr. 32:1239–1252.Google Scholar
  105. Gowing, M. M., and Silver, M. W., 1983, Origins and microenvironments of bacteria mediating fecal pellet decomposition in the sea, Mar. Biol. 73:7–16.Google Scholar
  106. Griffith, P. C., Douglas, D. J., and Wainright, S. C., 1990, Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore, and continental shelf waters of Georgia, Mar. Ecol. Prog. Ser. 59:263–270.Google Scholar
  107. Gustafson, D. E., Anderson, M. R., and Rivkin, R. B., 1991, Bacterioplankton abundance and productivity at the ice edge zone of McMurdo Sound, Antarctica, Antarct. J. U.S. (in press).Google Scholar
  108. Hagstrom, A., Larsson, U., Horstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol. 37:805–812.PubMedGoogle Scholar
  109. Hagstrom, A., Ammerman, J. W., Henrichs, S., and Azam, F., 1984, Bacterioplankton growth in seawater: II. Organic matter utilization during steady state growth in seawater culture, Mar. Ecol. Prog. Ser. 18:41–48.Google Scholar
  110. Hagstrom, A., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F., 1988, Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol. Prog. Ser. 49:171–178.Google Scholar
  111. Hairston, N. G., Smith, F. E., and Slobodkin, L. B., 1960, Community structure, population control and competition, Am. Nat. 94:421–425.Google Scholar
  112. Hanson, R. B., and Lowery, H. K., 1983, Nucleic acid synthesis in oceanic microplankton from the Drake Passage, Antarctica: Evaluation of steady-state growth, Mar. Biol. 73:79–89.Google Scholar
  113. Hanson, R. B., Alvarez-Ossorio, M. T., Cal, R., Campos, M. J., Roman, M., Santiago, G., Varela, M., and Yoder, J. A., 1986a, Plankton response following a spring upwelling event in the Ria de Arosa, Spain, Mar. Ecol. Prog. Ser. 32:101–113.Google Scholar
  114. Hanson, R. B., Pomeroy, L. R., and Murray, R. H., 1986b, Microbial growth rates in a cold-core Gulf Stream eddy of the northwestern Sargasso Sea, Deep-Sea Res. 33:427–446.Google Scholar
  115. Hanson, R. B., Pomeroy, L. R., Blanton, J. O., Biddanda, B. A., Wainwright, S., Bishop, S., Yoder, J. A., and Atkinson, L. P., 1988, Climatological and hydrographic influences on nearshore food webs off the southern United States: Bacterioplankton dynamics, Cont. Shelf Res. 8:1321–1344.Google Scholar
  116. Hermansson, M., and Marshall, K. C., 1985, Utilization of surface localized substrate by non-adhesive marine bacteria, Microb. Ecol. 11:91–105.Google Scholar
  117. Herndl, G., 1988, Ecology of amorphous aggregates marine snow in the northern Adriatic Sea. II. Microbial density and activity in marine snow and its implication to overall pelagic processes, Mar. Ecol. Prog. Ser. 48:265–275.Google Scholar
  118. Hobbie, J. E., 1988, A comparison of the ecology of planktonic bacteria in fresh and salt water, Limnol. Oceanogr. 33:750–764.Google Scholar
  119. Hobbie, J. E., and Cole, J. J., 1984, Response of a detrital food web to eutrophication, Bull. Mar. Res. 35:357–363.Google Scholar
  120. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33:1225–1228.PubMedGoogle Scholar
  121. Hollibaugh, J. T., 1988, Limitation of the [3H]-thymidine method for estimating bacterial productivity due to thymidine metabolism, Mar. Ecol. Prog. Ser. 43:19–30.Google Scholar
  122. Hollibaugh, J. T., and Azam, F., 1983, Microbial degradation of dissolved proteins in seawater, Limnol. Oceanogr. 28:1104–1116.Google Scholar
  123. Holligan, P. M., Harris, R. P., Newell, R. C., Harbour, D. S., Head, R. N., Linley, E. A. S., Lucus, M. I., Tranter, P. R. G., and Weekly, C. M., 1984, Vertical distribution and partitioning of organic carbon in mixed, frontal, and stratified waters of the English Channel, Mar. Ecol. Prog. Ser. 14:111–127.Google Scholar
  124. Honjo, S., and Roman, M., 1978, Marine copepod fecal pellets: Production, preservation and sedimentation, J. Mar. Res. 36:45–57.Google Scholar
  125. Hoppe, H.-G., 1983, Significance of exoenzymatic activities in the ecology of brackish-water: Measurements by means of methyl-umbelliferyl substrates, Mar. Ecol. Prog. Ser. 11:299–308.Google Scholar
  126. Hoppe, H.-G., Kim, S. J., and Gocke, K., 1988, Microbial decomposition in aquatic environments: Combined process of extracellular enzyme activity and substrate uptake, Appl. Environ. Microbiol. 54:784–790.PubMedGoogle Scholar
  127. Iriberri, J., Unanue, M., Ayo, B., Barcina, I., and Egea, L., 1990, Bacterial production and growth rate estimation from [3H]-thymidine incorporation for attached and free-living bacteria in aquatic systems, Appl. Environ. Microbiol. 56:483–487.PubMedGoogle Scholar
  128. Iturriaga, R., 1979, Bacterial activity related to sedimenting particulate matter, Mar. Biol. 55:157–169.Google Scholar
  129. Jacobsen, T. R., and Azam, F., 1984, Role of bacteria in copepod fecal pellet decomposition: Colonization, growth rates and mineralization, Bull. Mar. Sci. 35:495–502.Google Scholar
  130. Jacobsen, T. R., Pomeroy, L. R., and Blanton, J. O., 1983, Autotrophic and heterotrophic abundance and activity associated with a nearshore front off the Georgia coast, USA, Estuarine Coastal Shelf Sci. 17:509–521.Google Scholar
  131. Jeffrey, W. H., and Paul, J. H., 1988, Underestimation of DNA synthesis by 3H-thymidine incorporation in marine bacteria, Appl. Environ. Microbiol. 54:3165–3168.PubMedGoogle Scholar
  132. Jensen, L. M., 1983, Phytoplankton release of extracellular organic carbon, molecular weight composition, and bacterial assimilation, Mar. Ecol. Prog. Ser. 11:39–48.Google Scholar
  133. Joint, I. R., and Morris, R. J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanogr. Mar. Biol. Annu. Rev. 20:65–118.Google Scholar
  134. Joint, I. R., and Pomroy, A. J., 1983, Production of picoplankton and small nanoplankton in the Celtic Sea, Mar. Biol. 77:19–27.Google Scholar
  135. Joint, I. R., and Pomroy, A. J., 1987, Activity of heterotrophic bacteria in the euphotic zone of the Celtic Sea, Mar. Ecol. Prog. Ser. 41:1155–1165.Google Scholar
  136. Jonas, R. B., and Tuttle, J. H., 1990, Bacterioplankton and organic carbon dynamics in the lower mesohaline Chesapeake Bay, Appl. Environ. Microbiol. 56:747–757.PubMedGoogle Scholar
  137. Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved organic carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res. 36:483–495.Google Scholar
  138. Karl, D. M., 1979, Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis, Appl. Environ. Microbiol. 38:850–860.PubMedGoogle Scholar
  139. Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44:739–796.PubMedGoogle Scholar
  140. Karl, D. M., 1982, Microbial transformations of organic matter at oceanic interfaces: A review and prospectus, Eos 63:138–140.Google Scholar
  141. Karl, D. M., 1986, Determination of in situ microbial biomass, viability, metabolism, and growth, in: Bacteria in Nature Volume 2 (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 85–176.Google Scholar
  142. Karl, D. M., and Winn, C. D., 1984, Adenine metabolism and nucleic acid synthesis: Applications to microbiological oceanography, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 197–216.Google Scholar
  143. Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of organic matter in the ocean: A particle decomposition paradox, Nature 332:438–441.Google Scholar
  144. Keil, R. G., and Kirchman, D. L., 1991, Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton, Mar. Ecol. Prog. Ser. 73:1–10.Google Scholar
  145. King, G. M., and Berman, T., 1984, Potential effects of isotopic dilution on apparent respiration in C-14 heterotrophy experiments, Mar. Ecol. Prog. Ser. 19:175–180.Google Scholar
  146. Kirchman, D. L., 1990, Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific, Mar. Ecol. Prog. Ser. 62:47–54.Google Scholar
  147. Kirchman, D. L., and Hoch, M. P., 1988, Bacterial production in the Delaware Bay estuary estimated from thymidine and leucine incorporation rates, Mar. Ecol. Prog. Ser. 45:169–178.Google Scholar
  148. Kirchman, D. L., Ducklow, H. W., and Mitchell, R., 1982, Estimates of bacterial growth from changes in uptake rates and biomass, Appl. Environ. Microbiol. 44:1296–1307.PubMedGoogle Scholar
  149. Kirchman, D. L., Peterson, B., and Juers, D., 1984, Bacterial growth and tidal variation in bacterial abundance in the Great Sippewissett Salt Marsh, Mar. Ecol. Prog. Ser. 19:247–259.Google Scholar
  150. Kirchman, D. L., K’nees, E., and Hodson, R., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural waters, Appl. Environ. Microbiol. 49:599–607.PubMedGoogle Scholar
  151. Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1989a, The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep-Sea Res. 36:1763–1776.Google Scholar
  152. Kirchman, D. L., Soto, Y., Wambeck, F. v., and Bianchi, M., 1989b, Bacterial production in the Rhone River plume: Effect of mixing on relationships among microbial assemblages, Mar. Ecol. Prog. Ser. 53:267–275.Google Scholar
  153. Kirchman, D. L., Keil, R. G., Simon, M., and Welschmeyer, N. A., 1992, Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific: SUPER 1987 and 1988, Deep Sea Res. 39 (in press).Google Scholar
  154. Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, H. W., 1991, Bacterial oxidation of dissolved organic carbon in the north Atlantic Ocean during the spring bloom, Nature 352:612–614.Google Scholar
