Properties of Lattice Gauge Theory Models at Low Temperatures

  • Gerhard Mack
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 59)


In quark confinement physics, the center of the gauge group plays a crucial role.1 This can be seen from a proper formulation of the problem. One would like to explain

  1. (1)

    Quark confinement: There are no physical states with the flavor quantum numbers of a quark = all physical particles have integral baryon number etc.,

  2. (2)

    Saturation of forces: The known physical hadrons are made of three quarks, or a quark and an antiquark, but not six or nine quarks etc..



Gauge Theory Gauge Group Gauge Transformation Wilson Loop Lattice Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.M. Polyakov, Phase transitions and quark confinement, internal ICTP-report IC/78/4, Trieste (Feb. 1978).Google Scholar
  2. G. ’t Hooft, reference 16 below.Google Scholar
  3. G. Mack, references 6, 8 below.Google Scholar
  4. 2.
    J. Kogut and L. Susskind, Phys. Rev. D11: 395 (1975).MathSciNetADSCrossRefGoogle Scholar
  5. 3.
    K. Wilson, Phys. Rev. D10: 2445 (1974).ADSGoogle Scholar
  6. K. Osterwalder, E. Seiler, Ann. Phys. (N.Y.) 110: 440 (1978), and references given there.MathSciNetADSCrossRefGoogle Scholar
  7. M. Löscher, Commun. Math. Phys. 54: 283 (1977).ADSCrossRefGoogle Scholar
  8. 4.
    J. Glimm, lectures presented at this school.Google Scholar
  9. J. Glimm and A. Jaffe, Nucl. Phys. B149: 49 (1979).MathSciNetADSCrossRefGoogle Scholar
  10. 5.
    E.S. Fradkin and S.H. Shenker, Phys. Rev. D19: 3682 (1979).ADSGoogle Scholar
  11. 6.
    G. Mack, Quark and colour confinement through dynamical Higgs mechanism, DESY-report DESY 77/58, Hamburg (Aug. 1977).Google Scholar
  12. 7.
    J. Finger, D. Horn and J.E. Mandula, Quark condensation in QCD, preprint, Cambridge/Princeton (1979).Google Scholar
  13. 8.
    G. Mack, Phys. Letters B78: 263 (1978).ADSGoogle Scholar
  14. 9.
    G.F. De Angelis, D. De Falco and F. Guerra, Acta Physica Austriaca Suppl. XIX: 205 (1978), and references in ref. 5 above.Google Scholar
  15. 10.
    D. Ruelle, “Statistical mechanics: rigorous results”, Benjamin, New York (1969).MATHGoogle Scholar
  16. 11.
    Ch. Gruber and A. Kunz, Commun. Math. Phys. 22: 133 (1971).MathSciNetADSCrossRefGoogle Scholar
  17. 12.
    G. Mack and V.B. Petkova, Comparison of lattice gauge theories with gauge groups Z2 and SU(2), DESY-report DESY 78/68 Hamburg, (Nov. 1978), to appear in Ann. Phys. (N.Y.)Google Scholar
  18. 13.
    J. Fröhlich, R. Israel, E.H. Lieb and B. Simon, Commun. Math. Phys. 62: 1 (1978).ADSCrossRefGoogle Scholar
  19. B. Simon, New rigorous existence theorems for phase transitions in model systems, preprint, Princeton (1977).Google Scholar
  20. 14.
    E. Wegner, J. Math. Phys. 12: 2259 (1971).MathSciNetADSCrossRefGoogle Scholar
  21. 15.
    B. Balian, J.M. Drouffe and C. Itzykson, Phys. Rev. D10: 3376 (1974);ADSGoogle Scholar
  22. B. Balian, J.M. Drouffe and C. Itzykson, Phys. Rev. D11: 2098 (1975).ADSGoogle Scholar
  23. 16.
    G. ‘t Hooft, Nucl. Phys. B138: 1 (1978).ADSCrossRefGoogle Scholar
  24. 17.
    J.M. Drouffe, to appear.Google Scholar
  25. 18.
    J. Fröhlich, Phys. Letters 83B: 195 (1979).ADSGoogle Scholar
  26. 19.
    C.P. Korthals Altes, Inequalities for order and disorder parameters in SU(N) gauge theories, preprint, Utrecht (May 1979).Google Scholar
  27. 20.
    G. Mack, Commun. Math. Phys. 65: 91 (1979).MathSciNetADSCrossRefGoogle Scholar
  28. 21.
    R.B. Griffiths, J. Math. Phys. 8: 978 (1967).Google Scholar
  29. D.G. Kelly and S. Sherman, J. Math. Phys. 9: 466 (1968).ADSCrossRefGoogle Scholar
  30. J. Ginibre, Commun. Math. Phys. 16: 310 (1970).MathSciNetADSCrossRefGoogle Scholar
  31. 22.
    A. Messager, S. Miracle Solé and C. Pfister, Commun. Math. Phys. 58: 19 (1978).ADSCrossRefGoogle Scholar
  32. 23.
    G. ‘t Hooft, lectures presented at. this school.Google Scholar
  33. 24.
    R. Peierls, Proc. Camb. phil. Soc. 32: 477 (1936).ADSMATHCrossRefGoogle Scholar
  34. D. Ruelle, reference 10.Google Scholar
  35. 25.
    R. Marra and S. Miracle Sol€, Commun. Math. Phys. 67: 233 (1979).ADSCrossRefGoogle Scholar
  36. 26.
    M. Göpfert, Peierls arguments for Z(2) lattice gauge theory, Diplomarbeit and DESY-report, Hamburg (in preparation).Google Scholar
