Role of the Placenta in Fetal Thyroid Homeostasis

  • Charles H. Emerson
Part of the NATO ASI Series book series (NSSA, volume 161)


The placenta is usually regarded as a conduit through which maternal nutrients pass to the fetus, or as a barrier that allows for fetal development in an insulated environment. Thus, with respect to thyroid function, it is well known that the placenta transfers iodide to, and excludes thyrotropin from, the fetal circulation. It is less recognized that the placenta is a metabolically active organ, and that this activity is important for the conversion of fetal substrates. In order to relate this aspect of placenta physiology to fetal thyroid homeostasis it is necessary to first review thyroid hormone profiles and pharmacokinetics in the fetus.


Maternal Circulation Fetal Sheep Metabolic Clearance Rate Fetal Plasma Deiodinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuid, J.A., Stinson, A. and Larsen, P.R., 1973, Serum triiodothyronine and thyroxine in the neonate and the acute increase in these hormones following delivery, J. Clin. Invest., 52: 1195.Google Scholar
  2. Bachrach, L.K., Kudlow, J.E., Silverberg, J.D.H., Kent, G. and Burrow, G.N., 1982, Treatment of ovine cretinism in utero with 3,5-dimethyl-3’-isopropyl1-thyronine, Endocrinology, 111: 132.PubMedCrossRefGoogle Scholar
  3. Ballard, P.L., Benson, B.J.,, Brehier, A., Carter, J.P., Kriz, B.M. and Jorgensen, E.C., 1980, Transplacental stimulation of lung development in the rabbit by 3,5-dimethyl-3’-isopropyl-L-thyronine, J. Clin. Invest., 65: 1407.Google Scholar
  4. Borges, M., LaBourene, J. and Ingbar, S.H., 1980, Changes in hepatic iodothyronine metabolism during ontogeny of the chick embryo, Endocrinology, 107: 1751.PubMedCrossRefGoogle Scholar
  5. Castro, M.I., Alex, S., Young, R.A., Braverman, L.E. and Emerson, C.H., 1986, Total and free serum thyroid hormone concentrations in fetal and adult pregnant and nonpregnant guinea pigs, Endocrinology, 118: 533.PubMedCrossRefGoogle Scholar
  6. Castro, M.I., Braverman, L.E., Alex, S., Wu, C.F. and Emerson, C.H., 1985, Inner-ring deiodination of 3,5,3’-triiodothyronine in the in situ perfused guinea pig placenta, J. Clin. Invest., 76: 1921.Google Scholar
  7. Chopra, I.J., Sack, J. and Fisher, D.A., 1975, 3,3’,5’-triiodothyronine (reverse T3) and 3,3’,5-triiodothyronine (T3) in fetal and adult sheep: studies of metabolic clearance rates, production rates, serum binding, and thyroidal content relative to thyroxine, Endocrinology, 97: 1080.Google Scholar
  8. Comite, F., Burrow, G.N. and Jorgensen, E.C., 1978, Thyroid hormone analogs and fetal goiter, Endocrinology, 102: 1670.PubMedCrossRefGoogle Scholar
  9. Cooper, E., Gibbons, M., Thomas, C.R.T., Lowy, C. and Burke, C.W., 1983, Conversion of thyroxine to 3,3’,5’-triiodothyronine in the guinea pig placenta, Endocrinology, 112: 1808.PubMedCrossRefGoogle Scholar
  10. Dussault, J.H., Hobel, C.J., DiStefano, J.J., Erenberg, A. and Fisher, D.A., 1972, Triiodothyronine turnover in maternal and fetal sheep, Endocrinology, 90: 1301.PubMedCrossRefGoogle Scholar
  11. El-Zaheri, M.M., Vagenakis, A.G., Hinerfeld, L., Emerson, C.H. and Braverman, L.E., 1981, Maternal thyroid function is the major determinant of amniotic fluid 3,3’,5’-triiodothyronine in the rat, J. Clin. Invest., 67: 1126.Google Scholar
  12. Emerson, C.H. and Braverman, L.E., 1984, Peripheral deiodination of thyroid hormones in placenta and fetal membranes, Horm. Met. Res. ( Suppl. ), 14: 56.Google Scholar
  13. Emerson, C.H., Bambini, G., Alex, S., Castro, M.I., Roti, E. and Braverman, L.E., 1988, The effect of thyroid dysfunction and fasting on placenta inner ring deiodinase activity in the rat, Endocrinology, 122: 809.PubMedCrossRefGoogle Scholar
  14. Fay, M., Roti, E., Fang, S.L., Wright, G.., Braverman, L.E. and Emerson, C.H., 1984, The effects of propylthiouracil, iodothyronines, and other agents on thyroid hormone metabolism in human placenta, J. Clin. Endocrinol. Metab., 58: 280.Google Scholar
  15. Fisher, D.A., Dussault, J.H., Erenberg, A. and Lam, R.W., 1972, Thyroxine and triiodothyronine metabolism in maternal and fetal sheep, Pediatr. Res., 6: 894.Google Scholar
  16. Fisher, D.A., Dussault, J.H., Hobel, C.J. and Lam, R., 1973, Serum and thyroid gland triiodothyronine in the human fetus, J. Clin. Endocrinol. Metab., 36: 397.Google Scholar
  17. Fisher, D.A. and Klein, A.H., 1981, Thyroid development and disorders of thyroid function in the newborn, N. Engl. J. Med., 304: 702.Google Scholar
  18. Harris, A.R.C., Fang, S.L., Prosky, J., Braverman, L.E. and Vagenakis, A.G., 1978, Decreased outer ring monodeiodination of thyroxine and reverse triiodothyronine in the fetal and neonatal rat, Endocrinology, 103: 2216.PubMedCrossRefGoogle Scholar
  19. Hidal, J.T. and Kaplan, M.M., 1985, Characteristics of thyroxine 5’deiodination in cultured human placental cells. Regulation by iodothyronines, J. Clin. Invest., 76: 947.Google Scholar
  20. Hultberg, B. and Sjoblad, S., 1977, Lysosomal enzymes in medium from cultured skin fibroblasts from normal individuals and patients with lysosomal diseases, Clin. Chim. Acta, 80: 79.Google Scholar
  21. Isaac, R.M., Hayek, A., Standefer, J.C. and Eaton, R.P., 1979, Reverse triiodothyronine to triiodothyronine ratio and gestational age, J. Pediatr., 94: 477.PubMedCrossRefGoogle Scholar
  22. Kaiser, C.A., Goumaz, M.O. and Burger, A.G., 1986, In vivo inhibition of the 5’-deiodinase type II in brain cortex and pituitary by reverse triiodothyronine, Endocrinology, 119: 762.PubMedCrossRefGoogle Scholar
  23. Kaplan, M.M. and Shaw, E., 1984, Type II iodothyronine 5’-deiodination by human and rat placenta in vitro, J. Clin. Endocrinol. Metab., 59: 1808.Google Scholar
  24. Nwosu, U.C., Kaplan, M.M., Utiger, R.D. and Delivoria-Papadopulos, M., 1978, Surge in fetal plasma triiodothyronine before birth in sheep, Am. J. Obstet. Gynecol., 132: 489.Google Scholar
  25. Penny, R., Sims, M.E., Campbell, W.G., Spencer, C.A. and Nicoloff, J.T., 1986, Thyroid indices arterial and venous cord blood: significantly greater levels of reverse triiodothyronine in venous blood than in arterial blood, Metabolism, 35: 645.PubMedCrossRefGoogle Scholar
  26. Ramsey, E.M. In: The Placenta:Human and Animal, edited by New York,NY: Praeger, 1982, p. 54.Google Scholar
  27. Roti, E., Fang, S.L., Green, K., Emerson, C.H. and Braverman, L.E., 1981, Human placenta is an active site of thyroxine and 3,3’,5-triiodothyronine tyrosyl ring deiodination, J. Clin. Endocrinol. Metab., 53: 498.Google Scholar
  28. Roti, E., Fang, S.L., Braverman, L.E. and Emerson, C.H., 1982, Rat placenta is an active site of inner ring deiodination of thyroxine and 3,3’,5triiodothyronine, Endocrinology, 110: 34.PubMedCrossRefGoogle Scholar
  29. Roti, E., Braverman, L.E., Fang, S.L., Alex, S., and Emerson, C.H., 1982 Ontogenesis of placental inner ring thyroxine deiodinase and amniotic fluid 3,3’,5’-triiodothyronine concentration in the rat, Endocrinology, 111: 959.PubMedCrossRefGoogle Scholar
  30. Roti, E., Gnudi, A. and Braverman, L.E., 1983, The placental transport, synthesis and metabolism of hormones and drugs which affect thyroid function, Endocr. Rev., 4: 131.Google Scholar
  31. Rudolph, A.M., 1969, The course and distribution of the foetal circulation. in: Foetal Autonomy, edited by Wolstenholme, G.E.W. and O’Connor, M. London: J. & A. Churchill,Ltd., 1969, p. 147–161.Google Scholar
  32. Sack, J., Beaudry, M., DeLamater, P.V., Oh, W. and Fisher, D.A., 1976, Umbilical cord cutting triggers hypertriiodothyroninemia and nonshivering thermogenesis in the newborn lamb, Pediat. Res. 10: 169.Google Scholar
  33. Suzuki, M., Yoshida, K., Sakurada, T., Kaise, N., Kaise, K„ Fukazawa, H., Nomura, T., Itagaki, Y., Yonemitsu, K., Yamamoto, M, Saito, S. and Yoshinaga, K., 1986, Effect of changes in thyroid state on metabolism of thyroxine by rat placenta, Endocrinol. Japon., 33: 37.Google Scholar
  34. Tamagna, E.I., Hershman, J.M. and Jorgensen, E.C., 1979, Thyrotropin suppression by 3,5-dimethyl-3’-isopropyl-L-thyronine in man, J. Clin. Endocrinol. Metab., 48: 196.Google Scholar
  35. Visser, T.J., 1980, Mechanism of inhibition of iodothyronine-5’-deiodinase by thioureylenes and sulfite, Biochim. Biophys. Acta, 611: 371.Google Scholar
  36. Visser, T.J., Leonard, J.L., Kaplan, M.M. and Larsen, P.R., 1982, Kinetic evidence suggesting two mechanisms for iodothyronine 5’-deiodination in rat cerebral cortex, Proc. Natl. Acad. Sci. USA, 79: 5080.Google Scholar
  37. Wu, S.Y., Klein, A.H., Chopra, I.J. and Fisher, D.A., 1978, Alterations in tissue thyroxine-5’-monodeiodinating activity in perinatal period, Endocrinology, 103: 235.PubMedCrossRefGoogle Scholar
  38. Yoshida, K., Suzuki, M., Sakurada, T., Shinkawa, 0., Takahashi, T., Furuhashi, N., Kaise, N., Kaise, K., Kitaoka, H., Fukazawa, H., Nomura, T., Itagaki, Y., Yamamoto, M., Saito, S. and Yoshinaga, K., 1985, Human placental thyroxine inner ring monodeiodinase in complicated pregnancy, Metabolism, 34: 535.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Charles H. Emerson
    • 1
  1. 1.University of Massachusetts School of MedicineWorcesterUSA

Personalised recommendations