Maturation of Thyroid Hormone Actions

  • Delbert A. Fisher
  • Daniel H. Polk
Part of the NATO ASI Series book series (NSSA, volume 161)


There is now a large literature to support the view that thyroid hormones have little role in fetal growth and development (1–5). Athyroid human newborns have few if any signs of their chemical hypothyroidism, and length, weight and head circumference at birth are normal for gestation age. Moreover, IQ and neurological function parameters are normal in the vast majority of hypothyroid newborns detected by chemical screening and treated in the early neonatal period (6,7). Selected intrauterine effects of thyroid hormone deficiency have been recognized. Serum TSH concentrations are regularly elevated at birth in hypothyroid infants indicating active negative feedback control of pituitary TSH secretion by thyroid hormone in utero (2–5,8). Also, newborn thermogenesis may be mildly impaired, and the fall in body temperature in the athyroid human infant may be more marked than in a normal, euthyroid neonate (2–4). Thermogenesis in the newborn is largely a function of brown adipose tissue (BAT), and recent evidence in the sheep suggests that norepinephrine-stimulated oxygen consumption in newborn BAT is obtunded by hypothyroidism (9,10).


Thyroid Hormone Brown Adipose Tissue Congenital Hypothyroidism Thyroid Hormone Receptor Brain Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher, D.A., Thyroid hormone effects on growth and development, in: “Pediatric Thyroidology”, F. Delange, D.A. Fisher and P. Malvaux, eds, Basel Karger, (1985).Google Scholar
  2. 2.
    J. Letarte, H. Guyda, and J.H. Dussault, Clinical biochemical and radiological features of neonatal hypothyroid infants, in: “Neonatal Screening”, J.H. Dussault, G.N. Burrow, eds, Raven Press, New York, p. 225, (1980).Google Scholar
  3. 3.
    D.A. Price, R. Ehrlich, and P.G. Walfish, Congenital hypothyroidism, clinical and laboratory characteristics of infants detected by neonatal screening. Arch Dis Child 56: 845 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Larsson, J.G. Ljunggren, K. Ekman, A. Nilsson, P. Olin, and G. Bodegard, Screening for congenital hypothyroidism. Il Clinical findings in infants with positive screening tests. Acta Paediatr Scand 70: 147, (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Letarte, and S. LaFranchi, Clinical features of congenital hypothyroidism, in: “Congenital Hypothyroidism”, P. Walker and J.H. Dussault, eds, Marcel Dekker, p. 351 (1983).Google Scholar
  6. 6.
    J. Glorieux, J.H. Dussault, J. Morissette, M. Desjardins, J. Letarte, and H. Guyda, Follow up at ages 5 and 7 years on mental development in children with hypothyroidism detected by Quebec screening program. J Pediatr 107: 913, (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    New England Congenital Hypothyroid Collaborative. Neonatal screening: status of patients at 6 years of age. J Pediatr 107: 915, (1985).CrossRefGoogle Scholar
  8. 8.
    R.B. McCrossin, L.J. Sheffield, and É.F. Robertson, Persisting abnormality in the pituitary-thyroid axis in congenital hypothyroidism, in: “Thyroid Research”, Canberra, Australian Academy of Science, Vol. VIII, p. 36, (1980).Google Scholar
  9. 9.
    A.H. Klein, A. Reviczky, and J.F. Padbury, Thyroid hormones augment catecholamine stimulated brown adipose tissue thermogenesis in the ovine. Endocrinology 114: 1065 (1984).Google Scholar
  10. 10.
    D.H. Polk, J.F. Padbury, C.C. Callegari, J.P. Newnham, A.L. Reviczky, A.H. Klein, and D.A. Fisher, Effect of fetal thyroidectomy on newborn thermogenesis in lambs. Pediatr Res 21: 453, (1987).Google Scholar
  11. 11.
    T.P. Foley, Jr., Sporadic congenital hypothyroidism, in: “Congenital Hypothyroidism”, J.H. Dussault and P. Walker, eds, Marcel Dekker, New York, p. 231, (1983).Google Scholar
  12. 12.
    D.A. Fisher, J.H. Dussault, J. Sack, and I.J. Chopra, Ontogenesis of pituitary-thyroid function and metabolism in man, sheep and rat. Rec Prog Horm Res 33: 59, (1977).Google Scholar
  13. 13.
    A. Perez-Castillo, J. Bernal, B. Ferreiro, and T. Pans, The early ontogenesis of thyroid hormone receptors in the rat fetus. Endocrinology 117: 2457, (1985).Google Scholar
  14. 14.
    J.D. Dubois, and J.H. Dussault, Ontogenesis of thyroid function in the neonatal rat. Thyroxine and triiodothyronine production rates. Endocrinology 101: 435, (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    A.R.C. Harris, S.L. Fang, J. Prosky, L.E. Braverman, and A.G. Vagenakis. Decreased outer ring monodeiodination of thyroxine and reverse triiodothyronine in the fetal and neonatal rat. Endocrinology 103: 2216 (1978).Google Scholar
  16. 16.
    P. Walker, J.D. Dubois, and J.H. Dussault, Free thyroid hormone concentrations during development in the rat, Pediatr Res 14: 247, (1980).Google Scholar
  17. 17.
    H.L. Schwartz, Effect of thyroid hormone on growth and development, in: “Molecular Basis of Thyroid Hormone Action”, J. Oppenheimer and H. Samuels, eds., Academic Press, New York, p 413, (1983).Google Scholar
  18. 18.
    J. Legrand, Thyroid hormone effects on growth and development, in: “Thyroid Hormone Metabolism”, G. Henneman, ed, Marcel Dekker, New York, p 503, (1986).Google Scholar
  19. 19.
    P. Walker, Developmental action of thyroid hormones, in: “Congenital Hypothyroidism”, J.H. Dussault and P. Walker, eds, Marcel Dekker, New York, p. 63, (1983).Google Scholar
  20. 20.
    G. Morreale de Escobar, F. Morreale de Escobar, and A.P. Ruiz-Marcos, Thyroid hormone and the developing brain, in: “Congenital Hypothyroidism”, J.H. Dussault and P. Walker, eds, Marcel Dekker, New York, p. 85, (1983).Google Scholar
  21. 21.
    A.F. Glassock and C.S. Nicoll, Hormonal control of growth in the infant rat. Endocrinology 109: 176 (1981).Google Scholar
  22. 22.
    F. Herves, G. Morreale de Escobar, and F. Escobar del Rey, Rapid effects of a single small dose of I-thyroxine and triiodo-l-thyronine on growth hormone as studied in the rat by radioimmunoassay. Endocrinology 97: 91 (1975).Google Scholar
  23. 23.
    R.E. Steele and D.R. Wekstein, Influence of thyroid hormone on homeothermic development of the rat, Amer J Physiol 222: 1528 (1972).Google Scholar
  24. 24.
    J.A. Whitsett, C. Darovec-Beckerman, J. Pollinger, and J.J. Moore, Jr., Ontogeny of beta adrenergic receptors on the rat lung: effects of hypothyroidism, Pediatr Res 16: 381 (1982).Google Scholar
  25. 25.
    J.A. Whitsett, J. Pollinger, and S. Matz, Beta adrenergic receptors and catecholamine sensitive adenylate cyclase in developing rat ventricular myocardium: effect of thryoid status. Pediatr Res 16: 463 (1982).Google Scholar
  26. 26.
    P. Hahn and S. Hassanali, The effect of 3, 5, 3’-triiodothyronine on phosphoenol-pyruvate carboxykinase, fatty acid synthetase and malic enzyme activity of liver and brown fat of fetal and neonatal rats. Biol Neonate 41: 1 (1982).Google Scholar
  27. 27.
    P. Coulombe, J. Ruel, and J.H. Dussault, Effects of neonatal hypo and hyper-thyroidism on pituitary growth hormone content in the rat, Endocrinology 107: 2027 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Walker, P. Coulombe, and J.H. Dussault, Effects of triiodothyronine on thyrotropin-releasing hormone-induced thyrotropin release in the neonatal rat. Endocrinology 107: 1731 (1980).Google Scholar
  29. 29.
    P. Walker and J.H. Dussault, Hypothalamic somatostatin and pituitary and serum growth hormone concentrations during postnatal development in rats exposed chronically to propylthiouracil or a low iodine diet, J Devel Physiol 2: 111 (1980).Google Scholar
  30. 30.
    R.M. Smith, A.J. Patel, A.E. Kingsbury, A. Hunt, and R. Balazs, Effect of thyroid state on brain development: beta adrenergic receptors and 5’ nucleotidase activity. Brain Res 198: 375 (1980).Google Scholar
  31. 31.
    S.B. Hoath, J. Lakshmanan, S.M. Scott, and D.A. Fisher, Effect of thyroid hormones on epidermal growth factor concentration in neonatal mouse skin. Endocrinology 112: 308 (1983).Google Scholar
  32. 32.
    S.M. Scott, P.H. Chou, and D.A. Fisher, Nerve growth factor concentration in a congenitally hypothyroid mouse model hyt/hyt and its responsivity to thyroxine treatment, J Devel Physiol 5: 413 (1982).Google Scholar
  33. 33.
    J. Lakshmanan, U. Berl, J. Perheentupa, A. Grueters, H. Kim, T. Macaso, and D.A. Fisher, Acquisition of submandibular gland nerve growth factor responsiveness to thyroxine in neonatal mice. J Neurosci Res 12: 71 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Perheentupa, J. Lakshmanan, and D.A. Fisher, Epidermal growth factor in neonatal mouse urine: maturative effective of thyroxine. Pediatr Res 18: 1080 (1984).Google Scholar
  35. 35.
    J. Lakshmanan, J. Perheentupa, S.B. Hoath, H. Kim, A. Grueters, C. Odell, and D.A. Fisher, Epidermal growth factor in mouse ocular tissue: effect of thyroxine and exogenous EGF. Pediatr Res 19: 315 (1985).Google Scholar
  36. 36.
    S.B. Hoath, J. Lakshmanan, and D.A. Fisher, Epidermal growth factor binding to neonatal mouse skin explants and membrane preparations: effect of triiodothyronine. Pediatr Res 19: 277 (1985).Google Scholar
  37. 37.
    J. Lakshmanan, J. Perheentupa, T. Macaso, and D.A. Fisher, Acquisition of urine, kidney and submandibular gland epidermal growth factor responsiveness to thyroxine adminstration to neonatal mice. Acta Endocr i no 1109: 511 (1985).Google Scholar
  38. 38.
    J. Alm, S. Scott, and D.A. Fisher, Epidermal growth factor receptor ontogeny in mice with congenital hypothyroidism, J Devel Physiol 8: 377 (1986).Google Scholar
  39. 39.
    P. Walker, Thyroxine increases submandibular gland nerve growth factor and epidermal growth factor concentrations precociously in neonatal mice: evidence for thyroid hormone mediated growth factor synthesis, Pediatr Res 20: 281 (1986)Google Scholar
  40. 40.
    A. Rami, A. Rabie, and A.J. Patel, Thyroid hormone and development of the rat hippocampus: cell acquisition in the dentate gyrus, Neuroscience 19: 1207 (1986).Google Scholar
  41. 41.
    A. Rami, A.J. Patel, and A. Rabie, Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells, Neuroscience 19: 1217 (1986).Google Scholar
  42. 42.
    J.H. Oppenheimer, H.L. Schwartz, C.N. Mariash, W.B. Kinlaw, N.C.W. Wong, and H.C. Freake, Advances in our understanding of thyroid hormone action at the cellular level, Endocr Rev 8: 288 (1987).Google Scholar
  43. 43.
    H.H. Samuels, B.M. Forman, Z.O. Horowitz, and Z.S. Ye, Regulation of gene expression by thyroid hormone, J Clin Invest 81: 957 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    R.M. Gubits, P.A. Shaw, E.W. Gresik, A. Onetti-Muda, and T. Barka, Epidermal growth factor gene expression is regulated differently in mouse kidney and submandibular gland, Endocrinology 119: 1382 (1986).Google Scholar
  45. 45.
    V.R. Mukku, Regulation of epidermal growth factor receptor levels by thyroid hormones, J Biol Chem 259: 6453 (1984).Google Scholar
  46. 46.
    K. Sterling, G.A. Campbell, and M.A. Brenner, Purification of the mitochondrial triiodothyronine receptor from rat liver, Acta Endocrinol 105: 391 (1984).Google Scholar
  47. 47.
    J. Segal and S.H. Ingbar, Specific binding sites for triiodothyronine in the plasma membrane of rat thymocytes, J Clin Invest 70: 919 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    D.H. Polk, D. Cheromcha, A. Reviczky, and D.A. Fisher, Nuclear thyroid hormone receptors: ontogeny and thyroid hormone effects in fetal ovine liver and brain, submitted.Google Scholar
  49. 49.
    B. Ferreiro, J. Bernal, and B.J. Potter, Ontogenesis of thyroid hormone receptor in foetal lambs. Acta Endocrinol (Copenh) 116: 205 (1987).Google Scholar
  50. 50.
    G.H. McIntosh, K.I. Baghurst, B.J. Potter, and B.S. Hetzel, Foetal thyroidectomy and brain development in the sheep, Neuropath Appl Neurobiol 5: 363 (1979).Google Scholar
  51. 51.
    G.H. McIntosh, B.J. Potter, and B.S. Hetzel, The effects of 98 day fetal thyroidectomy on brain development in the sheep, J Comp Path (1982).Google Scholar
  52. 52.
    B.J. Potter, G.H. McIntosh, M.T. Mano, D.M. Martin, P.F. Rogers, C. Hua, B.G. Cragg, and B.S. Hetzel, The effect of maternal thyroidectomy prior to conception on fetal brain development in sheep. Acta Endocrinol 112: 93 (1986).Google Scholar
  53. 53.
    A. Erenberg, K. Omori, J.H. Menkes, W. Oh, and D.A. Fisher, Growth and development of the thyroidectomized ovine fetus., Pediatr Res 88: 783 (1974).Google Scholar
  54. 54.
