Geometry of the Space of Gauge Orbits and the Yang-Mills Dynamical System

  • P. K. Mitter
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)


In these notes we shall be mainly concerned with some global aspects of classical continuum Yang-Mills theory which may be of relevance to non-perturbative considerations in the quantum theory of the continuum Yang-Mills field. In doing so we make some assumptions about which one should be clear from the outset. In classical field theory it is necessary to introduce boundary conditions in order to solve the dynamics. In order to construct a (Euclidean) quantum theory of interacting fields it is customary to put in at the outset some cutoffs: a space (space-time) volume cutoff, as well as an ultraviolet cutoff. The latter is to be removed after renormalization, and then the burden is to take the infinite volume limit. We shall adhere to this philosophy [1]. A volume cutoff is introduced in these notes by compactifying space (space-time) in some way, right from the start in the classical theory. This is because in the functional integral approach to the quantum theory one integrates over classical field configurations. Ultraviolet regularization is not mentioned because we deal mostly with the classical theory, but it should be kept in mind. The other major hypothesis is with respect to regularity of classical field configurations.


Gauge Transformation Orbit Space Homotopy Group Null Vector Local Chart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Wightman in “Renormalization Theory”, G. Velo and A. S. Wightman (editors), D. Reidel (Boston) 1976.”Google Scholar
  2. 2.
    Lectures of J. Fröhlich, J. Glimm, C.Itzykson, G. Mack, K. Wilson (these proceedings) and references therein.Google Scholar
  3. 3.
    K.G. Wilson, K. Osterwalder in “Recent developments in Quantum field theory and Statistical Mechanics”, Cargèse 76, M. Lévy, P.K. Mitter (editors), Plenum Press (London/New York).Google Scholar
  4. 4.
    I.M. Singer: Commun. Math. Phys. 60 (1978), 7.ADSMATHCrossRefGoogle Scholar
  5. 5.
    M.S. Narasimhan and T.R. Ramadas: Commun. Math. Phys. 67 (1979), 121.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    P.K. Mitter and C.M. Viallet: “On the bundle of connections and the gauge orbit manifold in Yang-Mills theory”, Paris, LPTHE 79/09 (preprint).Google Scholar
  7. 7.
    L.D. Faddeev: Theor. Math. Phys. Vol 1, No. 1, pp. 3–18, 1969.MathSciNetCrossRefGoogle Scholar
  8. 8.
    O. Babelon and C.M. Viallet: Phys. Lett.Google Scholar
  9. 9.
    M.F. Atiyah, N. Hitchin and I.M. Singer: Proc. Roy. Soc. London A362 (1978), 425.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    M. Daniel and C.M. Viallet: Phys. Lett. 76B (1978), 458.MathSciNetGoogle Scholar
  11. 11.
    V.I. Arnold: Méthodes mathématiques de la méchanique classique Edition MIR (Moscou) 1974.Google Scholar
  12. 12.
    J. Marsden: Applications of Global analysis in Mathematical Physics. Publish or Perish Inc. (1974) Boston.MATHGoogle Scholar
  13. 13.
    B.S. de Witt: Rev. Mod. Phys. 29, 377 (1957).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    K.S. Cheng, J. Math. Phys. 13, 1723 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    M.F Atiyah and J.D.S. Jones: Comm. Math. Phys. 61, 97 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    M.F. Atiyah, V.G. Drinfeld, N.J. Hitchin, Yu. I. Manin, Phys. Lett. 65A (1978), 185.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    J. Madore, J.L. Richard, R. Stora: F = *F, a review. Marseille preprint 79/P1077 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • P. K. Mitter
    • 1
    • 2
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie Curie (Paris VI)Paris, Cedex 05France
  2. 2.Department of PhysicsNew York UniversityNew YorkUSA

Personalised recommendations