Correlation in Metallic Copper Oxide Superconductors: How Large is it?

  • W. E. Pickett
  • H. Krakauer
  • R. E. Cohen
  • D. Singh
  • D. A. Papaconstantopoulos


The remarkably high superconducting transition temperatures (Tc) of the copper oxide superconductors suggest some unusual property is necessary to account for high Tc. Suggestions for such a characteristic property include (1) the layered, highly two-dimensional (2D) structure itself, (2) the proximity to metal/insulator, magnetic/nonmagnetic or structural transitions, (3) large anharmonicity, and (4) very large electron-phonon coupling, among others. However, the increasing number of distinct compounds1 which display Tc values ranging quasicontinuously from low temperature to above 100 K can be interpreted as indicating there is some property (related to pairing, of course) which is a rather general property of layered cuprates and which is variable. Moreover, the question of whether the layered cuprates are special is raised by the bismuthates, since (Ba,K)BiO3 (containing no Cu) superconducts above2 30 K.


Fermi Surface Metallic Phase Electron Energy Loss Spectroscopy Coherent Potential Approximation Local Spin Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, R. J. Cava, Nature 336, 211 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson, Jr., Phys. Rev. B37, 3745 (1988);ADSGoogle Scholar
  3. D. G. Hinks, Nature 333, 836 (1988).ADSCrossRefGoogle Scholar
  4. 3.
    W. E. Pickett, Comments on Solid State Phys. 12, 1 (1985); ibid. 59 (1986), and references therein.Google Scholar
  5. 4.
    A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B38, 6650 (1988).ADSGoogle Scholar
  6. 5.
    J. Fink, N. Wicker, H. Romberg, and J. C. Fuggle, IBM J. Res. Devel. (1989, in press).Google Scholar
  7. 6.
    A. J. Arko, Phys. Rev. B40, 2268 (1989).ADSGoogle Scholar
  8. 7.
    J. Redinger, A. J. Freeman, J. Yu, and S. Massidda, Phys. Lett. Al24, 469 (1987).Google Scholar
  9. 8.
    H. Krakauer, W. E. Pickett, and R. E. Cohen, J. Supercon. 1, 111 (1988).ADSCrossRefGoogle Scholar
  10. 9.
    J. Costa-Quintana, F. Lopez-Aguilar, S. Balle, and R. Salvador, Phys. Rev. B39, 9675 (1989).ADSGoogle Scholar
  11. 10.
    See, for example, T. Miyahara, J. Phys. Soc. Japan 58, 2160 (1989).ADSCrossRefGoogle Scholar
  12. 11.
    R. Manzke, T. Buslaps, R. Claessen, M. Skibowski, and J. Fink, preprint; J. Fink, Proc. Intl. Winter School on Elect. Props. of Polymers and Related Compounds, Kirchberg, Austria, 1989 (in press).Google Scholar
  13. 12.
    C. S. Wang, M. R. Norman, R. C. Albers, A. M. Boring, W. E. Pickett, H. Krakauer, and N. E. Christensen, Phys. Rev. B35, 7260 (1987).ADSGoogle Scholar
  14. 13.
    P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J. W. Wilkins, Comments on Cond. Matt. Phys. 12, 99 (1986);Google Scholar
  15. W. E. Pickett, in Novel Superconductivity, S. A. Wolf and V. Z. Kresin ( Plenum, New York, 1987 ), 233.Google Scholar
  16. 14.
    T. Takahashi, Phys. Rev. B39, 6636 (1989);ADSGoogle Scholar
  17. F. Minami, T. Kimura, and S. Takekawa, Phys. Rev. B39, 4788 (1989);ADSGoogle Scholar
  18. C. G. Olson, Proc. Intl. Conf. on Materials and Mechanisms of Superconductivity, Stanford, 1989.Google Scholar
  19. 15.
    J.-M. Imer, Phys. Rev. Lett. 62 336 (1989); see also Refs. 6, 11, and 14.Google Scholar
  20. 16.
    W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).ADSCrossRefGoogle Scholar
  21. 17.
    D. A. Papaconstantopoulos, W. E. Pickett, and M. J. DeWeert, Phys. Rev. Lett. 61, 211 (1988).ADSCrossRefGoogle Scholar
  22. 18.
    D. A. Papaconstantopoulos, A. Pasturel, J. P. Julien, and F. CyrotLackmann, Phys. Rev. B40, (1989) in press.Google Scholar
  23. 19.
    R. E. Cohen, W. E. Pickett, and H. Krakauer, Phys. Rev. Lett. 62, 831 (1989).ADSCrossRefGoogle Scholar
  24. 20.
    L. Pinchovius, N. Pyka, W. Reichardt, A. Yu. Rumiantsev, A. Ivanov, and N. Mitrofanov, in Proc. Intl. Symp. on High Tc Superconductivity, Dubna, July 1989 (in press).Google Scholar
  25. 21.
    P. B. Allen, W. E. Pickett, and H. Krakauer, Phys. Rev. B37, 7482 (1988); ibid. B36, 3926 (1987).ADSCrossRefGoogle Scholar
  26. 22.
    S. W. Tozer, A. W. Kleinsasser, T. Penney, D. Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 1768 (1987).ADSCrossRefGoogle Scholar
  27. 23.
    M. Suzuki, Phys. Rev. B39, 2312 (1989).ADSGoogle Scholar
  28. 24.
    K. Kitazawa, invited paper at the Spring MRS Mtg., San Diego, 1989.Google Scholar
  29. 25.
    D. Singh, W. E. Pickett, R. E. Cohen, D. A. Papaconstantopoulos, and H. Krakauer, Physica B (1989, in press).Google Scholar
  30. 26.
    S. H. Vosko and J. P. Perdew, Can. J. Phys. 53, 1385 (1975).ADSCrossRefGoogle Scholar
  31. 27.
    A. J. Freeman, J. Yu, S. Massidda, and D. D. Koelling, Physica 148B, 212 (1987).Google Scholar
  32. 28.
    M. J. DeWeert, D. A. Papaconstantopoulos, and W. E. Pickett, Phys. Rev. B39, 4235 (1989).ADSGoogle Scholar
  33. 29.
    W. E. Pickett and D. A. Papaconstantopoulos, in Atomic Scale Calculations in Materials Science, J. Tersoff, D. Vanderbilt, and V. Vitek, MRS Symp. Proc. No. 141 ( MRS, Pittsburgh, 1989 ), 109.Google Scholar
  34. 30.
    A. Svane and 0. Gunnarsson, Europhys. Lett. 7, 171 (1988).ADSCrossRefGoogle Scholar
  35. 31.
    J. Friedel, preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • W. E. Pickett
    • 1
  • H. Krakauer
    • 2
  • R. E. Cohen
    • 1
  • D. Singh
    • 1
  • D. A. Papaconstantopoulos
    • 1
  1. 1.Complex Systems Theory BranchCode 4690 Naval Research LaboratoryUSA
  2. 2.Department of PhysicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations