In-Situ Processing and Theoretical Model for Deposition of Laser Ablated High-Tc YBa2Cu3O7 Superconducting Thin Films

  • Rajiv K. Singh
  • J. Narayan


We have theoretically analyzed and developed a model for the interaction of pulsed laser beams with bulk YBa2Cu3O7 targets resulting in evaporation, plasma formation and deposition of thin films. In this model, the laser generated plasma is treated as an ideal gas initially at high temperature and pressure, and is then allowed to expand in vacuum. The three-dimensional isoentropic expansion of this plasma gives rise to spatial thickness and composition variations observed in YBa2Cu3O7 thin films. The solution of the hydrodynamic gas equations show that the deposition characteristics are dependent on the dimensions and temperature of the plasma, and the mass of the plasma species. The effect of pulse energy density and other parameters on the deposition characteristics is also analyzed. Some of the theoretical results are compared with the experimental values obtained by pulsed excimer laser evaporation of bulk YBa2Cu307 targets. We also discuss some of the superconducting and the microstructural characteristics of in-situ processed epitaxial films fabricated at substrate temperatures between 500–650°C by XeC1 laser irradiation on bulk YBa2Cu3O7 targets in an oxygen ambient of 200 millitorr. An application of a positively biased ring between the substrate and target was found to reduce the deposition temperature to 500°C, although the quality of epitaxial growth decreased significantly below 500°C. Excellent quality epitaxial single crystal superconducting thin films were fabricated on (100) SrTiO3 and (100) LaA1O3 substrates at temperatures between 550–650°C. The films were nearly defect free with minimum ion channeling yields of 3% and 3.5% for YBa2Cu3O7 films on (100) LaA103 and (100) SrTiO3, respectively. Superconducting YBa2Cu307 films on (100) YSZ substrates, although epitaxial, possessed much larger defect concentrations as a result of lattice mismatch. Very high critical current densities (at 77K and zero magnetic field) exceeding 6.0 × 106 Amps/cm2 were obtained on YBa2Cu3O7 films on (100) LaA1O3 substrates which represents the best values quoted in the literature. The effect of silver doping on critical current densities in these films is also discussed.


Plasma Temperature Critical Current Density Yttria Stabilize Zirconia Expansion Velocity Deposition Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dijjkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Min-lee, W. L. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    J. Narayan, N. Biunno, R. Singh, O. W. Holland and O. Auchiello, Appl. Phys. Lett. 51, 1845 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Desantolo, M. L. Mandich, S. Sunshine, B. A. Davidson, R. M. Fleming, P. Marsh, and T. Y. Kometani, Appl. Phys. Lett. 52, 1995 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    K. Moorjani, J. Bohandy, F. J. Adrian, B. F. Kim, R.D.Shull, C. K. Chiang, L. J. Swartzebdruber, and L. H. Benett, Phys. R.v. B 36, 4036 (1988)Google Scholar
  5. 5.
    X. D. Wu, A Inam, T. Venkatesan, C. C. Chang, E. W. Chase, P. Barboux, J. M. Tarascon, and B. Wilkens, Appl. Phys. Lett., 52, 754 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    B. Roas, L. Schultz and G. Endres Appl. Phys. Lett. 53, 1557 (1988)Google Scholar
  7. 7.
    G. Koren, E. Polturak, B. Fisher, D. Cohen and G. Kimel, Appl. Phys. Lett., 53, 2330 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    S. Witanachchi, H. S. Kwok, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett., 53, 234 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    R.K Singh, J. Narayan, A. K. Singh, and J. Krishnaswamy, 54, 2271 (1989)Google Scholar
  10. 10.
    J. Narayan, R.K. Singh, P. Tiwari and C.B. Lee, Appl. Phys. Lett. (in press)Google Scholar
  11. 11.
    A. Inam, X.D. Wu, T. Venkatesan, S. B. Ogale, C. C. Chang, D. Dijjkamp, Appl. Phys. Lett., 51, 1112 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    Q.Y. Ying, D. T. Shaw, H. S. Kwok, Appl. Phys. Lett., 50, 359 (1987)CrossRefGoogle Scholar
  13. 13.
    P. E. Dyer, S. D. Jenkins, and S. Sidhu, Appl. Phys. Lett. 49, 453, (1988)ADSCrossRefGoogle Scholar
  14. 14.
    W. A. Weiner, Appl. Phys. Lett. 52, 2171 (1988)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    C.H. Becker and J. B. Pallix, J. Appl. Phys. 64, 5152 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    T. Venkatesan, X. D. Wu, A. Inam, and J. B. Watchman, Appl. Phys. Lett. 52, 1193 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    R.K. Singh, N. Biunno, and J. Narayan, Appl. Phys. Lett., 53, 1013, (1988)ADSCrossRefGoogle Scholar
  18. 18.
    J. P. Zheng, Z. Q. Huang, D. T. Shaw, and H. S. Kwok, Appl. Phys. Lett. 54, 280, 1989ADSCrossRefGoogle Scholar
  19. 19.
    R. A. Neifeld, S. Gunapala, C. Liang, S. A. Shaheen, M. Croft, J. Price, D. Simons, and W. T. Hill III, Appl. Phys. lett. 53, 703, 1988ADSCrossRefGoogle Scholar
  20. 20.
    R. K. Singh and J. Narayan, Physical Review B (in press)Google Scholar
  21. 21.
    R. K. Singh and J. Narayan, Phys. Rev B (in press)Google Scholar
  22. 22.
    R.K. Singh and J. Narayan, Mat. Sci. and Engr. B 3, 217 (1989)Google Scholar
  23. 23.
    S.G. Hansen and T.E. Robitaille, Appl. Phys. Lett, 50, 359 (1987)Google Scholar
  24. 24.
    J. F. Ready, Effects of High Power Laser Radiation, Academic Press, New York, 1971Google Scholar
  25. 25.
    Zel’dovich and Raizer, Physic of Shock Waves and High Temperature Phenomena, Academic Press, NY (1966)Google Scholar
  26. 26.
    T.P Hughes, Plasma and Laser Light, John Wiley,NY 1975Google Scholar
  27. 27.
    A.J. Chapman and W.F. Walker, Introductory Gas Dynamics, Holt, Rinehart and Winston, NY 1971Google Scholar
  28. 28.
    H. Sankur, J. Denatale, W. Gunning, and J. G. Nelson, J. Vac.Sci. Tech. A 5, 2869 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    R. K. Singh, J. Narayan, L. Ganapathi, and P. Tiwari Appl. Phys. Lett, Dec 5, 1989Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Rajiv K. Singh
    • 1
  • J. Narayan
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations