Microstructural Effects in Oxide Superconductors

  • J. G. Darab
  • R. Garcia
  • R. K. Macgrone
  • K. Rajan


Mechanical deformation (ball milling) has been found to degrade the superconducting properties of YBa2Cu3O7−x. The degraded samples have been found to contain a large density of non-intersecting (110) twins and at the same time exhibit a large EPR signal. A clear correlation betwen the degree of degradation (as measured by the relative susceptibility), the twin density and the EPR intensity was established. A detailed analysis of the EPR parameters shows conslusively that the copper(II) complexes involved cannot lie in perfect defect-free YBa2Cu3O7−x. Rather, they have very different environments most probably associated with twin boundaries. The twin structure and associated EPR spectra are very sensitive to modest thermal and mechanical stress, and a new “ribbon-like” defect is subsequently observed. On the other hand, annealing at 500 °C, produces the “tweed-like” twin structure, with no associated EPR spectra and with restored superconducting properties.


Ball Milling Twin Boundary Milling Time Superconducting Property Twin Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Couach, A.F. Khoder, B. Barbara, J.Y. Henry, C. Ayache, E. Bonjour, R. Calemczuk and B. Salce, Physica C, 153 - 155, 844 (1988).Google Scholar
  2. 2.
    G.G. Zwicknagel and J.W. Wilkins, Phys. Rev. Lett. 53 (13), 1276 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Ekin, Advanced Ceramic Materials (Special Supplementary Issue), vol. 2, p. 586 (1987).Google Scholar
  4. 4.
    M.M. Fang, V.G. Jogan, D.K. Finnemore, J.R. Clem, L.S. Chumbley, and D. Farrel, Phys. Rev. B 37, 4, 2334 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    R. Beyers, G. Im, E.M. Engler, R.J. Savoy, T.M. Shaw, T.R. Dinger, W.J. Gallagher and R.L. Sandstrom, Appl. Phys. Lett. 50 (26) 191B (1987).CrossRefGoogle Scholar
  6. 6.
    G. Van Tendeloo, H.W. Zandbergen and S. Amelinckx, Solid State Comm., 63 (5), 389 (1987).CrossRefGoogle Scholar
  7. 7.
    N.X. Tan, A.J. Bourdillon, S.X. Don, H.K. Kiu and C.C. Sorrel, Phil. Mag. Lett., 58 (3), 1988.Google Scholar
  8. 8.
    D. Shi, M. Patel and P. Tashishta, to be published in J. Appl. Phys.Google Scholar
  9. 9.
    W.R. McKinnon, J.R. Morton, K.F. Preston and L.S. Selwyn, Solid State Commun., 65 No. 8, 855 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    E.W. Ong, B.L. Ramakrishna and Z. Iqbal, to be published in Solid State Comm.Google Scholar
  11. 11.
    D. Shalteil, J. Genossar, A. Grayevsky, Z.H. Kalman, B. Fisher and N. Kaplan, Solid State Commun., 63 (11), 987 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    Sandia Science News 2/89 as reported in Ceram. Bull., 68 No. 5, 966 (1989).Google Scholar
  13. 13.
    J.Z. Sun et al., Phys. Rev. Lett., 58, 1574 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    R. Flukiger, T. Muller, W. Goldacker, T. Wolf, E. Seibt, I. Apfelstedt, H. Kupfer and W. Schauer, Physica C 153-155 1574 (1988).Google Scholar
  15. 15.
    B.V. Harrowfield, A.T. Dempster, T.E. Freeman, and J.R. Pilbrow, Solid State Phys., 6 2058 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    A. Bencini, I. Bertini, D. Gatteschi and A. Scozzafava, Inorg. Chem., 17, 3194 (1979).CrossRefGoogle Scholar
  17. 17.
    I. Bertini, G. Canti, R. Grassi and A. Scozzafava, Inorg. Chem., 19, 2198 (1980).CrossRefGoogle Scholar
  18. 18.
    M. Herview, B. Domengas, C. Michel, and B. Raveau, Europhys. Lett., 4, 211 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    H. You, J.D. Axe, X.B. Kan, S.C. Moss, J.Z. Liu, and D.J. Lam, in High Temperature Superconductors, Eds. M.B. Brodsky, R.C. Dynes, K. Kitazawa, and H.L. Tuller, MRS Symposium Proceedings, vol. 99, 1988, p. 83.Google Scholar
  20. 20.
    C. Michel and B. Raveau, J. Solid State Chem. 49, 150 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    Y.N. Molin, K.M. Salikhov, and K.I. Zamaraev, “Spin Exchange Principles and Applications in Chemistry and Biology”, Springer-Verlag, New York, 1980, Chap. 1-3.Google Scholar
  22. 22.
    D.W. Murphy, S.A. Sunshine, P.K. Gallagher, H.M. O’Bryan, R.J. Cava, B. Batlogg, R.B. Van Dover, L.F. Schneemeyer and S.M. Zahurak in “Chemistry of High-Temperature Superconductors”, eds. D.L. Nelson, M.S. Whittingham and T.F. George, ACS Symposium Series 351, 1987, Chapter 18.Google Scholar
  23. 23.
    T.M. Shaw, S.L. Shinde, D. Dimos, R.F. Cook, P.R. Duncombe and C. Knoll, J. Mat. Res. 4, 248 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    S. Mahajan and G.Y. Chin, Acta Met 22, 1113 (1974).CrossRefGoogle Scholar
  25. 25.
    K. Rajan, J. Mat. Sci. Lett. 1, 482 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. G. Darab
    • 1
  • R. Garcia
    • 1
  • R. K. Macgrone
    • 1
  • K. Rajan
    • 1
  1. 1.Materials Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations