Anisotropic Critical Currents in Aligned Sintered Compacts of YBa2Cu3O7−δ

  • J. E. Tkaczyk
  • K. W. Lay
  • H. R. Hart


Measurements of the critical current anisotropy in grain aligned YBa2Cu3O7−δ ceramics are presented. The low zero-field critical current Jc~102–103 A/cm2 and the sensitivity of Jc to weak magnetic fields indicates that the weak-link character of the intergranular coupling has not been improved by alignment of the grain boundaries. The unusual dependence of the critical current on the direction of the applied field is explained in terms of the anisotropic intragranular properties and the anisotropic nature of Josephson weak links. In the favorable field direction, critical currents at 1/2 tesla above 200 A/cm2 have been achieved. This represents an order of magnitude improvement over nonaligned ceramics.


Critical Current Weak Link Normal State Resistivity Lorentzian Distribution High Critical Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penney, T., S. von Molnar, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. B, 38, 2918 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    Dinger, T.R., T.K. Worthington, W.J. Gallagher, and R.L. Sandstrom, Phys. Rev. Lett 58, 2687 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    Martin, S., A.T. Fiory, R. M. Fleming, G.P. Espinosa, and A.S. Cooper, Appl. Phys. Lett 54, 72 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    Farrell, D.E., C.M. Williams, S.A. Wolf, N.P. Bansal, V.G. Kogan, Phys. Rev. Lett 61, 2805 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    Lee, W.C., R.A. Klemm, and D.C. Johnston, Phys. Rev. Lett 63, 1012 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    Dimos, D., P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys. Rev. Lett 61, 219 (1988);ADSCrossRefGoogle Scholar
  7. 7.
    Kogan, V.G., Phys. Rev. Lett 62, 3001 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    Deutscher, G., IBM J. Res. Develop, 33, 293 (1989);CrossRefGoogle Scholar
  9. Deutscher, G., Physica C, 153–155, 15 (1988).MathSciNetGoogle Scholar
  10. 9.
    Ekin, J.W., A.I. Braginski, A.J. Pansoh, D.W. Capone II, N.J. Zaluzec, B. Flandermeyer, O.F. deLima, M.Hong, J. Kwo, and S.H. Liou, J. Appl. Phys 62, 4821 (1987).ADSCrossRefGoogle Scholar
  11. 10.
    Farrell, D.E., B. S. Chandrasekhar, M.R. DeGuire, M.M. Fang, V.G. Kogan, J.R. Clem, and D.K. Finnemore, Phys. Rev. B 36, 4025 (1987).ADSCrossRefGoogle Scholar
  12. 11.
    Arendt, R.H., A.R. Gaddipati, M.F. Garbauskas, E.L. Hall, H.R. Hart, Jr., K.W. Lay, J.D. Livingston, F.E. Luborsky, and L.L. Schilling, Mat. Res. Soc. Symp. Proc 99, 203 (1988).CrossRefGoogle Scholar
  13. 12.
    Tkaczyk, J.E., and K.W. Lay, submitted to J. Material Research Google Scholar
  14. 13.
    Kikuchi, A., M. Maesuda, M., T. Maeda, M. Ishh, M. Takata, and T. Yamashita, lap. J. Appl. Phys. 27, 1231 (1988);ADSCrossRefGoogle Scholar
  15. Shi, D., D.W. Capone II, G.T. Goudey, J.P. Singh, N.J. Zaluzec and K. C. Goretta, Mat. Lett. 6, 217 (1988); Sawano, K., A. Hayashi, T. Ando, T. Inuzuka, and H. Kubo, preprint.Google Scholar
  16. 14.
    Glowacki, B. A. and J.E. Evetts, Mat. Res. Soc. Symp. Proc 99, 419 (1988).CrossRefGoogle Scholar
  17. 15.
    Shifang, S., Z. Yong, P. Guoqiang, Y. Daoqi, Z. Han, C. Zuyao, Q. Yitai, K. Weiyan, and Z. Qirui, EuroPhys. Lett 6, 359 (1988).ADSCrossRefGoogle Scholar
  18. 16.
    Knorr, D.B., and J.D. Livingston, Supercond. Sci. Technol 1, 302 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. E. Tkaczyk
    • 1
  • K. W. Lay
    • 1
  • H. R. Hart
    • 1
  1. 1.GE Corporate Research and DevelopmentSchenectadyUSA

Personalised recommendations