Lattice Gauge Theories

  • James Glimm
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)


Recent mathematical results concerning lattice gauge theories are surveyed. The distinction between color screening and color confinement is explained in terms of the center of the color gauge group, for heavy quarks. The role of the center in terms of non-abelian vortices and confinement is also discussed.


Gauge Theory Gauge Group Heavy Quark Gauge Field Cluster Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.F. DeAngelis and D. deFalco, Correlation inequalities for lattice gauge fields. Lett Nuovo Cimento 18, 536 (1977).CrossRefGoogle Scholar
  2. 2.
    G.F. DeAngelis, D. deFalco and F. Guerra, Scalar quantum electrodynamics as classical statistical mechanics. Commun. Math. Phys. 57, 201 (1977).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    G.F. DeAngelis, D. de Falco, F. Guerra and R. Marra, Gauge fields on a lattice. Preprint (1978).Google Scholar
  4. 4.
    J. Fröhlich, Confinement in Z lattice gauge theories implies confienment in SU(n) latice Higgs theories. Phys. Lett. 83B, 195 (1979).Google Scholar
  5. 5.
    J. Glimm and A. Jaffe, Quark trapping for lattice U(1) gauge fields. Phys. Lett. 66B, 67 (1977).Google Scholar
  6. 6.
    J. Glimm and A. Jaffe, Instantons in a U(1) lattice gauge theory: a Coulomb dipole gas. Commun. Math. Phys. 56, 195 (1977).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Glimm and A. Jaffe, The resummation of one particle lines,. Commun. Math. Phys. 67, 267 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    J. Glimm and A. Jaffe, Charges, vortices and confinement. Nuclear Phys. B149, 49 (1979).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. Glimm, A. Jaffe and T. Spencer, In: Lecture notes in physics, vol. 25. Springer-Verlag, New York (1973).Google Scholar
  10. 10.
    J. Glimm, A. Jaffe and T. Spencer, A convergent expansion about mean field theory I,II. Ann. Phys. 101, 610 (1976).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    B. Kostand and S. Rallis, Orbits and representations associated with symmetric spaces. Amer. J. Math. 93, 753 (1971).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Luscher, Absence of spontaneous gauge symmetry breaking in Hamiltonian lattice gauge theories. Preprint (1977).Google Scholar
  13. 13.
    G. Mack and V. Petkova, Sufficient condition for the confinement of static quarks by a vortex condensation mechanism. Preprint (1978).Google Scholar
  14. 14.
    G. Mack and V. Petkova, Z2 monopoles in the standard SU(2) lattice gauge theory model. Preprint (1979).Google Scholar
  15. 15.
    K. Osterwalder and E. Seiler, Gauge field theories on a lattice. Ann. Phys. 110, 440 (1978).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    T. Spencer, The decay of the Bethe-Salpeter kernel in P(φ)2 quantum field. Commun. Math. Phys. 44, 143 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    T. Spencer and F. Zirilli, Scattering states and bound states in λP(φ)2. Commun. Math. Phys. 49, 1 (1976).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • James Glimm
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations