Grain Boundary Diffusion and Superconductivity in Bi-Pb-Sr-Ca-Cu-O Compound

  • T. K. Chaki
  • Shiaw C. Tseng


The discovery [1] of high temperature oxide superconductors has caused tremendous excitement due to great technological importance. The critical current in polycrystalline oxide superconductors is low. Cava et al. [2] first measured critical current density, Jc in Y1Ba2Cu3O7 by transport method and reported Jc at 77K and zero magnetic field to be only 1100 A/cm2, compared to 105 A/cm2 reported [3] for epitaxial films. Moreover, the critical current in the polycrystalline material decreases drastically [4] at a low magnetic field. Similar low critical currents have also been observed [5] in polycrystalline Bi2CaSr2Cu2O8 and T12Ca2Ba2Cu3O10 compounds. Weak linking at the grain boundaries is thought [6] to be the cause for low Jc in polycrystalline high-Tc materials. By measuring Jc across single grain boundaries between [001] oriented grains of Y1Ba2Cu3O7, Mannhart et al. [7] have shown that high angle tilt grain boundaries behave like normal layers in SNS-type Josephson junctions.


Critical Current Boundary Diffusion Auger Electron Critical Current Density Epitaxial Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Bednorz and K.A. Muller, Z. Phys. B64:189 (1986).CrossRefGoogle Scholar
  2. 2.
    R.J. Cava, B. Batlogg, R.B. VanDover, D.W. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, E.A. Rietman, S. Zahurak and G.P. Espinosa, Phys. Rev. Lett. 58:1676 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    P. Chaudhari, R.H. Koch, R.B. Laibowitz, T.R. McGuire and R.J. Gambino, Phys. Rev. Lett. 58:2684 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    G. Paterno, C. Alvani, S. Casadio, U. Gambardella and I. Maritato, Appl. Phys. Lett. 53:609 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    H. Kupfer, S.M. Green, C. Jiang, Yu Mei, H.L. Luo, R. Meier-Hirmer and C. Politis, Z. Phys. 71:63 (1988).CrossRefGoogle Scholar
  6. 6.
    R.L. Peterson and J.W. Ekin, Phys. Rev. B 37:9848 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    J. Mannhart, P. Chaudhari, D. Dimos, C.C. Tsuei and T.R. McGuire, Phys. Rev. Lett. 61:276 (1988).CrossRefGoogle Scholar
  8. 8.
    P.G. Shewmon, “Diffusion in Solids”, McGraw-Hill Book Company, New York, (1964), p. 164.Google Scholar
  9. 9.
    B. Jayaram, S.K. Agarwal, C.V. Narasimha Rao and A.V. Narlikar, Phys. Rev. B. 38:2903 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    T. Kanai, T. Kamo and S-P Matsuda, Jap. J. Appl. Phys. 28:L551 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    Z.J. Yang, H. Bratsberg, T.H. Johansen, N. Norman, J. Tafto, G. Helgesen, I. Lorentzen and A.T. Skjeltorp, to be published in Physica C. (1989).Google Scholar
  12. 12.
    J.D. Verhoeven, A.J. Bevolo, R.W. McCallum, E.D. Gibson and M.A. Noack, Appl. Phys. Lett. 52:745 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    H. Gleiter, Phys. Stat. Sol. B45:9 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • T. K. Chaki
    • 1
  • Shiaw C. Tseng
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering StateUniversity of New YorkBuffaloUSA

Personalised recommendations