Microbial Systems

Patterns in Time and Space
  • Julian W. T. Wimpenny
Part of the Advances in Microbial Ecology book series (AMIE, volume 12)


In contrast to the rather uniform and sometimes boring manner in which microorganisms present themselves in the laboratory, systems of microbes in nature form complex populations which often show some type of order in environments which are temporally and spatially heterogeneous in physicochemical composition. Examples of such ecosystems are too numerous to review in detail, however; they include a wide range of systems on a huge spatial scale ranging from nanometers to hundreds of meters.


Fruiting Body Pattern Formation Bacillus Cereus Bacterial Coloni Concentric Ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdollahi, H., 1983, The effect of oxygen on the growth and behavior of mixed bacterial communities, Ph.D. thesis, University College Cardiff, Wales.Google Scholar
  2. Adler, J., 1966, Chemotaxis in bacteria, Science 153:708–716.PubMedGoogle Scholar
  3. Afrikian, E. G., St. Julian, G., and Bulla, L. A., 1973, Scanning electron microscopy of bacterial colonies, Appl. Microbiol. 26:934–937.PubMedGoogle Scholar
  4. Armitage, J. P., and Smith, D. G., 1976, The ultra structure of Proteus mirabilis swarmers, in: Society for Applied Bacteriology Technical Series (R. Fuller and D. W. Lovelock, eds.), Academic Press, New York, pp. 175–185.Google Scholar
  5. Armitage, J. P., Rowbury, R. J., and Smith, D. G., 1976, The role of cyclic adenosine monophosphate in the swarming phenomenon of Proteus mirabilis, Experientia 32:1266–1267.PubMedGoogle Scholar
  6. Bibel, D. J., and Lawson, J. W., 1972, Scanning electron microscopy of L-phase streptococci: Development of techniques, J. Microsc. (Oxford) 95:435.Google Scholar
  7. Bissett, K. A., 1973a, The motion of the swarm in Proteus mirabilis, J. Med. Microbiol. 6:33–35.Google Scholar
  8. Bissett, K. A., 1973b, A continuous study of the morphological phase in the swarm of Proteus, J. Med. Microbiol. 9:229–231.Google Scholar
  9. Bonner, J. T., 1969, Hormones in social amoebae and mammals, Sci. Am. 220:78–91.PubMedGoogle Scholar
  10. Brancate, F. P., and Golding, N. S., 1953, The diameter of mold colony as a reliable measure of growth, Mycologia 45:848.Google Scholar
  11. Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol. 59:20–31.Google Scholar
  12. Buchanan, R. L., and Phillips, J. G., 1990, Response surface model for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes, J. Food Prot. 53:370–376.Google Scholar
  13. Budrene, E. O., and Berg, H. C., 1991, Complex patterns formed by motile cells of Escherichia coli, Nature 349:630–633.PubMedGoogle Scholar
  14. Budrene, E. O., Polezhaev, A. A., and Ptitsyn, M. O., 1988, Mathematical modelling of intercellular regulation causing the formation of spatial structures in bacterial colonies, J. Theor. Biol., 135:323–341.Google Scholar
  15. Bungay, H. R., Petit, P. M., and Drislane, A. M., 1983, Dissolved oxygen contours in Pseudomonas ovalis colonies, in: Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems (H. W. Blanch, E. T. Papoutsakis, and G. Stephanopoulos, eds.), American Chemical Society, Washington, D.C., pp. 395–401.Google Scholar
  16. Carlile, M. J., 1979, Bacterial, fungal, and slime mold colonies, in: The Biology and Systematics of Colonial Organisms, (G. Larwood and B. R. Rosen, eds.), Academic Press, London, pp. 3–27.Google Scholar
  17. Castets, V., Dulos, J., Boissonade, J., and De Kepper, P., 1990, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett. 64:2953.PubMedGoogle Scholar
  18. Characklis, W. G., 1990, Laboratory biofilm reactors, in: Biofilms (W. G. Characklis and K. C. Marshall, eds.) Wiley-Interscience, New York, pp. 55–89.Google Scholar
  19. Chisholm, R. L., Fontana, D., Thelbert, A., Lodish, H. F., and Devreotes, P., 1984, Development of Dictyostelium discoideum: Chemotaxis, cell-cell adhesion, and gene expression, in: Microbial Development (R. Losick and L. Shapiro, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 215–254.Google Scholar
  20. Cohen, Y., and Rosenberg, E. (eds.), 1989, Microbial Mats: Physiological Ecology of Benthic Microbial Communities, American Society for Microbiology, Washington, D.C.Google Scholar
  21. Coombe, R. A., Tatevossian, A., and Wimpenny, J. W. T., 1981, Bacterial thin films as in vitro models for dental plaque, in: Surface and Colloid Phenomena in the Oral Cavity: Methodological Aspects (R. M. Frank and S. A. Leach, eds.), Information Retrieval, London, pp. 239–249.Google Scholar
  22. Coombs, J. P., and Wimpenny, J. W. T., 1982, Growth of Bacillus cereus in a gel-stabilized nutrient gradient system, J. Gen. Microbiol. 128:3093–3101.Google Scholar
  23. Cooper, A. L., Dean, A. C. R., and Hinshelwood, C., 1968, Factors affecting the growth of bacterial colonies on agar plates, Proc. R. Soc. London Ser. B 171:175.Google Scholar
  24. Cox, E. C., Spiegel, F. W., Byrne, G., McNally, J. W., and Eisenbud, L., 1988, Spatial patterns in fruiting bodies of the cellular slime mold Polysphondilium pallidum, Differentiation 38:73–81.PubMedGoogle Scholar
  25. De Kepper, P., Castets, V., Dulos, E., and Boissonade, J., 1991, Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction, Physica D 49:161–169.Google Scholar
  26. Devreotes, P. N., and Sherring, J. A., 1985, Kinetics and concentration dependence of reversible cAMP-induced modification of the surface cAMP receptor in Dictyostelium, J. Biol. Chem. 260: 6378–6384.PubMedGoogle Scholar
  27. Donachie, W. D., and Begg, K. J., 1970, Growth of the bacterial cell, Nature 227:1220–1224.PubMedGoogle Scholar
  28. Douglas, C. W. I., and Bissett, K. A., 1976, Development of concentric zones in the Proteus swarm colony, J. Med. Microbiol. 9:497–500.PubMedGoogle Scholar
  29. Dowson, C. G., Rayner, A. D. M., and Boddy, L., 1989, Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis, New Phytol. 111:699–705.Google Scholar
  30. Drucker, D. B., and Whittaker, D. K., 1971a, Examination of certain bacterial colonies by scanning electron microscope, Microbios 4:109–113.PubMedGoogle Scholar
  31. Drucker, D. B., and Whittaker, D. K., 1971b, Microstructure of colonies of rod-shaped bacteria, J. Bacteriol. 108:515–525.PubMedGoogle Scholar
  32. Fawcett, H. S., 1925, Maintained growth rates in fungal culture of long duration, Ann. Appl. Biol. 12:191.Google Scholar
  33. Flicker, M., and Ross, J., 1974, Mechanism of chemical instability for periodic precipitation phenomena, J. Chem. Phys. 60:3458–3465.Google Scholar
  34. Gierer, A., and Meinhardt, H., 1972, A theory of biological pattern formation, Kybernetik 12:30–39.PubMedGoogle Scholar
  35. Graham-Smith, G. S., 1910, The division and post fission movement of bacilli when grown on solid media, Parasitology 3:17–53.Google Scholar
  36. Hedges, E. S., 1932, Liesegang Rings and Other Periodic Structures, Chapman & Hall, London.Google Scholar
  37. Herbert, R. A., 1988, Bidirectional compound chemostats: Applications of compound diffusion linked chemostats in microbial ecology, in: Handbook of Laboratory Models Systems for Microbial Ecosystem Research, Vol. 1 (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, Florida, pp. 99–115.Google Scholar
  38. Hoeniger, J. F. M., 1965a, Development of flagella by Proteus mirabilis, J. Gen. Microbiol. 40:29.Google Scholar
  39. Hoeniger, J. F. M., 1965b, Influence of pH on Proteus flagella, J. Bacteriol. 90:275.PubMedGoogle Scholar
  40. Hoffman, H., and Franck, M. E., 1961, Form and internal structure of cellular aggregates in early Escherichia coli microcultures, J. Gen. Microbiol. 25:352–364.Google Scholar
  41. Hoppensteadt, F. C., and Jäger, W., 1979, Pattern formation by bacteria, in: Biological Growth and Spread, Lecture Notes in Biomathematics ((W. Jäger and J. D. Murray, eds.), Springer-Verlag, Berlin, pp. 68–81.Google Scholar
  42. Hoppensteadt, F. C., Jäger, W., and Poppe, C., 1984, A hysteresis model for bacterial growth patterns, in: Modelling of Patterns in Time and Space, Lecture Notes in Biomathematics (W. Jäger and J. D. Murray, eds.), Springer-Verlag, Berlin, pp. 123–134.Google Scholar
  43. Hughes, W. H., 1957, A reconsideration of the swarming of Proteus vulgaris, J. Gen. Microbiol. 17:49–58.PubMedGoogle Scholar
  44. Hutchinson, G. E., 1965, The niche: An abstractly inhabited hypervolume, in: The Ecological Theatre and the Evolutionary Play, Yale University Press, New Haven, Conn., pp. 26–78.Google Scholar
  45. Ivanitsky, G. R., Kunisky, A. S., and Tsyganov, M. A., 1984, Study of “target patterns” in a phage-bacterium system, Springer Series on Synergetics 28:214–216.Google Scholar
  46. Jerebzoff, S., 1965, Manipulation of some oscillating systems in fungi by chemicals, in Circadian Rhythms (J. Aschoff, eds.), North-Holland, Amsterdam, pp. 183–189.Google Scholar
  47. Kolenbrander, P. E., 1989, Surface recognition among oral bacteria: Multigeneric coaggregations and their mediators, CRC Crit. Rev. Microbiol. 17:137–159.Google Scholar
  48. Legroux, R., and Magrou, J., 1920, Etat organise des colonnies bacteriennes, Ann. Inst. Pasteur 34:417–433.Google Scholar
  49. Lewis, M. W. A., and Wimpenny, J. W. T., 1981, The influence of nutrition and temperature on the growth of colonies of Escherichia coli K12, Can. J. Microbiol. 27:679–684.PubMedGoogle Scholar
  50. Liesegang, R. E., 1896, Ueber einige Eigenschaften von Gellerton, Naturwiss, Wochenschr. 11: 353–362.Google Scholar
  51. Lovitt, R. W., and Wimpenny, J. W.T., 1981, The gradostat, a bidirectional compound chemostat, and its applications in microbiological research, J. Gen. Microbiol. 127:261–268.PubMedGoogle Scholar
  52. Lysek, G., 1984, Physiology and ecology of rhythmic growth and sporulation in fungi, in: The Ecology and Physiology of the Fungus Mycelium (D. H. Jennings and A. D. M. Rayner, eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 323–342.Google Scholar
  53. Lysek, G., and Nordbring-Herz, B., 1981, An endogenous rhythm of trap formation in nematophagous fungus Arthrobotrys oligospora, Planta 152:50–53.Google Scholar
  54. McClure, P. J., Roberts, T. A., and Oguru, P. O., 1989, Comparison of the effects of sodium chloride, pH and temperature on the growth of Listeria monocytogenes on gradient plates and in liquid medium, Lett. Appl. Microbiol. 9:95–99.Google Scholar
  55. McCoy, W. F., Bryers, J. D., Robbins, J., and Costerton, J. W., 1981, Observations of fouling biofilm formation, Can. J. Microbiol. 27:910–917.PubMedGoogle Scholar
  56. Margalef, R., 1967, Laboratory analogues of estuarine plankton systems, in: Estuaries: Ecology and Populations (G. M. Lauff, ed.), Hornshafer, Baltimore, pp. 515–524.Google Scholar
  57. Moltke, O., 1927, Contributions to the characterisation and systematic classification of Bact. proteus vulgaris (Hauser), Levin & Munksgaard, Copenhagen.Google Scholar
  58. Müller, S. C., and Venzl, G., 1984, Pattern formation in precipitation processes, in: Modelling of Patterns in Space and Time, Lecture Notes in Biomathematics (W. Jäger and J. D. Murray, eds.), Springer-Verlag, Berlin (pp. 254–278).Google Scholar