  155. Koike, I., Hara, S., Terauchi, K., and Kogure, K., 1990, Role of sub-micrometre particles in the ocean, Nature 345:242–244.Google Scholar
  156. Koop, K., Newell, R. C., and Lucas, M. I., 1982, Biodegradation and carbon flow based on kelp Ecklonia maxima debris in a sandy beach microcosm, Mar. Ecol. Prog. Ser. 7:315–326.Google Scholar
  157. Kuosa, H., and Kivi, K., 1989, Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea, Mar. Ecol. Prog. Ser. 53:93–100.Google Scholar
  158. Kuuppo-Leinikki, P., 1990, Protozoan grazing on planktonic bacteria and its impact on bacterial population, Mar. Ecol. Prog. Ser. 63:227–238.Google Scholar
  159. Laanbroek, H. J., and Verplanke, J. C., 1986, Tidal variations in bacterial biomass, productivity and oxygen uptake rates in a shallow channel in the Oosterschelde basin, The Netherlands, Mar. Ecol. Prog. Ser. 29:1–5.Google Scholar
  160. Laanbroek, H. J., Verplanke, J. C., De Visscher, P. R. M., and De Vuyt, R., 1985, Distribution of phyto-and bacterioplankton growth and biomass parameters dissolved inorganic nutrients and free amino acids during a spring bloom in the Oosterschelde basin, The Netherlands, Mar. Ecol. Prog. Ser. 25:1–11.Google Scholar
  161. Lal, D., 1977, The oceanic microcosm of particles, Science 198:997–1009.PubMedGoogle Scholar
  162. Lampert, W., 1978, Release of dissolved organic carbon by grazing zooplankton, Limnol. Oceanogr. 25:982–990.Google Scholar
  163. Lampitt, R. S., 1985, Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res. 32:885–897.Google Scholar
  164. Lampitt, R. S., Noji, T., and von Bodungen, B., 1990. What happens to zooplankton fecal pellets? Implications for material flux, Mar. Biol. 104:15–23.Google Scholar
  165. Lancelot, C., 1979, Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics, Mar. Ecol. Prog. Ser. 1:179–186.Google Scholar
  166. Lancelot, C., and Billen, G., 1984, Activity of heterotrophic bacteria and its coupling to primary production during spring phytoplankton bloom in the southern bight of the North Sea, Limnol. Oceanogr. 29:721–730.Google Scholar
  167. Lancelot, C., and Billen, G., 1985, Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, Adv. Aquatic Microbiol. 3:263–321.Google Scholar
  168. Lancelot, C., and Mathot, S., 1987, Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters, Mar. Ecol. Prog. Ser. 37:239–248.Google Scholar
  169. Larsson, U., and Hagstrom, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol. 52:199–206.Google Scholar
  170. Larsson, U., and Hagstrom, A., 1982, Fractionated phytoplankton production, exudate release and bacterial production in a Baltic eutrophication gradient, Mar. Biol. 67:57–70.Google Scholar
  171. Laws, E. A., Harrison, W. G., and DiTullio, G. R., 1985, A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis, Deep-Sea Res. 32:85–95.Google Scholar
  172. Laycock, R. A., 1974, The detrital foodchain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds, Mar. Biol. 25:223–231.Google Scholar
  173. Lee, C., and Wakeham, S. G., 1988, Organic matter in seawater: Biogeochemical processes. in: Chemical Oceanography, Vol. 9 (J. P. Riley and R. Chester, eds.), Academic Press, New York, pp. 1–44.Google Scholar
  174. Lee, S., and Fuhrman, J. A., 1987, Relationships between biovolume and biomass of naturally-derived marine bacterioplankton, Appl. Environ. Microbiol. 52:1298–1303.Google Scholar
  175. Li, W. K. W., 1982, Estimating bacterial productivity by inorganic radiocarbon uptake: Importance of establishing time courses of uptake, Mar. Ecol. Prog. Ser. 8:167–172.Google Scholar
  176. Li, W. K. W., and Dickie, P. M., 1985, Metabolic inhibition of size-fractionated marine plankton radiolabelled with amino acids, glucose, bicarbonate and phosphate in the light and dark, Microb. Ecol. 11:11–24.Google Scholar
  177. Li, W. K. W., and Dickie, P. M., 1991, Light and dark 14C uptake in dimly-lit oligotrophic waters: Relation to bacterial activity, J. Plank. Res. 13(Suppl.):29–44.Google Scholar
  178. Lignell, R., 1990, Excretion of organic carbon by phytoplankton: Its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea, Mar. Ecol. Prog. Ser. 68:85–99.Google Scholar
  179. Linley, E. A. S., and Koop, K., 1986, Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef, Mar. Biol. 92:457–464.Google Scholar
  180. Linley, E. A. S., and Newell, R. C., 1984, Estimates of bacterial growth yields based on plant detritus, Bull. Mar. Sci. 35:409–425.Google Scholar
  181. Linley, E. A. S., Newell, R. C., and Lucas, M. I., 1983, Quantitative relationships between phytoplankton, bacteria and heterotrophic microflagellates in shelf waters, Mar. Ecol. Prog. Ser. 12:77–89.Google Scholar
  182. Lochte, K., and Pfannkuche, O., 1987, Cyclonic cold-core eddy in the northeastern Atlantic. II. Nutrients, phytoplankton and bacterioplankton, Mar. Ecol. Prog. Ser. 39:153–164.Google Scholar
  183. Lochte, K., and Turley, C. M., 1985, Heterotrophic activity and carbon flow via bacteria in waters associated with a tidal mixing front, Proc. 19th Eur. Mar. Biol. Symp. pp. 73–85.Google Scholar
  184. Lochte, K., and Turley, C. M., 1988, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature 333:67–69.Google Scholar
  185. Longhurst, A. R., and Harrison, W. G., 1988, Vertical nitrogen flux from the oceanic euphotic zone by diel migrant zooplankton and nekton, Deep-Sea Res. 35:881–890.Google Scholar
  186. Longhurst, A. R., and Harrison, W. G., 1989, The biological pump: Profiles of plankton production and consumption in the upper ocean, Prog. Oceanogr. 22:47–123.Google Scholar
  187. Lucas, M. I., Newell, R. C., and Velimirov, B., 1981, Heterotrophic utilization of mucilage released during fragmentation of kelp Ecklonia maxima and Laminaria pallida. II. Differential utilization of dissolved organic components from kelp mucilage, Mar. Ecol. Prog. Ser. 4:43–55.Google Scholar
  188. Lucas, M. I., Painting, S. J., and Muir, D. G., 1986, Estimates of carbon flow through bacterioplankton in the S. Benguela upwelling region based on 3H-thymidine incorporation and predator-free incubations, in: Deuxième Colloque International de Bactériologie marine, Brest, CNRS, pp. 375–383.Google Scholar
  189. McManus, G. B., and Fuhrman, J. A., 1988, Clearance of bacteria-sized particles by natural populations of nanoplankton in the Chesapeake Bay outflow plume, Mar. Ecol. Prog. Ser. 42:199–206.Google Scholar
  190. McManus, G. B., and Fuhrman, J. A., 1990, Mesoscale and seasonal variability of heterotrophic nanoflagellate abundance in an estuarine outflow plume, Mar. Ecol. Prog. Ser. 61:207–213.Google Scholar
  191. McManus, G. B., and Peterson, W. T., 1988, Bacterioplankton production in the nearshore zone during upwelling off central Chile, Mar. Ecol. Prog. Ser. 43:11–17.Google Scholar
  192. McQueen, D. J., Post, J. R., and Mills, E. L., 1986, Trophic relationships in freshwater pelagic ecosystems, Can. J. Fish. Aquat. Sci. 43:1571–1581.Google Scholar
  193. Malone, T. C., and Chervin, M. B., 1979, The production and fate of phytoplankton size fractions in the plume of the Hudson River, New York Bight, Limnol. Oceanogr. 24:683–696.Google Scholar
  194. Malone, T. C., and Ducklow, H. W., 1990, Microbial biomass in the coastal plume of Chesapeake Bay: Phytoplankton-bacterioplankton relationships, Limnol. Oceanogr. 35:296–312.Google Scholar
  195. Malone, T. C., Kemp, W. M., Ducklow, H. W., Boynton, W. R., Tuttle, J. H., and Jonas, R. B., 1986, Lateral variation in the production and fate of phytoplankton in a partially stratified estuary, Mar. Ecol. Prog. Ser. 32:149–160.Google Scholar
  196. Marra, J., Landriau, G., and Ducklow, H. W., 1981, Tracer kinetics and plankton rate processes in oligotrophic oceans, Mar. Biol. Lett. 2:215–223.Google Scholar
  197. Marshall, K. C., 1969, Orientation of clay particles sorbed on bacteria possessing different ionogenic surfaces, Biochim. Biophys. Acta 193:472–474.PubMedGoogle Scholar
  198. Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W., 1987, VERTEX: Carbon cycling in the northeast Pacific, Deep-Sea Res. 34:267–285.Google Scholar
  199. Meyer-Reil, L.-A., 1977, Bacterial growth and biomass production, in: Microbial Ecology of a Brackish Water Environment (G. Rheinheimer, ed.), Springer-Verlag, Berlin, pp. 223–235.Google Scholar
  200. Moore, B., III, and Bolin, B., 1986, The oceans, carbon dioxide and global change, Oceanus 29(4):9–15.Google Scholar
  201. Mopper, K., and Degens, E. T., 1979, Organic carbon in the ocean: Nature and cycling, in: The Global Carbon Cycle (B. Bolin, E. T. Degens, S. Kempe, and P. Ketner, eds.), Wiley, New York, pp. 293–316.Google Scholar
  202. Moriarty, D. J. W., 1984, Measurements of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 217–232.Google Scholar
  203. Moriarty, D. J. W., 1985, Measurement of bacterial growth rates in aquatic systems using rates of nucleic acid synthesis, Adv. Microb. Ecol. 9:245–292.Google Scholar
  204. Moriarty, D. J. W., Pollard, P. C., and Hunt, W. G., 1985, Temporal and spatial variation in bacterial production in the water column over a coral reef, Mar. Biol. 85:285–292.Google Scholar
  205. Moriarty, D. J. W., Roberts, D. G., and Pollard, P. C., 1990, Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpenteria, Australia, Mar. Ecol. Prog. Ser. 61:145–157.Google Scholar
  206. Murdoch, W. W., 1966, Community structure, population control and competition—A critique, Am. Nat. 100:219–226.Google Scholar
  207. Nagasawa, S., and Nemoto, T., 1988, Presence of bacteria in guts of marine crustaceans and on their fecal pellets, J. Plank. Res. 10:559–564.Google Scholar
  208. Nagata, T., 1986, Carbon and nitrogen content of natural planktonic bacteria, Appl. Environ. Microbiol. 52:28–32.PubMedGoogle Scholar
  209. Nagata, T., and Kirchman, D. L., 1992, Release of dissolved organic matter by heterotrophic protozoa: Implications for microbial foodwebs, Arch. Hydrobiol. 35:99–109.Google Scholar
  210. Nagata, T., and Watanabe, Y., 1990, Carbon-and nitrogen-to-volume ratios of bacterioplankton grown under different nutritional conditions, Appl. Environ. Microbiol. 56:1303–1309.PubMedGoogle Scholar
  211. Nelson, D. M., McCarthy, J. J., and Ducklow, H. W., 1989, Enhanced near-surface nutrient availability and new production resulting from the frictional decay of a Gulf Stream warm-core ring, Deep-Sea Res. 36:705–714.Google Scholar
  212. Newell, R. C., 1984, The biological role of detritus in the marine environment, in: Flows of Energy and Materials in Marine Ecosystems (M. J. Fasham, ed.), Plenum Press, New York, pp. 317–344.Google Scholar
  213. Newell, R. C., and Field, J. G., 1983, Relative flux of carbon and nitrogen in a kelp-dominated system, Mar. Biol. Lett. 4:249–257.Google Scholar
  214. Newell, R. C., Lucas, M. I., and Linley, E. A. S., 1981, Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms, Mar. Ecol. Prog. Ser. 6:123–136.Google Scholar
  215. Newell, S. Y., and Christian, R. R., 1981, Frequency of dividing cells as an estimator of bacterial productivity, Appl. Environ. Microbiol. 42:23–31.PubMedGoogle Scholar
  216. Newell, S. Y., and Fallon, S. D., 1982, Bacterial productivity in the water column and sediments of Georgia U. S. A. coastal zone: Estimates via direct counting and parallel measurements of thymidine incorporation, Microb. Ecol. 8:33–46.Google Scholar
  217. Nothig, E.-M., and von Bodungen, B., 1989, Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea Antarctica, Mar. Ecol. Prog. Ser. 56:281–289.Google Scholar
  218. Pace, M. L., Glasser, J. E., and Pomeroy, L. R., 1984, A simulation analysis of continental shelf food webs, Mar. Biol. 82:47–63.Google Scholar
  219. Painting, S. J., Lucas, M. I., and Muir, D. G., 1989, Fluctuations in heterotrophic bacterial community structure and production in response to development and decay of phytoplankton in a microcosm, Mar. Ecol. Prog. Ser. 53:129–141.Google Scholar
  220. Pantoja, S., González, H., and Bernal, P. A., 1989, Bacterial biomass and production in a shallow bay, J. Plank. Res. 11:599–604.Google Scholar
  221. Paul, J. H., Jeffrey, W. H., and deFlaun, M. F., 1985, Particulate DNA in subtropical oceanic and estuarine planktonic environments, Mar. Biol. 90:95–101.Google Scholar
  222. Paul, J. H., de Flaun, M. F., Jeffrey, W. H., and David, A. W., 1988, Seasonal and diel variability in dissolved DNA and in microbial biomass and activity in a subtropical estuary, Appl. Environ. Microbiol. 54:718–727.PubMedGoogle Scholar
  223. Pedros-Alio, C., and Newell, S. Y., 1989, Microautoradiographic study of thymidine uptake in brackish waters around Sapelo Island, Georgia, USA, Mar. Ecol. Prog. Ser. 55:83–94.Google Scholar
  224. Peele, E. R., Murray, R. E., Hanson, R. B., Pomeroy, L. R., and Hodson, R. E., 1984, Distribution of microbial biomass and secondary production in a warm core Gulf Stream ring, Deep-Sea Res. 32:1393–1403.Google Scholar
  225. Pett, R. J., 1989, Kinetics of microbial mineralization of organic carbon from detrital Skeletonema costatum cells, Mar. Ecol. Prog. Ser. 52:123–128.Google Scholar
  226. Pilskaln, C. H., and Honjo, S., 1987, The fecal pellet fraction of biogeochemical particle fluxes to the deep sea, Global Biogeochem. Cycles 1:31–48.Google Scholar
  227. Pomeroy, L. R., 1974, The ocean’s food web: A changing paradigm, BioScience 24:499–504.Google Scholar
  228. Pomeroy, L. R., 1979, Secondary production mechanisms of continental shelf communities, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), Plenum Press, New York, pp. 163–186.Google Scholar
  229. Pomeroy, L. R., 1984, Significance of microorganisms in carbon and energy flow in marine ecosystems, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), Amer. Soc. Microbiol., Washington, D.C., pp. 405–411.Google Scholar
  230. Pomeroy, L. R., 1990, Status and future needs in protozoan ecology, in: Protozoa and Their Role in Marine Processes (P. C. Reid, C. M. Turley, and P. H. Burkill, eds.), Springer-Verlag, Berlin, pp. 475–492.Google Scholar
  231. Pomeroy, L. R., and Deibel, D., 1986, Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters, Science 233:359–361.PubMedGoogle Scholar
  232. Pomeroy, L. R., and Johannes, R. E., 1966, Total plankton respiration, Deep-Sea Res. 13:971–973.Google Scholar
  233. Pomeroy, L. R., and Wiebe, W. J., 1988, Energetics of microbial food webs, Hydrobiologia 159:7–18.Google Scholar
  234. Pomeroy, L. R., Atkinson, L. P., Blanton, J. O., Campbell, W. B., Jacobsen, T., Kerrick, K. H., and Wood, A. M., 1983, Microbial distribution and abundance in response to physical and biological processes on the continental shelf of the southeastern USA, Cont. Shelf Res. 2:1–20.Google Scholar
  235. Pomeroy, L. R., Hanson, R. B., McGillivary, P., Sherr, B. F., Kirchman, D. L., and Deibel, D., 1984, Microbiology and chemistry of fecal products of pelagic tunicates: Rates and fates, Bull. Mar. Sci. 35:426–439.Google Scholar
  236. Power, K. and Marshall, K. C., 1988, Cellular growth and reproduction of marine bacteria on surface bound substrate, Biofouling 1:163–174.Google Scholar
  237. Rassoulzadegan, F., and Sheldon, R. W., 1986a, An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis, Limnol. Oceanogr. 31:184–188.Google Scholar
  238. Rassoulzadegan, F., and Sheldon, R. W., 1986b, Predator-prey interaction of nanozooplankton and bacteria in an oligotrophic marine environment, Limnol. Oceanogr. 31:1010–1021.Google Scholar
  239. Riemann, B., and Bell, R. T., 1990, Advances in estimating bacterial biomass and growth in aquatic systems, Arch. Hydrobiol. 25:385–402.Google Scholar
  240. Riemann, B., Nielsen, P., Jeppesen, M., Marcussen, B., and Fuhrman, J. A., 1984, Diel changes in bacterial biomass and growth rates in coastal environments, determined by means of thymidine incorporation into DNA, frequency of dividing cells FDC, and microautoradiography, Mar. Ecol. Prog. Ser. 17:227–235.Google Scholar
  241. Riemann, B., Jorgensen, N. O., Lampert, W., and Fuhrman, J. A., 1986, Zooplankton-induced changes in dissolved free amino acids and in production rates of freshwater bacteria, Microb. Ecol. 12:247–258.Google Scholar
  242. Riemann, B., Bjornsen, P. K., Newell, S., and Fallon, R., 1987, Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]-thymidine, Limnol. Oceanogr. 32:471–476.Google Scholar
  243. Riemann, B., Sorensen, H. M., Bjornsen, P. K., Horsted, S. J., Jensen, L. M., Nielsen, T. G., and Sondergaard, M., 1990, Carbon budgets of the microbial foodweb in estuarine enclosures, Mar. Ecol. Prog. Ser. 65:159–170.Google Scholar
  244. Rivkin, R. B., 1990, Seasonal patterns of planktonic production in McMurdo Sound, Antarctica, Am. Zool. 31:5–16.Google Scholar
  245. Rivkin, R. B., Putt, M., Alexander, S. P., Meritt, D., and Gaudet, L., 1989, Biomass and production in polar planktonic and sea ice microbial communities: A comparative study, Mar. Biol. 101:273–283.Google Scholar
  246. Robarts, R. D., Wicks, R. J., and Sephton, L. M., 1986, Spatial and temporal variations in bacterial macromolecular labeling with [methyl-3H] thymidine in a hypertrophic lake, Appl. Environ. Microbiol. 52:1368–1373.PubMedGoogle Scholar
  247. Roman, M. R., Ducklow, H. W., Fuhrman, J. A., Garside, C., Glibert, P. M., Malone, T. C., and McManus, G. B., 1988, Production, consumption, and nutrient recycling in a laboratory mesocosm, Mar. Ecol. Prog. Ser. 42:39–52.Google Scholar
  248. Rosenberg, R., Dahl, E., Edler, L., Fyrberg, L., Granéli, E., Granéli, W., Hagstrom, A., Lindahl, O., Matos, M. O., Pettersson, K., Sahlsten, E., Tiselius, P., Turk, V., and Wikner, J., 1990, Pelagic nutrient and energy transfer during spring in the open and coastal Skagerrak, Mar. Ecol. Prog. Ser. 61:215–231.Google Scholar
  249. Roy, S., Harris, R. P., and Poulet, S. A., 1989, Inefficient feeding by Calanus helgolandicus and Temora longicornis on Coscinodiscus wailesii: Quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids, Mar. Ecol. Prog. Ser. 52:145–153.Google Scholar
  250. Sand-Jensen, K., Jensen, L. M., Marcher, S., and Hansen, M., 1990, Pelagic metabolism in eutrophic coastal waters during a late summer period, Mar. Ecol. Prog. Ser. 65:63–72.Google Scholar
  251. Scavia, D., 1988, On the role of bacteria in secondary production, Limnol. Oceanogr. 33:1220–1224.Google Scholar
  252. Sellner, K. G., 1981, Primary productivity and the flux of dissolved organic matter in several marine environments, Mar. Biol. 65:101–112.Google Scholar
  253. Sharp, J. H., 1984, Inputs into microbial food chains, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 101–120.Google Scholar
  254. Sherr, B. F., Sherr, E. B., Andrew, T. L., Fallon, R. D., and Newell, S. Y., 1986, Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors, Mar. Ecol. Prog. Ser. 32:169–179.Google Scholar
  255. Sherr, B. F., Sherr, E. B., and Pedros-Alio, C., 1989, Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water, Mar. Ecol. Prog. Ser. 54:209–219.Google Scholar
  256. Sherr, E. B., and Sherr, B. F., 1987, High rates of consumption of bacteria by pelagic ciliates, Nature 325:710–711.Google Scholar
  257. Sherr, E. B., Sherr, B. F., Fallon, R. D., and Newell, S. Y., 1986, Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton, Limnol. Oceanogr. 3:177–183.Google Scholar
  258. Sieburth, J. M., 1976, Bacterial substrates and productivity in marine ecosystems, Annu. Rev. Ecol. Syst. 7:259–286.Google Scholar
  259. Sieburth, J. M., 1977, International Helgoland Symposium: Convenor’s report on the informal session on biomass and productivity of microorganisms in planktonic ecosystems, Helgol. Wiss. Meeresunters. 30:697–704.Google Scholar
  260. Sieburth, J. M., Johnson, K. M., Burney, C. M., and Lavoie, D. M., 1977, Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture, Helgol. Wiss. Meeresunters. 30:565–574.Google Scholar
  261. Sieracki, M. E., and Sieburth, J. M., 1985, Factors controlling the periodic fluctuation in total planktonic bacterial populations in the upper ocean: Comparison of nutrient, sunlight and predation effects, Mar. Microb. Foodwebs 1:35–50.Google Scholar
  262. Simon, M., and Azam, F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser. 51:201–213.Google Scholar
  263. Simon, M., Alldredge, A. L., and Azam, F., 1990, Bacterial carbon dynamics on marine snow, Mar. Ecol. Prog. Ser. 65:205–211.Google Scholar
  264. Small, L. F., Fowler, S. W., Moore, S. A., and LaRosa, J., 1983, Dissolved and fecal pellet carbon and nitrogen release by zooplankton in tropical waters, Deep-Sea Res. 30:1199–1220.Google Scholar
  265. Smetacek, V., 1985, Role of sinking in diatom life history cycles: Ecological, evolutionary, and geological significance, Mar. Biol. 84:239–251.Google Scholar
  266. Smith, R. E. H., 1982, The estimation of phytoplankton production and excretion by carbon-14, Mar. Biol. Lett. 3:325–334.Google Scholar
  267. Somville, M., 1983, Measurement and study of substrate specificity of exoglucosidase in natural water, Appl. Environ. Microbiol. 48:1181–1185.Google Scholar
  268. Sorokin, Y I., 1971, Bacterial populations as components of oceanic ecosystems, Mar. Biol. 11:101–105.Google Scholar
  269. Sorokin, Y I., 1973, Data on the biological productivity of the western tropical Pacific Ocean, Mar. Biol. 20:177–196.Google Scholar
  270. Sorokin, Y I., 1981, Microheterotrophic organisms in marine ecosystems, in: Analysis of Marine Ecosystems (A. Longhurst, ed.), Academic Press, New York, pp. 293–342.Google Scholar
  271. Sorokin, Y I., and Mamaeva, T. I., 1991, Role of planktonic bacteria in productivity and cycling of organic matter in the eastern Pacific Ocean, Hydrobiologia 209:39–50.Google Scholar
  272. Steele, J. H., 1974, The Structure of Marine Ecosystems, Harvard University Press, Cambridge, Mass.Google Scholar
  273. Suess, E., 1980, Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization, Nature 288:260–263.Google Scholar
  274. Suess, E., 1988, Effects of microbe activity, Nature 333:17–18.Google Scholar
  275. Sugimura, Y., and Suzuki, Y., 1988, A high-temperature catalytic oxidation method of non-volatile dissolved organic carbon in seawater by direct injection of liquid samples, Mar. Chem. 14:105–131.Google Scholar
  276. Sullivan, C. W., Cota, G. F., Krempin, D. W., and Smith, J. W. O., 1990, Distribution and activity of bacterioplankton in the marginal ice zone of the Weddell-Scotia Sea during austral spring, Mar. Ecol. Prog. Ser. 63:239–252.Google Scholar
  277. Suttle, C. A., Fuhrman, J. A., and Capone, D. G., 1990a, Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: Implications for carbon transfer in planktonic communities, Limnol. Oceanogr. 35:424–433.Google Scholar
  278. Suttle, C. A., Chan, A. M., and Cottrell, M. T., 1990b, Infection of phytoplankton by viruses and reduction of primary productivity, Nature 347:467–469.Google Scholar
  279. Taguchi, S., and Laws, E. A., 1988, On the microparticles which pass through glass fiber filter type GF/F in coastal and open waters, J. Plank. Res. 10:999–1008.Google Scholar
  280. Taylor, G. T., Iturriaga, R., and Sullivan, C. W., 1985, Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter, Mar. Ecol. Prog. Ser. 23:129–141.Google Scholar