  37. 27.
    M. Fisher, J. Appl. Phys. 38: 981 (1967).ADSCrossRefGoogle Scholar
  38. 28.
    R.L. Dobrushin and S.B. Shlosman, Commun. Math. Phys. 42: 31 (1975).MathSciNetADSCrossRefGoogle Scholar
  39. 29.
    G. Mack and V.B. Petkova, Sufficient condition for confinement of static quarks by a vortex condensation mechanism, DESY-report DESY 78/69 Hamburg (Nov. 1978), to appear in Ann. Phys. (N.Y.).Google Scholar
  40. 30.
    G. ‘t Hooft, Nucl. Phys. B153: 141 (1979).ADSCrossRefGoogle Scholar
  41. 31.
    H.C. Tze and Z.F. Ezawa, Phys. Rev. D14: 1006 (1976).MathSciNetADSCrossRefGoogle Scholar
  42. F. Englert, Cargése lectures 1977, in: Hadron structure and lepton-hadron interactions, M. Lévy et al., eds., Plenum Press, New York (1979).Google Scholar
  43. F. Englert and P. Windey, Les Houches lectures 1978.Google Scholar
  44. Z.F. Ezawa, Quantum field theory of vortices and instantons, talk presented at DESY (June 1977);Google Scholar
  45. Z.F. Ezawa, Phys. Rev. D18: 2091 (1978).Google Scholar
  46. 32.
    G. Mack, Physical principles, geometrical aspects and locality properties in gauge field theories, Max Planck Institut preprint München (1979).Google Scholar
  47. 33.
    G. Münster, On the characterization of the Higgs phase in lattice gauge theories, DESY-report DESY 79/72 Hamburg (Nov. 1979).Google Scholar
  48. 34.
    G. Gallavotti, F. Guerra and S. Miracle Solé, in: Lecture Notes in Physics 80, Springer, Heidelberg (1978).Google Scholar
  49. 35.
    G. Münster, Ph.D. thesis and DESY-report, Hamburg (in preparation).Google Scholar
  50. 36.
    L.G. Yaffe, Confinement in SU(N) lattice gauge theories, preprint, Princeton University (Nov. 1979).Google Scholar
  51. 37.
    T. Yoneya, Nucl. Phys. B144: 195 (1978).MathSciNetADSCrossRefGoogle Scholar
  52. 38.
    K. Wilson, lectures presented at this school.Google Scholar
  53. M. Creutz, Phys. Rev. Letters 43: 553 (1979).ADSCrossRefGoogle Scholar
  54. K. Binder, Monte Carlo investigations of phase transitions and critical phenomena, in: Phase transitions and critical phenomenaGoogle Scholar
  55. C. Bomb and M. Green, eds., Academic Press, New York (1976), vol. 5B.Google Scholar
  56. 39.
    J. Glimm and A. Jaffe, Commun. Math. Phys. 56: 195 (1977);MathSciNetADSCrossRefGoogle Scholar
  57. J. Glimm and A. Jaffe, Phys. Letters 66B: 67 (1977)ADSGoogle Scholar
  58. A. Jaffe, Lattice instantons: What they are and why they are important, in: Lecture Notes in Physics 80, Springer, Heidelberg (1978).Google Scholar
  59. 40.
    H. B. Nielsen and P. Olesen, Nucl. Phys. B61: 45 (1973)ADSCrossRefGoogle Scholar
  60. 41.
    W. Feller, “An introduction to probability and its applications” Wiley, New York (1961), vols. I, II.Google Scholar
  61. B. Simon, “Functional integration and quantum physics”, Academic Press, New York (1979).MATHGoogle Scholar
  62. M.C. Reed, Functional analysis and probability theory, in: Lecture Notes in Physics 25, Springer, Heidelberg (1973).Google Scholar
  63. 42.
    A. Ukawa, P. Windey and A.H. Guth, Dual variables for lattice gauge theories and the phase structure of Z(N) systems, preprint Princeton/Cornell (1979).Google Scholar
  64. 43.
    G. Mack and V.B. Petkova, Z2 monopoles in the standard SU(2) lattice gauge theory model, DESY-report DESY 79/22 Hamburg (Apr. 1979), unpublished.Google Scholar
  65. 44.
    G.S. Rushbrooke, G.A. Baker and P.J. Wood, in: Phase transitions and critical phenomena, C. Domb and M. Green, eds., Academic Press, New York (1974), vol. 3.Google Scholar
  66. C. Domb, ibid., p. 77;Google Scholar
  67. G.S. Rushbrooke,J.Math.Phys. 5: 1106 (1964).ADSCrossRefGoogle Scholar
  68. 45.
    P. Vinciarelli, Phys. Letters B78: 485 (1970).ADSGoogle Scholar
  69. 46.
    J.R. Fontaine and Ch. Gruber, Commun. Math. Phys. 70: 283 (1979), and references given there.MathSciNetGoogle Scholar
  70. 47.
    C. Callan and D. Gross, Phys. Rev. D16: 2526 (1977).ADSGoogle Scholar
  71. 48.
    J. Goldstone and R. Jackiw, Phys. Letters B74: 81 (1978).ADSGoogle Scholar
  72. 49.
    C. Callan, lectures presented at this school.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Gerhard Mack
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgGermany

Personalised recommendations