Skip to main content

Some Results and Comments on Quantized Gauge Fields

  • Chapter
Recent Developments in Gauge Theories

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 59))

Abstract

A few basic facts concerning the geometry of classical gauge fields are summarized; in particular, it is asserted that a principal bundle with connection can be characterized uniquely by its “Wilson loops”. The quantization of gauge fields is then shown to consist of converting the Wilson loops into “random fields” on a manifold of oriented loops, a problem in “random geometry”. Other examples in random geometry are briefly sketched. A general theorem permitting to reconstruct quantized Wilson loops from a sequence of Schwinger functionals is stated, the quark-antiquark potential is introduced, and “disorder fields” are discussed in general terms. The status of the construction of quantized gauge fields in the continuum limit is indicated, and some random-geometrical arguments are applied to lattice gauge theories and used to derive estimates on the expectation of the Wilson loop, resp. the disorder field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Steenrod, “The Topology of Fibre Bundles,” Princeton University Press, Princeton, NJ, 1951.

    Google Scholar 

  2. J. Fröhlich, “On the Construction of Quantized Gauge Fields,” Proceedings of the Kaiserslautern conference on gauge theory, 1979, W. Rühl (ed.); to appear.

    Google Scholar 

  3. For G = (S)0(n), (S)U(n) the result was found by the author (unpublished). B. Durhuus has extended it to general, compact Lie groups, (paper to appear).

    Google Scholar 

  4. I.M. Singer, Commun. math. Phys. 60, 7, (1978), and these proceedings.

    Google Scholar 

  5. D.G. Kendall and E.F. Harding (eds.), “Stochastic Geometry,” Wiley, New York, 1977.

    Google Scholar 

  6. A. Connes, in “Mathematical Problems in Theoretical Physics,” G. Dell’Antonio, S. Doplicher and G. Jona-Lasinio (eds.), Lecture Notes in Physics 80, Springer-Verlag, Berlin—HeidelbergNew York, 1978.

    Google Scholar 

  7. B. Durhuus and J. Fröhlich, “A Connection Between v-Dimensional Yang-Mills Theory and (v-1)-Dimensional, Non-Linear a-Models,” Commun. math. Phys., to appear.

    Google Scholar 

  8. J. Fröhlich, “Random Geometry and Yang-Mills Theory,” to appear in the Proceedings of the “Colloquium on Random Fields,” Esztergom (Hungary) 1979; Lecture given at the “Strasbourg Rencontres,” 1979.

    Google Scholar 

  9. K. Wilson, Phys. Rev. D10, 2445, (1974). R. Balian, J.M. Drouffe and C. Itzykson, Phys. Rev. D10, 3376, (1974), D11, 2098, (1975), D11, 2104, (1975). K. Osterwalder and E. Seiler, Ann. Phys.(N.Y.) 110, 440, (1978).

    Google Scholar 

  10. D. Brydges, J. Fröhlich and E. Seiler, Ann. Phys. (N.Y.)121, 227 (1979); Nucl. Phys. B152, 521, (1979).

    ADS  Google Scholar 

  11. M. Reed and B. Simon, “Methods of Modern Mathematical Physics,” Vol. IV, Academic Press, New York, 1978; (page 209 ).

    MATH  Google Scholar 

  12. See e.g. “Dual Theory,” M. Jacob (ed.), North Holland, Amsterdam 1974; R. Giles and C.B. Thorn, Phys. Rev. D16, 366, (1977).

    Google Scholar 

  13. Y. Nambu, Phys A. Neveu, Phys. Letters 80B, 372, (1979); J.-L. Gervais and . Letters 80B, 255, (1979); F. Gliozzi, T. Regge and M.A. Virasoro, Phys. Letters 81B, 178, (1979). The lattice approach presented in §3, (II),(III) and other examples in “random geometry” are also studied in unpublished work of the author briefly summarized in 181.

    Google Scholar 

  14. K. Osterwalder and R. Schrader, Commun. math. Phys. 31, 83, (1973), 42, 281, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Glaser, Commun. math. Phys. 37, 257, (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Details concerning this theorem and its proof will appear in work with H. Epstein, K. Osterwalder and E. Seiler.

    Google Scholar 

  17. J. Fröhlich, unpublished,(1974),and preprint to appear. The relevant results can also be inferred from: V. Glaser, in “Problems of Theoretical Physics,” p. 69, “Nauka,” Moscow, 1969.