    D.H. Polk, S.Y. Wu, C. Wright, A.L. Reviczky, and Fisher, D.A., Ontogeny of thyroid hormone effect on tissue 5’-monodeiodinase activity in fetal sheep. Am J Physiol: Endocr Metab 17: E337 (1988).Google Scholar
  55. 55.
    S. Agentin, J. Growin, and M. Nemer, Thyroid hormone stimulates rat pro-natriodilatin mRNA levels in primary cardiocyte cultures, Biochem Biophys Res Comm 146: 1336 (1987).Google Scholar
  56. 56.
    R. Castro, D.H. Polk, R.W. Lam, R.D. Leake, and D.A. Fisher, Atrial natriuretic factor: effect of thyroidectomy on concentration in fetal sheep atria and ventricles, Pediatr Res 23:274A (1988), abstract.Google Scholar
  57. 57.
    J.A. Breall, A.M. Rudolph, and M.P. Heymann, Role of thyroid hormone in postnatal circulatory and metabolic adjustments, J Clin Invest 73: 1418 (1984).PubMedCrossRefGoogle Scholar
  58. 58.
    J.F. Padbury, A.H. Klein, D.H. Polk, R.W. Lam, C. Hobel, and D.A. Fisher, Effect of thyroid status on lung and heart beta-adrenergic receptors in fetal and newborn sheep, Dev Pharmacol Ther 9: 44 (1986).PubMedGoogle Scholar
  59. 59.
    T.P. Segerson, J. Kauer, H.C. Wolfe, H. Mobtaker, P. Wu, I.M.D. Jackson, and R.M. Lechan, Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238: 78 (1987).Google Scholar
  60. 60.
    D. Engler, M.F. Scanlon, and I.M.D. Jackson, Thyrotropin releasing hormone in the systemic circulation of the neonatal rat is derived from the pancreas and other extraneural tissues, J Clin Invest 67: 800 (1981).PubMedCrossRefGoogle Scholar
  61. 61.
    D.H. Polk, A.L. Reviczky, R.W.Lam, and D.A. Fisher, Thyrotropin releasing hormone: effect of thyroid status on tissue concentrations in fetal sheep, Clin Res 36: 203A (1988).Google Scholar
  62. 62.
    C. Weinberger, C.C. Thompson, E.S. Ong, R. Lebo, G.H. Gruol, and R.M. Evans, The c-erb-A gene encodes a thyroid hormone receptor, Nature 324: 641 (1986).Google Scholar
  63. 63.
    J. Sap, A. Munoz, K. Damm, Y. Goldberg, J. Ghyseal, A. Leutz, H. Beng, and B. Vennstrom, The c-erb-A protein is a high affinity receptor for thyroid hormone, Nature 324: 635 (1986).Google Scholar
  64. 64.
    C.C. Thompson, C. Weinberger, R. Lebo, and R.M. Evans, Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system, Science 237: 1610 (1987).Google Scholar
  65. 65.
    D. Benbrook and M. Pfahl, A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library, Science 238: 788 (1987).Google Scholar
  66. 66.
    D.A. Fisher and A.H. Klein, Thyroid development and disorders of thyroid function in the newborn, New Eng J Med 304: 702 (1981).PubMedCrossRefGoogle Scholar
  67. 67.
    J. Bernal and F. Pekonen, Ontogenesis of nuclear 3, 5, 3’ triiodothyronine receptor in human fetal brain, Endocrinology 114: 677 (1984).Google Scholar
  68. 68.
    L.W. Gonzales and P.L. Ballard, Identification and characterization of nuclear 3, 5, 3’ triiodothyronine binding sites in fetal human lung, J Clin Endocr Metab 53: 21 (1981).PubMedCrossRefGoogle Scholar
  69. 69.
    P. Leduque, S. Aratan-Spire, P. Czernichow, and P.M. Dubois, Ontogenesis of thyrotropin releasing hormone in human fetal pancreas, J Clin Invest 78: 1028 (1986).Google Scholar
  70. 70.
    D.A. Fisher and B. Foley, Early treatment of congenital hypothyroidism, Pediatrics in press.Google Scholar
  71. 71.
    J. Rovet, R. Ehrlich and D. Sorbara, Intellectual outcome in children with fetal hypothyroidism, J Pediatrics 110: 700 (1987).CrossRefGoogle Scholar
  72. 72.
    J. Glorieux, M. Desjardins, and J.H. Dussault, Useful parameters to predict the eventual outcome of hypothyroid children, Pediatr Res, in press, (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Delbert A. Fisher
    • 1
  • Daniel H. Polk
    • 2
  1. 1.Department of PediatricsUCLA School of Medicine Harbor-UCLA Medical CenterTorranceUSA
  2. 2.Department of PediatricsDrew University Medical School Martin Luther King Medical CenterLos AngelesUSA

Personalised recommendations