Advertisement

Generalized Non-Linear σ-Models with Gauge Invariance

  • Jean Zinn-Justin
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)

Abstract

In these lectures we shall give a brief description of a family of models which generalize the non-linear σ-model, and possess in addition a local gauge invariance without containing explicitly a gauge field.

Keywords

Symmetric Space Gauge Invariance Gauge Field Coset Space Chiral Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.Zinn-Justin, Cargèse Summer School lectures 1976Google Scholar
  2. M. Levy and P. Hitter ed.(Plenum Press) and references therein contained.Google Scholar
  3. E. Brézin and J. Zinn-Justin P.R.L. 36, 691 (1976) and Phys. Rev. B14, 3110 (1976).Google Scholar
  4. E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. D14, 2615 and 4976 (1976).Google Scholar
  5. W.A. Bardeen, B.W. Lee and R.E. Schrock, Phys. Rev. D14, 985 (1976).ADSGoogle Scholar
  6. [2]
    S. Elitzur, I.A.S. preprint (1979).Google Scholar
  7. [3]
    A. Mc Kane and M. Stone, Cambridge Univ. preprint 1979.Google Scholar
  8. [4]
    M. Lüscher, Nucl. Phys. B135, 1 (1978).ADSCrossRefGoogle Scholar
  9. [5]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Nucl. Phys. B133, 525 (1978).MathSciNetADSCrossRefGoogle Scholar
  10. [6]
    A.M. Polyakov, Phys. Lett. B72, 224 (1977).MathSciNetGoogle Scholar
  11. [7]
    I.Y. Arefeva, P.P. Kulish, E.R. Nissinov and S.J. Pacheva, LOMI preprint, E-I (1978).Google Scholar
  12. [8]
    B. Berg, M. Karowski, V. Kurak and P. Weisz, Phys. Lett. 76B, 502 (1978).ADSGoogle Scholar
  13. [9]
    E. Brézin, C. Itzykson, J. Zinn-Justin and J.B. Zuber, Phys. Lett. 82B, 442 (1979).ADSGoogle Scholar
  14. [10]
    These non local conservation laws can also be derived from compatibility conditions of a linear system, see for example H. de Vega, Phys. Lett. 87B, 233 (1979).Google Scholar
  15. [11]
    H. Eichenherr and M. Forger, Nucl. Phys. B155, 381 (1979).MathSciNetADSCrossRefGoogle Scholar
  16. [12]
    Non linear realizations of symmetry groups have been extensively discussed in the literature, see for example S. Coleman, J. Wess and B. Zumino, Phys. Lett. 177, 2239 (1969).Google Scholar
  17. Chiral models have also a long history. An early reference is A.A. Slavnov and L.D. Faddeev, Teor. Mat. Fiz. 8, 297 (1971). English translation 8, 843 (1971).Google Scholar
  18. [13]
    E. Brézin, S. Hikami and J. Zinn-Justin, Saclay preprint DPh-T/79–135, Nuclear Physics to be published.Google Scholar
  19. [14]
    It is sufficient more generally that gogo * commutes with all elements of the group.Google Scholar
  20. [15]
    R. Pisarski, Princeton Univ. preprint (1979).Google Scholar
  21. [16]
    H. Eichenherr, Nucl. Phys. B146, 215 (1978).ADSCrossRefGoogle Scholar
  22. [17]
    V.L. Golo and A.M. Perolomov, Phys. Lett. 79B, 112 (1978).ADSGoogle Scholar
  23. A.V. Mikhailov and V.E. Zakharov, Pis’ma Zh. Eksp. Teor. Fiz. 27 (1978) 47 [JETP Lett. 27, 42 (1978)], Zh. Eksp. Teor. Fiz. 74 (1978) 1953, C.W. Misner, Phys. Rev. D18, 45, 10 (1978). J. Fröhlich, IRES preprint (1979).Google Scholar
  24. M. Dubois-Violette and Y. Georgelin, Phys. Lett. 82B, 251 (1979).ADSGoogle Scholar
  25. [18]
    The renormalization group functions for these models have also been obtained by S. Duane, Oxford preprint (1979).Google Scholar
  26. The CPn-1 case had beentreated by S. Hikami, Prog. Theor. Phys. 62, 226 (1979).Google Scholar
  27. [19]
    N. Mermin and H. Wegner, Phys. Rev. Lett. 17, 1133 (1966).ADSCrossRefGoogle Scholar
  28. P. C. Hohenberg, Phys. Rev. 158, 383 (1973)ADSCrossRefGoogle Scholar
  29. S. Coleman, Comm. Math. Phys. 31, 295 (1973).MathSciNetCrossRefGoogle Scholar
  30. [20]
    The method and the results are very similar to those of the CPn-1 modelGoogle Scholar
  31. A. D’Adda, P. Di Vecchia and M. Lüscher, Nucl. Phys. B146, 63 (1978).ADSCrossRefGoogle Scholar
  32. E. Witten, Nucl. Phys. B149, 285 (1979).ADSCrossRefGoogle Scholar
  33. [21]
    I.Y. Aref’eva, Steklov Institute Moscow preprint, and E.R. Nissinov and S.J. Pacheva, Sofia preprints, have studied the renormalizability of the 1/n expansion of the CPn models.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jean Zinn-Justin
    • 1
  1. 1.Service de Physique ThéoriqueCEN SaclayGif-sur-YvetteFrance

Personalised recommendations