  59. Nelson, D. C., Jorgensen, B. B., and Revsbech, N. P., 1986, Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulphide microgradients, Appl. Environ. Microbiol. 52: 225–233.PubMedGoogle Scholar
  60. Newell, P. C., 1986, Receptors for cell communication in Dictyostelium, in: Hormones, Receptors and Cellular Interactions in Plants (C. M. Chadwick, ed.), Cambridge University Press, London, pp. 154–216.Google Scholar
  61. Nitsch, B., and Kutzner, H. J., 1966, Wachstum von Streptomyceten in Schuttelagarkultur: eine neue Methode zur Feststellung des C-quellen-spektrums, in: Symposium on Technische Mikrobiologie, Berlin, pp. 481–486.Google Scholar
  62. Nossal, R., 1972, Growth and movement of rings of chemotactic bacteria, Exp. Cell Res. 75:138–142.PubMedGoogle Scholar
  63. Ostwald, W., 1925, The theory of Liesegang rings, Kolloid Z. 36:380.Google Scholar
  64. Palumbo, S. A., Johnson, M. G., Rieck, V. T., and Witter, L. D., 1971, Growth measurements on surface colonies of bacteria, J. Gen. Microbiol. 66:137–143.PubMedGoogle Scholar
  65. Perfil’ev, B. V., and Gabe, D. R., 1969, Capillary Methods for Investigating Microorganisms, Oliver & Boyd, Edinburgh.Google Scholar
  66. Peters, A. C., and Wimpenny, J. W. T., 1988, A constant depth laboratory film fermenter, in: Handbook of Laboratory Model Systems for Microbial Ecosystems, Vol. 1 (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 175–195.Google Scholar
  67. Peters, A. C., Wimpenny, J. W. T., and Coombs, J. P., 1987, Oxygen profiles in, and in the agar beneath, colonies of Bacillus cereus, Staphylococcus albus and Escherichia coli, J. Gen. Microbiol. 133:1257–1263.PubMedGoogle Scholar
  68. Peters, A. C., Thomas, L. V., and Wimpenny, J. W. T., 1991, Effects of salt concentration on bacterial growth on plates with gradients of pH and temperature, FEMS Microbiol. Lett. 77:309–314.Google Scholar
  69. Pirt, S. J., 1967, A kinetic study of the mode of growth of surface colonies of bacteria and fungi, J. Gen. Microbiol. 47:181–197.PubMedGoogle Scholar
  70. Plomley, N. J. B., 1959, Formation of the colony in the fungus Chaetomium, Aust. J. Biol. Sci. 12:53.Google Scholar
  71. Polezhaev, A. A., and Ptitsyn, M. O., 1990, Phenomenological mechanism of the formation of spatial structures in colonies of bacteria, J. Nonlinear Biol. 1:63–76.Google Scholar
  72. Raper, K. B., 1984, The Dictyostelids, Princeton University Press, Princeton, N.J.Google Scholar
  73. Reichenbach, H., 1965, Rhythmische Vorange bei der Schwarmentfaltung von Myxobacterien, Ber. Dtsch. Bot. Ges. 78:102–105.Google Scholar
  74. Reichenbach, H., 1966, Myxococcus spp. (Myxobacteriales) Schwarmentwicklung un Bildung von Protocycten, in: Encyclopedia Cinematographica film E778/1965 (G. Wolf, ed.), Institut fur den Wissenschaftlichen Film, Gottingen.Google Scholar
  75. Reyrolle, J., and Letellier, F., 1979, Autoradiographic study of the location and evolution of growth zones in bacterial colonies, J. Gen. Microbiol. 111:399–406.PubMedGoogle Scholar
  76. Roberts, T. A., and Ingram, M., 1973, Inhibition of growth of Cl. botulinum at different pH values by sodium chloride and sodium nitrite, J. Food Technol. 8:467–475.Google Scholar
  77. Ryan, F. J., Beadle, G. W., and Tatum, E. L., 1943, The tube method of measuring the growth rate of Neurospora, Am. J. Bot. 30:784.Google Scholar
  78. Sagromsky, H., 1952, Der Einfluß des Lichtes auf die rhythmische Konidienbildung von Penicillium, Flora (Jena) 139:300–313.Google Scholar
  79. Shapiro, J. A., 1984, The use of Mu dlac transposons as tools for vital staining to visualise clonal and non-clonal patterns of organization in bacterial growth on agar surfaces, J. Gen. Microbiol. 130:1169–1181.PubMedGoogle Scholar
  80. Shapiro, J. A., 1985a, Scanning electron microscope study of Pseudomonas putida colonies, J. Bacteriol. 164:1171–1181.PubMedGoogle Scholar
