Stieltjes Double-Integral Operators

  • M. Sh. Birman
  • M. Z. Solomyak
Part of the Topics in Mathematical Physics book series (TOMP, volume 1)


In the present paper we investigate operators in separable Hilbert space H given by integrals of the type
$$ Q = \int {\int \varphi } \left( {\lambda ,\mu } \right)d{F_\mu }Td{E_\lambda }. $$


Integral Operator Interpolation Theorem Volterra Operator Spectral Shift Function Bounded Borel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. L. Daletskii and S.G. Krein, The integration and differentiation of functions of Hermitian operators and applications to perturbation theory, Transactions of the Seminar on Functional Analysis, Voronezh, Vol. 1 (1956), pp. 81–105.Google Scholar
  2. 2.
    M. Sh. Birman, On the existence of wave operators, Izv. Akad. Nauk SSSR, seriya matem., 27 (4): 883–906 (1963).MathSciNetMATHGoogle Scholar
  3. 3.
    M. Sh. Birman, Local criterion of the existence of wave operators, Dokl.Akad.Nauk SSSR, 159 (3): 485–488 (1964).MathSciNetGoogle Scholar
  4. 4.
    R. Schatten, A Theory of Cross Spaces. Princeton, New Jersey (1950).MATHGoogle Scholar
  5. 5.
    I. Ts. Gokhberg and M.G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators. Izd. Nauka (1966).Google Scholar
  6. 6.
    M.S. Brodskii, The triangle representations of completely continuous operators with one spectral point, Usp. Matem. Nauk, Vol. 16, 1 (97): 135–141 (1961).MathSciNetGoogle Scholar
  7. 7.
    I. Ts. Gokhberg and M.G. Krein, Completely continuous operators with a spectrum concentrated at zero, Dokl.Akad.Nauk SSSR, 128 (2): 227–230 (1959).MathSciNetMATHGoogle Scholar
  8. 8.
    V.I. Matsaev, On one class of completely continuous operators, Dokl.Akad.Nauk SSSR, 139 (3): 548–551 (1961).MathSciNetGoogle Scholar
  9. 9.
    V.I. Matsaev, Volterra operators obtained by the perturbation of self-adjoint operators, Dokl. Akad. Nauk SSSR, 139 (4): 810–813 (1961).MathSciNetGoogle Scholar
  10. 10.
    I. Ts. Gokhberg and M.G. Krein, Volterra operators with an imaginary component, Dokl. Akad. Nauk SSSR, 139 (4): 779–782 (1961).MathSciNetGoogle Scholar
  11. 11.
    M.S. Brodskii, I. Ts. Gokhberg, M.G. Krein, and V.I. Matsaev, Some new results in the theory of nonself-adjoint operators, Transactions of the Fourth All-Union Math. Conference, Vol. 2 (1962), pp. 261–271.Google Scholar
  12. 12.
    M.Sh. Birman and M. Z. Solomyak, Stieltjes double-integral operators, Dokl.Akad.Nauk SSSR, 165 (6) (1965).Google Scholar
  13. 13.
    S.G. Mikhlin, Multidimensional Singular Integrals and Integral Equations, Fizmatgiz (1962).Google Scholar
  14. 14.
    A.I. Plesner and V.A. Rokhlin, Spectral theory of linear operators, Part II, Usp. Matem. Nauk, Vol. 1, 1 (11): 71–191 (1946).MATHGoogle Scholar
  15. 15.
    N.I. Akhiezer and I.M. Glazman, The Theory of Linear Operators in Hilbert Space, Gostekhizdat (1950).Google Scholar
  16. 16.
    B. Ya. Levin, The Distribution of the Roots of Integral Functions, Gostekhizdat (1956).Google Scholar
  17. 17.
    I. Fredholm, Sur une class d’equations fonctionelles, Acta Math., 27: 365–390 (1903).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    E. Hille and J.D. Tamarkin, On the characteristic values of linear integral equations, Acta Math., 57: 1–76 (1931).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. O. Gel’fond, On the growth of eigenvalues of homogeneous integral equations, appendix to: W. V. Lovitt, Linear Integral Equations [Russian translation], GITTL, Moscow 0_957).Google Scholar
  20. 20.
    T. Carleman, Zur Theorie der linearen Integralgleichungen, Math. Zs. 9 (3–4): 196–217 (1921).Google Scholar
  21. 21.
    I. Ts. Gokhberg and M.G. Krein, On the theory of the triangle representation of nonselfadjoint operators, Dokl. Akad. Nauk SSSR, 137 (5): 1034–1037 (1961).Google Scholar
  22. 22.
    V.I. Smirnov, A Course in Higher Mathematics, Vol. 5, Gostekhizdat (1947).Google Scholar
  23. 23.
    V.T. Kondurar’, Sur l’integrale de Stieltjes, Matem. sb., 2 (44): 361–366 (1937).Google Scholar
  24. 24.
    A. Sigmund, Trigonometric Series, Vols. I and II. [Russian translation]. Izd. Mir (1965).Google Scholar
  25. 25.
    M.G. Krein, The trace formula in perturbation theory, Matem. sb., Vol. 33, 75(3): 597626 (1953).Google Scholar
  26. 26.
    M.G. Krein, Perturbation determinants and the trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR, 144 (2): 268–271 (1962).MathSciNetGoogle Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • M. Sh. Birman
  • M. Z. Solomyak

There are no affiliations available

Personalised recommendations