The Singular Numbers of the Sum of Completely Continuous Operators

  • S. Yu. Rotfel’d
Part of the Topics in Mathematical Physics book series (TOMP, volume 3)

Abstract

The relation between the singular numbers (s-numbers) of a sum of completely continuous operators and the singular numbers of the individual terms has been studied in [1–4]. In particular, the results of [1] allow us to introduce a symmetric norm (see [5]) in some ideals of the ring R of all bounded linear operators acting in Hilbert space.

Keywords

Nonin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ky Fan, Proc. Nat. Acad. Sci., USA, Vol. 36, No. 1 (1950).Google Scholar
  2. 2.
    V. B. Lidskii, Dokl. Akad. Nauk SSSR, Vol. 75, No. 6 (1950).Google Scholar
  3. 3.
    A. Amir-Moez, Duke Math. J., Vol. 23, No. 3 (1956).Google Scholar
  4. 4.
    A. S. Markus, Uspekhi Mat. Nauk, Vol. 19, No. 4 (1964).Google Scholar
  5. 5.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-adjoint Operators [in Russian], Izd. Nauka (1966).Google Scholar
  6. 6.
    M. Sh. Birman and M. Z. Solomyak, “Stieltjes double-integral operators,” in: Topics in Mathematical Physics, Vol. 1, Consultants Bureau, New York (1967).Google Scholar
  7. 7.
    M. Sh. Birman and M. Z. Solomyak, “Stieltjes double-integral operators. II,” in Topics in Mathematical Physics, Vol. 2, Consultants Bureau, New York (1968).Google Scholar
  8. 8.
    M. Sh. Birman and M. Z. Solomyak, Vestnik LGU, No. 7 (1967).Google Scholar
  9. 9.
    S. Yu. Rotfel’d, Funktsional. Analiz i Ego Prilozhen., Vol. 1, No. 3 (1967).Google Scholar

Copyright information

© Consultants Bureau, New York 1969

Authors and Affiliations

  • S. Yu. Rotfel’d

There are no affiliations available

Personalised recommendations