Advertisement

Superconducting Projectile Accelerator

  • X. W. Wang
  • J. D. Royston

Abstract

We report results on the design and testing of superconducting projectile accelerators. The barrel of the projectile accelerator is mainly made of Y1 Ba2 Cu3 O7-x superconductors (Tc = 93K), which is mounted on a copper seat cooled with liquid nitrogen (77K). Before acceleration forces are applied, a magnetised projectile is suspended inside of the superconducting barrel, without touching the walls of the barrel. Electromagnetic coils with the pulse power supply are used to accelerate the projectile successively. Due to the contactless motion of the projectile travelling along the barrel, the kinetic energy of the projectile is close to the magnetic energy provided by the power supply. That is, the efficiency of energy-conversion from the magnetic energy to the kinetic energy is about ninety percent or higher. The entire firing process is controlled by a microprocessor. The detailed system will be described. The experimental results will be presented. The applications will also be discussed.

Keywords

Output Port Power Transistor Flux Pinning Pulse Power Supply Electromagnetic Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz, and K.A. Mueller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    H. Meada, et al., Jpn. J. Appl. Phys. 27, L. 209(1988); C.W. Chu, J. Bechtold, L. Gao, P.H. Hor, Z.J. Wang, and Y.Y. Xue, Phys. Rev. lett. 60, 941 (1988).Google Scholar
  4. 4.
    Z.Z. Sheng, A.M. Hermann, A. EL Ali, C. Almasan, J. Estrada, T. Datta, and R.J. Matson, Phy. Rev. Lett. 60, 937 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    See, for example, “Ceramic Superconductors”, ed. W.J. Smothers, et al., a special supplementary issue of Advanced Ceramic Materials 2, 273–733(1987); “Ceramic Superconductors II”, ed M.F. Yan, ( American Ceramic Soc., Inc., Westerville, Ohio, 1988 ).Google Scholar
  6. 6.
    A.W. Sleight, Science 242, 1519 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    See, for example, a special issue on superconductors and applications, IEEE transactions on Magnetics 25, No. 2, March 1989.Google Scholar
  8. 8.
    M. Tinkham, “Introduction to Superconductivity”, ( Krieger, Florida, 1980 ).Google Scholar
  9. 9.
    D.W. Murphy, D.W. Johnson, Jr., S. Jin, and R.E. Howard, Science 241, 922(1988); A. Bezinge, J.L. Jorda, A. Junod, and J. Mueller, Solid State Comm. 64, 79(1987); F. Seidler, P. Boehm, H. Geus, W. Braunisch, E. Braun, W. Schnelle, I. Felner, and Y. Wolfus, preprint.Google Scholar
  10. 10.
    The levitation experiments have been carried out routinely all over the world. For an experimental design, see, for example, D. Prochnow, “Superconductivity: Experimenting in a New Technology”, (TAB, Pennsylvania, 1989 ).Google Scholar
  11. 11.
    F. Hellman, E.M. Gyorgy, D.W. Johnson, Jr.,H.M.O. Bryan, and R.C. Sherwood, J. Appl. Phys. 63, 447 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    L.C. Davis, E.M. Logothetis, and R.E. Soltis, J. App1.’Phys. 64, 4212 (1988).CrossRefGoogle Scholar
  13. 13.
    R. Williams, and J.R. Matey, Appl. Phys. Lett. 52, 751 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Macfarlane, K.M. Mueller, and R. Driver, IEEE Mag. 25, 2515 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    Some preliminary results have been reported. See, for example, X.W. Wang, in “Proceedings of 1989 ASEE Annual Conference”, ed. L.P. Grayson, and J.M. Biedenbach, pp 947–9, ( ASEE, Washington, DC, 1989 ).Google Scholar
  16. 16.
    X.W. Wang, and J.D. Royston, patent pending.Google Scholar
  17. 17.
    A. Egeland, IEEE Trans. Plasma Science 17, 73 (1989).Google Scholar
  18. 18.
    J.L. Upshaw, IEEE Mag 22, 1779(1986); S. Usuba, Y. Kakudate, K. Aoki, M. Yoshida, K. Tanaka, and S. Fujiwara, IEEE 22, 1785 (1986).Google Scholar
  19. 19.
    C.G. Homan, C.E. Cummings, C.M. Fowler, and M.L. Hodgdon, in “Megagauss Technology and Pulsed Power Applications”, ed. C.M. Fowler, R.S. Caird, D.J. Erickson, ( Plenum, New York, 1987 ).Google Scholar
  20. 20.
    L. Jasper, Jr., “Electromagnetic Launcher with Cryogenic Cooled Superconducting Rails”, US Patent No. 4,813,332, Mar. 21, 1989.Google Scholar
  21. 21.
    C. Persad, C.J. Lund, and Z. Eliezer, IEEE Mag 25, 433 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    Silver has been used to increase the critical current of Y1 Ba2 CU3 O7-x superconductors in other institutions.Google Scholar
  23. 23.
    X.W. Wang, H.S. Kwok, L. Shi, J.P. Zheng, P. Mattocks, and D.T. Shaw, J. Mater Res. 3, 1297 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M.N. Pitsakis, and X.W. Wang, Rev. Sci. Instrum. 60, 135 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    F.W. Sears, M.W. Zemansky, and H.D. Young, “University Physics”, 6th ed. ( Addison, Massachusetts, 1983 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • X. W. Wang
    • 1
  • J. D. Royston
    • 1
  1. 1.Alfred UniversityAlfredUSA

Personalised recommendations