  81. Shapiro, J. A., 1985b, Photographing bacterial colonies, Am. Soc. Microbiol. News 51:62.Google Scholar
  82. Shapiro, J. A., 1987, Organization of developing Escherichia coli colonies viewed by scanning electron microscopy, J. Bacteriol. 169:142–156.PubMedGoogle Scholar
  83. Shapiro, J. A., and Hsu, C., 1989, Escherichia coli K-12 cell-cell interactions seen by time lapse video, J. Bacteriol. 171:5963–5974.PubMedGoogle Scholar
  84. Shapiro, J. A., and Trubatch, D., 1991, Sequential events in bacterial colony morphogenesis, Physica D 49:214–223.Google Scholar
  85. Shimkets, L. J., 1990, Social and developmental biology of the myxobacteria, Microbiol. Rev. 54: 473–501.PubMedGoogle Scholar
  86. Shimkets, L. J., and Kaiser, D., 1982, Induction of coordinated cell movement in Myxococcus xanthus, J. Bacteriol. 152:451–461.PubMedGoogle Scholar
  87. Shrewsbury, J. F. D., 1931, Giant colony culture, J. Pathol. Bacteriol. 34:283–285.Google Scholar
  88. Siegert, F., and Weijer, C. J., 1991, Analysis of optical density wave propagation and cell movement in the cellular slime mould Dictyostelium discoideum, in: Physica D (H. L. Swinney and V. I. Krinsky, eds.), North-Holland, Amsterdam, pp. 224–232.Google Scholar
  89. Skyring, G. W., and Bauld, J., 1990, Microbial mats in Australian coastal environments, in: Advances in Microbial Ecology (K. C. Marshall, ed.), Plenum Press, New York, pp. 461–498.Google Scholar
  90. Smith, D. G., 1972, The Proteus swarming phenomenon, Sci. Prog. 60:487.PubMedGoogle Scholar
  91. Springer, E. L., and Roth, I. L., 1972, Scanning electron microscopy of bacterial colonies. I. Diplococcus pneumoniae and Streptococcus pneumoniae, Can. J. Microbiol. 18:219–223.PubMedGoogle Scholar
  92. Steinbock, O., Hashomoto, H., and Muller, S. C., 1991, Quantitative analysis of periodic Chemotaxis in aggregation patterns of Dictyostelium discoideum, in: Physica D (H. L. Swinney and V. I. Krinsky, eds.), North-Holland, Amsterdam, pp. 233–239.Google Scholar
  93. Szybalski, W., and Bryson, V., 1953, Genetic studies on microbial cross-resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics, J. Bacteriol. 64:489–499.Google Scholar
  94. Tanaka, S., 1985, Cytological studies on Agrobacterium tumefaciens. 1. Growth and ultrastructures of the cell, Yamaguchi Med. Bull. 34:25–35.Google Scholar
  95. Todd, R. L., and Kerr, T. J., 1972, Scanning electron microscopy of microbial cells on membrane filters, Appl. Microbiol. 23:1160–1162.PubMedGoogle Scholar
  96. Tomchik, K. J., and Devreotes, P. N., 1981, Adenosine 3′, 5′ monophosphate waves in Dictyostelium discoideum: A demonstration by isotope dilution-fluorography, Science. 212:443–446.PubMedGoogle Scholar
  97. Tschapek, M., and Giambiagi, N., 1954, Die bildung von Liesegang’schen ringen durch Azotobakter bei O2-hemmung, Kolloid Z. 135:47–48.Google Scholar
  98. Turing, A. M., 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London Ser. B 237:37–72.Google Scholar
  99. Tyson, J. J., and Murray, J. D., 1989, Cyclic AMP waves during aggregation of Dictyostelium amoebae, Development 106:421–426.PubMedGoogle Scholar
  100. Van Haastert, P. J. M., and DeWit, R. J. W., 1984, The cell surface cAMP receptor of Dictyostelium discoideum: Demonstration of receptor heterogeneity and affinity modulation by nonequilibrium experiments, J. Biol. Chem. 259:13321–13328.PubMedGoogle Scholar
  101. Werner, C., 1898, Die Bedingungen der Conidienbildung bei einigen Pilzen, Ph.D. thesis, Basel and Frankfurt.Google Scholar
  102. Whittaker, R. H., Levin, S. A., and Root, R. B., 1973, Niche, habitat and ecotope, Am. Nat. 107: 321–338.Google Scholar
  103. Whittenbury, R., 1963, The use of soft agar in the study of conditions affecting the utilization of fermentable substrates by lactic acid bacteria, J. Gen. Microbiol. 32:375–384.PubMedGoogle Scholar
  104. Williams, F. D., and Schwarzhoff, R. H., 1978, Nature of the swarming phenomenon in Proteus Annu. Rev. Microbiol. 32:102–122.Google Scholar
  105. Williams, J. W., 1938, Bacterial growth’ spectrum’ analysis. Methods and applications, Am. J. Med. Technol. 4:58–61.Google Scholar
  106. Williams, J. W., 1939, Growth of microorganisms in shake cultures under increased oxygen and carbon dioxide tensions, Growth 3:21–33.Google Scholar
  107. Wimpenny, J. W. T., 1979, The growth and form of bacterial colonies, J. Gen. Microbiol. 114:483–486.PubMedGoogle Scholar
  108. Wimpenny, J. W. T., 1981, Spatial order in microbial ecosystems, Biol. Rev. 56:295–342.Google Scholar
  109. Wimpenny, J. W. T., 1988, The bacterial colony, in: Handbook of Laboratory Model Systems for Microbial Ecosystems (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 109–139.Google Scholar
  110. Wimpenny, J. W. T., and Abdollahi, H., 1991, Growth of a mixed culture of an obligate aerobe (Paracoccus denitrificans) and an obligate anaerobe (Desulfovibrio desulfuricans) in homogeneous and heterogeneous culture systems, Microb. Ecol. 22:1–13.Google Scholar
  111. Wimpenny, J. W. T., and Coombs, J. P., 1983, The penetration of oxygen into bacterial colonies, J. Gen. Microbiol. 129:1239–1242.PubMedGoogle Scholar
  112. Wimpenny, J. W. T., and Jones, D. E., 1988, One-dimensional gel-stabilized model systems, in: Handbook of Laboratory Model Systems for Microbial Ecosystems, Vol. 2 (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 1–30.Google Scholar
  113. Wimpenny, J. W. T., and Lewis, M. W. A., 1977, The growth and respiration of bacterial colonies, J. Gen. Microbiol. 103:9–18.PubMedGoogle Scholar
  114. Wimpenny, J. W. T., and Parr, J. A., 1979, Biochemical differentiation in large colonies of Enterobacter cloacae, J. Gen. Microbiol. 114:487–489.PubMedGoogle Scholar
  115. Wimpenny, J. W. T., and Waters, P., 1984, Growth of microorganisms in gel-stabilised two-dimensional gradient systems, J. Gen. Microbiol. 130:2921–2926.PubMedGoogle Scholar
  116. Wimpenny, J. W. T., and Waters, P., 1987, The use of gel-stabilized gradient plates to map the responses of microorganisms to three or four environmental factors varied simultaneously, FEMS Microbiol. Lett. 40:263–267.Google Scholar
  117. Wimpenny, J. W. T., Coombs, J. P., Lovitt, R. W., and Whittaker, S. G., 1981, A gel-stabilized model ecosystem for investigating microbial growth in spatially ordered solute gradients, J. Gen. Microbiol. 127:277–287.Google Scholar
  118. Wimpenny, J. W. T., Lovitt, R. W., and Coombs, J. P., 1983, Laboratory model systems for the investigation of spatially and temporally organised microbial ecosystems, Symp. Soc. Gen. Microbiol. 34:67–116.Google Scholar
  119. Wimpenny, J. W. T., Jaffe, S., and Coombs, J. P., 1984, Periodic growth phenomena in spatially organised microbial systems, in: Modelling of Patterns in Time and Space, Lecture Notes in Biomathematics, Vol. 55 (W. Jäger and J. D. Murray, eds.), Berlin: Springer-Verlag, Berlin, pp. 388–405.Google Scholar
  120. Wolfe, A. J., and Berg, H. C., 1989, Migration of bacteria in semisolid agar, Proc. Natl. Acad. Sci. USA 86:6973–6977.PubMedGoogle Scholar
  121. Zaikin, A. N., and Zhabotinsky, A. M., 1970, Concentration wave propagation in two-dimensional liquid-phase self oscillating systems, Nature 225:535.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Julian W. T. Wimpenny
    • 1
  1. 1.School of Pure and Applied BiologyUniversity of Wales, College of CardiffCardiffUK

Personalised recommendations