The Trace Formulas and Some Asymptotic Estimates of the Resolvent Kernel of the Three-Dimensional Schroedinger Equation

  • V. S. Buslaev
Part of the Topics in Mathematical Physics book series (TOMP, volume 1)


The present paper is devoted to a detailed description of the results summarized in the author’s preceding note [1]. The aim of [1] was the generalization to the three-dimensional case of the trace formulas obtained earlier for the one-dimensional Schroedinger operator with a potential decreasing at infinity [2].


Asymptotic Expansion Asymptotic Formula Trace Formula Asymptotic Expression Leading Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Buslaev, Trace formulas for the three-dimensional Schroedinger operator, Dokl. Akad.Nauk SSSR, 143 (5) (1962).Google Scholar
  2. 2.
    V. S Buslaev and L.D. Faddeev, Trace Formulas for the differential Sturm—Liouville operator, Dokl.Akad.Nauk SSSR, 132 (1) (1960).Google Scholar
  3. 3.
    I.M. Gel’fand and B.M. Levitan, A simple identity for the eigenvalues of a secondorder differential operator, Dokl.Akad.Nauk, 88 (4) (1953).Google Scholar
  4. 4.
    L.A. Dikii, Trace formulas for the Sturm—Liouville differential operators, Usp. Matem. Nauk, 13 (3) (1958).Google Scholar
  5. 5.
    M.I. Lomonosov, Differences of traces of one-dimensional operators defined over an infinite interval, Tr. ARTA, No. 31. Khar’kov (1957).Google Scholar
  6. 6.
    M.I. Lomonosov, Differences of traces of two Schroedinger operators, Tr. ARTA, No. 31. Khar’kov (1957).Google Scholar
  7. 7.
    N. Levinson, On the uniqueness of potential in a Schroedinger equation for a given asymptotic phase, Kgl. Danske. Videnskab Selskab, Mat.-Fys. Medd., 25 (9) (1949).Google Scholar
  8. 8.
    R. Newton, Remarks on scattering theory, Phys. Rev., 101 (6) (1956).Google Scholar
  9. 9.
    L.D. Faddeev, Expressions for the trace of the difference of two Sturm—Liouville singular differential operators, Dokl. Akad. Nauk SSSR, 115 (5) (1957).Google Scholar
  10. 10.
    I. Percival, Energy moments of scattering phase shifts, Proc. Phys. Soc., 80 (6) (1962).Google Scholar
  11. 11.
    I. Percival and M. Roberts, Energy moments of scattering phase shifts. II. Higher partial waves, Proc. Phys. Soc., 82 (4) (1963).Google Scholar
  12. 12.
    M. Roberts, Energy moments and cross sections for a Gaussian potential, Proc. Phys. Soc., 82 (4) (1963).Google Scholar
  13. 13.
    M.G. Krein, Trace formulas in perturbation theory, Matem. sb., 33(75), No. 3 (1953).Google Scholar
  14. 14.
    M.I. Lomonosov, The number of eigenvalues in the quantum scattering problem, Tr. ARTA, No. 63. Khar’kov (1962).Google Scholar
  15. 15.
    M. Sh. Birman and M.G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (3) (1962).Google Scholar
  16. 16.
    F.A. Berezin, The trace formula for the many-particle Schroedinger equation, Dokl. Akad.Nauk SSSR, 157 (5) (1964).Google Scholar
  17. 17.
    A. Ya. Povzner, Expansion of an arbitrary function in terms of the eigenfunctions of the operator Δu + qu, Matem. sb., 32(74), No. 1 (1953).Google Scholar
  18. 18.
    A. Ya. Povzner, Expansions in terms of the eigenfunctions of the Schroedinger equation, Dokl.Akad.Nauk SSSR, 104 (3) (1955).Google Scholar
  19. 19.
    T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure and Appl. Math., 12 (3) (1959).Google Scholar
  20. 20.
    T. Ikebe, Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rat. Mech. Anal., 5 (1) (1960).Google Scholar
  21. 21.
    A. O. Gel’fond, Growth properties of the eigenvalues of homogeneous integral equations, Appendix to: W. V. Lovitt, Linear Integral Equations [Russian translation], GITTL, Moscow (1957).Google Scholar
  22. 22.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space, Izd. Nauka (1966).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • V. S. Buslaev

There are no affiliations available

Personalised recommendations