  281. Toggweiler, J. R., 1989, Is the downward dissolved organic matter DOM flux important in carbon transport? in: Productivity of the Oceans: Present and Past (W. H. Berger, V. S. Smetacek, and G. Wefer, eds.), Wiley, New York, pp. 65–83.Google Scholar
  282. Torréton, J.-P., Guiral, D., and Arfi, R., 1989, Bacterioplankton biomass and production during destratification in a monomictic eutrophic bay of a tropical lagoon, Mar. Ecol. Prog. Ser. 57:53–67.Google Scholar
  283. Tupas, L., and Koike, I., 1990, Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr. 35:1145–1155.Google Scholar
  284. Turley, C. M., and Lochte, K., 1985, Direct measurement of bacterial productivity in stratified waters close to a front in the Irish Sea, Mar. Ecol. Prog. Ser. 23:209–219.Google Scholar
  285. Turley, C. M., and Lochte, K., 1990, Microbial response to the input of fresh detritus to the deep-sea bed, Paleogeogr. Paleoclimatol. Paleoecol. 89:3–23.Google Scholar
  286. Ulanowicz, R. E., 1986, Growth and Development: Ecosystems Phenomenology, Springer-Verlag, Berlin.Google Scholar
  287. Urrere, M. A., and Knauer, G. A., 1981, Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment, J. Plank. Res. 3:369–387.Google Scholar
  288. van Duyl, F. C., Bak, R. P. M., Kop, A. J., and Nieuwland, G., 1990, Bacteria, auto-and heterotrophic nanoflagellates, and their relations in mixed, frontal and stratified waters of the North Sea, Neth. J. Sea Res. 261: 97–109.Google Scholar
  289. van Es, F. B., and Meyer-Reil, L. A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microb. Ecol. 6:111–170.Google Scholar
  290. Vives-Rego, J., Billen, G., Fontigny, A., and Somville, M., 1985, Free and attached proteolytic activity in water environments, Mar. Ecol. Prog. Ser. 21:245–249.Google Scholar
  291. Vives-Rego, J., Martinez, J., and García-Lara, J., 1988, Assessment of bacterial production and mortality in Mediterranean coastal water, Estuarine Coastal Shelf Sci. 26:331–336.Google Scholar
  292. Walsh, J. J., 1983, Death in the sea: Enigmatic phytoplankton losses, Prog. Oceanogr. 12:1–86.Google Scholar
  293. Walsh, J. J., 1984, The role of ocean biota in accelerated ecological cycles: A temporal view, BioScience 34:499–507.Google Scholar
  294. Wangersky, P., 1984, Organic particles and bacteria in the ocean, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 263–287.Google Scholar
  295. Ward, B. B., 1984, Photosynthesis and bacterial utilization of phytoplankton exudates: Results from preand post-incubation size fractions, Oceanol. Acta 7:337–343.Google Scholar
  296. Watson, A. J., and Whitfield, M., 1985, Composition of particles in the global ocean, Deep-Sea Res. 32:1023–1039.Google Scholar
  297. Watson, S. W., Novitsky, T. J., Quinby, H. L., and Valois, F. W., 1977, Determination of bacterial number and biomass in the marine environment, Appl. Environ. Microbiol. 33:940–946.PubMedGoogle Scholar
  298. Weisse, T., 1989, The microbial loop in the Red Sea: Dynamics of pelagic bacteria and heterotrophic nanoflagellates, Mar. Ecol. Prog. Ser. 55:241–250.Google Scholar
  299. Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr. 31:998–1009.Google Scholar
  300. Wiebe, W. J., and Pomeroy, L. R., 1972, Microorganisms and their association with aggregates and detritus in the sea: A microscopic study, Mem. Ist. Ital. Idrobiol. 29(Suppl.):325–352.Google Scholar
  301. Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar. Biol. 42:213–233.Google Scholar
  302. Wikner, J., Rassoulzadegan, F., and Hagstrom, A., 1990, Periodic bacteriovore activity balances bacterial growth in the marine environment, Limnol. Oceanogr. 35:313–325.Google Scholar
  303. Williams, P. J. L., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kiel. Meeresforsch. 5:1–28.Google Scholar
  304. Williams, P. J. L., 1984, Bacterial production in the marine food chain: The emperor’s new suit of clothes? in: Flows of Energy and Materials in Marine Ecosystems (M. J. Fasham, ed.), Plenum Press, New York, pp. 271–299.Google Scholar
  305. Williams, R., and Poulet, S. A., 1986, Relationship between the zooplankton, phytoplankton, particulate matter and dissolved free amino acids in the Celtic Sea, Mar. Biol. 90:279–284.Google Scholar
  306. Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar. Ecol. Prog. Ser. 7:287–295.Google Scholar
  307. Wright, R. T., 1984, Dynamics of pools of dissolved organic carbon, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. L. Williams, eds.), Plenum Press, New York, pp. 121–154.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Hugh W. Ducklow
    • 1
  • Craig A. Carlson
    • 1
  1. 1.Horn Point Environmental LaboratoriesUniversity of Maryland-CEESCambridgeUSA

Personalised recommendations