    Google Scholar 

  18. J. Bisognano and E. Wichmann, J. Math. Phys. 16, 985, (1975).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E. Seiler, Phys. Rev. D18, 482, (1978).

    ADS  Google Scholar 

  20. J. Fröhlich, in “Les Méthodes Mathématiques de la Théorie Quantique des Champs,” F. Guerra, D.W. Robinson, R. Stora,(eds.), Editions du C.N.R.S., Paris, 1976. Commun. math. Phys. 47, 269, (1976) and 66, 223, (1979). (Results for two-and three-dimensional models go back to spring 1975 ).

    Google Scholar 

  21. G. ‘t Hooft, Nucl. Phys. B138, 1, (1978).

    Article  ADS  Google Scholar 

  22. M. Jimbo, T. Miwa and M. Sato,“Holonomic Quantum Fields I, II, III,…” Publ. RIMS 14, 223, (1977), 15, 201, (1979), and Preprints, Kyoto 1977–1979.

    Google Scholar 

  23. G. Mack and V. Petkova,“Comparison of Lattice Gauge Theories with Gauge Group 712 and SU(2),”Preprint 1978; and “7L2 Monopoles in the Standard SU(2) Lattice Gauge Theory Model,”Preprint 1979.

    Google Scholar 

  24. L. Yaffe,“Confinement in SU(N) Lattice Gauge Theories,”Preprint 1979.

    Google Scholar 

  25. See ref. 12, in particular 121 and refs. given there; also refs. 39,40 and the contribution of J.-L. Gervais and A. Neveu to these proceedings.

    Google Scholar 

  26. D. Brydges, J. Fröhlich and E. Seiler,“On the Construction of Quantised Gauge Fields, II,”to appear in Commun. math. Phys., III, Preprint 1979.

    Google Scholar 

  27. J. Fröhlich and E. Seiler, Heiv. Phys. Acta 49, 889, (1976), J. Fröhlich, in “Renormalization Theory,” G. Velo and A.S. Wightman, (eds.), Reidel, Dordrecht-Boston, 1976.

    Google Scholar 

  28. J. Challifour and D. Weingarten, Preprint 1979.

    Google Scholar 

  29. J. Magnen and R. Sénéor, IAMP Proceedings, 1979, to appear in Springer Lecture Notes in Physics, K. Osterwalder,(ed.)

    Google Scholar 

  30. T. Bakaban, see ref. 28.

    Google Scholar 

  31. G. Benfatto, M. Cassandro, G. Gallavotti, et al, Commun. math. Phys. 59, 143, (1978), and I.H.É.S. Preprint 1978.

    Google Scholar 

  32. J. Glimm and A. Jaffe, Fortschr. der Physik 21, 327, (1973).

    Article  MathSciNet  ADS  Google Scholar 

  33. G. F. DeAngelis, D. de Falco, F. Guerra and R. Marra, Acta Physíca Austr., Suppl. XIX, 205, (1978), and refs. given there.

    Google Scholar 

  34. G. Gallavotti, F. Guerra and S. Miracle-Sold, in “Mathematical Problems…,” see ref. 6.

    Google Scholar 

  35. R. Marra and S. Miracle-Solé, “On the Statistical Mechanics of the Gauge Invariant Ising Model,” to appear in Commun. math. Phys.

    Google Scholar 

  36. A. Guth,“Existence Proof of a Non-Confining Phase in Four- dimensional U(1) Lattice Gauge Theory,”Preprint 1979.

    Google Scholar 

  37. J. Fröhlich, Physics Letters 83B, 195, (1979).

    Google Scholar 

  38. J. Fröhlich and T. Spencer, unpublished. See also ref. 7 and K. Symanzik, in “Local Quantum Theory,” R. Jost,(ed.), Academic Press, New York-London, 1969; D. Brydges and P. Federbush, Commun. math. Phys. 62, 79, (1978).

    Google Scholar 

  39. J. Fröhlich and E.H. Lieb, Commun. math. Phys. 60, 233, (1978).

    Article  ADS  Google Scholar 

  40. I. Bars and F. Greene,“Complete Integration of U(N) Lattice Gauge Theory in a Large N Limit,”Preprint 1979.

    Google Scholar 

  41. D. Förster,“Yang-Mills Theory — A String Theory in Disguise,” Preprint 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Fröhlich, J. (1980). Some Results and Comments on Quantized Gauge Fields. In: Hooft, G., et al. Recent Developments in Gauge Theories. NATO Advanced Study Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7571-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7571-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7573-9

  • Online ISBN: 978-1-4684-7571-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics