Cutoff Dependence in Lattice ø44 Theory

  • K. Symanzik
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)


This seminar is logically the continuation of the one [1] I gave here three years ago. The stimulus to the present work came from recent results [2] on lattice ø 4 4 theory, obtained by high-temperature expansions, which seem to require to study the S−2 corrections S−9 = α = lattice constant) to the formulae of [1] which dealt in detail only with In S terms. We shall see that the numerical ø 4 4 results offer a test of the merely technical (!) idea of “asymptotic freedom”. This is the link between the present topic and nonabelian gauge theory.


Boundary Term Vertex Function Feynman Graph Asymptotic Freedom Nonabelian Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Symanzik, in: “New Developments in Quantum Field Theory and Statistical Mechanics”, Eds. M. Lévy, P. Mitter; New York: Plenum Press 1977, p. 265.Google Scholar
  2. 2.
    G.A. Baker, J.M. Kincaid, Phys. Rev. Letts. 42, 1431 (1979), and to be publishedADSCrossRefGoogle Scholar
  3. 3.
    G. ’t Hooft, M. Veltman, Nucl. Phys. B44, 189 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Drouffe, G. Parisi, N. Sourlas,Nucl.Phys. B161, 397 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    G. ’t Hooft, Nucl. Phys. B61, 455 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    E. Brézin, J.C. Le Gouillou, J. Zinn-Justin, in: “Phase Transitions and Critical Phenomena”, eds. C. Domb, M.S. Green, Vol. VI. London: Academic Press 1976Google Scholar
  7. 7.
    K. Symanzik, Comm. Math. Phys. 45, 79 (1975).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.C. Collins, Nucl. Phys. B80, 341 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hepp, “Théorie de la rénormalisation, Berlin: Springer 1969 W. Zimmermann, Comm. Math. Phys. 15, 208 (1969)Google Scholar
  10. 10.
    W. Zimmermann, Ann. Phys. (N.Y.) 77, 536, 570 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    C.K. Lee, Nucl. Phys. B161, 171 1979 )ADSCrossRefGoogle Scholar
  12. 12.
    Y. Kazama, Y.-P. Yao, UM HE 79–16Google Scholar
  13. 13.
    Y. Taguchi, A. Tanaka, K. Yamamoto, Nucl. Phys. B132, 333 (1978)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    K.G. Wilson, J. Kogut, Phys. Reps. 12C, 75 (1974) Sect. 13ADSCrossRefGoogle Scholar
  15. 15.
    D. Politzer, Phys. Reps. 14C, 129 (T§74).Google Scholar
  16. 16.
    H.S. Sharatchandra, Phys. Rev. D18, 2042 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. Symanzik
    • 1
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations