Superalgebras and Confinement in Condensed Matter Physics

  • V. Poénaru
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)


This is a companion of Toulouse’s lecture at this conference and large part of the material described below is joint work of Toulouse and the author (see 1,2 and also 3).


Homotopy Class Homotopy Theory Cholesteric Liquid Crystal Lower Central Series Smectic Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Poenaru - G. Toulouse, The crossing of defects in ordered media and the topology of 3-manifolds, J. de Physique 8, 887: 895 (1977).MathSciNetGoogle Scholar
  2. 2.
    V. Poénaru - G. Toulouse, Topological solitons and graded Lie algebras, J. of Math. Phys. 20 (1), 13: 19 (1970).Google Scholar
  3. 3.
    V. Poénaru, Lectures on elementaty topology in connection with defects and textures, in the volume “Ill condensed matter, Les Houches 1978 Summer school”, to appear.Google Scholar
  4. 4.
    Y. Bouligand, B. Derrida V. Poénaru, Y. Pomeau, G. Toulouse, Distortions with double topological character, the case of cholesterics, J. de Physique, 39, 863: 867 (1978).Google Scholar
  5. 5.
    G. E. Volovik - V.P. Miveev, Study of singularities in ordered systems by homotopic topology methods, Zh. Eksp. Theor. Fiz. 72, 2256 (1977).Google Scholar
  6. 6.
    J.P. Serre, Lie algebras and Lie groups, Benjamin (1 965)Google Scholar
  7. 7.
    P. G. de Gennes, Theory of polymers, book to appear.Google Scholar
  8. 8.
    S. F. Edwards, Statistical mechanics with topological constraints, Proc. Phys. Soc. 91, 513: 519 (1967).ADSGoogle Scholar
  9. 9.
    D. Sullivan, Differential form and the topology of manifolds, in the volume Manifolds-Tokyo 1973, 37: 49 (1975).Google Scholar
  10. 10.
    D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES, 47, 269: 331 (1978).Google Scholar
  11. 11.
    D. Sullivan, Lectures given at Orsay, 1973–74 (handwritten notes).Google Scholar
  12. 12.
    J. Milnor, A note in curvature and the fundamental group, J. of diff. Geometry, 2, 1: 7 (1968).Google Scholar
  13. 13.
    Séminaire d’Orsay, Travaux de Thurston sur les surfaces, Astérisque 66–67, 1979.Google Scholar
  14. 14.
    T.T. Wu - C.N. Yang, Concept of non integrable phase factor and global formulation of gauge field, Phys. Rev. D., vol. 12, 3845: 3857 (1975).ADSGoogle Scholar
  15. 15.
    G. Toulouse and M. Kleman, Principles of a classification of defects in ordered media, J. Phys. Letters 37,p, 149 (1976).Google Scholar
  16. 16.
    V. Poénaru, Remarks on the punctual defects of 2-dimensional srnectics, to appear.Google Scholar
  17. 17.
    D. Merrnin, The topological theory of defects in ordered media, Rev. of Mod. Phys. 3, 591: 648 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • V. Poénaru
    • 1
  1. 1.Université Paris-Sud, MathématiquesOrsay cedexFrance

Personalised recommendations