Advertisement

Compositional Dependence and Characteristics of the Superconductive Bi-Sr-Ca-Cu-O System

  • H. L. Luo
  • S. M. Green
  • Yu Mei
  • A. E. Manzi

Abstract

The results of a systematic study on compositional dependence of the Bi-Sr-Ca-Cu oxide superconductors are presented. The optimal range of Pb substitution for Bi in the stability of Bix-2PbxSr2Ca2Cu3Oδ is determined to be 0.20 ≤x≤ 0.35. There is a limited range of solid solution for Sr replacing Ca. But Bi substituting Ca can lead to the instability of 2223 structure. Once the 2223 is formed, its oxygen content is quite stable.

Keywords

High Resolution Transmission Electron Microscopy Oxygen Partial Pressure Resistive Transition Compositional Dependence Oxide Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, and B. Raveau, Z. Phys. B 68:421 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    M. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. Leu. 27:L209 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    H. W. Zandbergen, Y. K. Huang, M. J. V. Menken, J. N. Li, K. Kadowaki, A. A. Menovsky, G. van Tendeloo, and S. Amelinckx, Nature 332:620 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 239:1015 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    S. M. Green, Yu Mei, C. Jiang, H. L. Luo, and C. Politis, Mod. Phys. Leu. B2:915 (1988).ADSGoogle Scholar
  6. 6.
    J. M. Tarascon, Y. LePage, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Phys. Rev. B37:9382 (1988).ADSGoogle Scholar
  7. 7.
    R. Ramesh, G. Thomas, S. M. Green, C. Jiang, Yu Mei, M. L. Rudee, and H. L. Luo, Phys. Rev. B B38:7070 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    R. Ramesh, G. Thomas, S. M. Green, Yu Mei, C. Jiang, and H. L. Luo, Appl. Phys. Lett. 53:1759 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    J. M. Tarascon, W. R. McKinnon, P. Barboux, D. M. Hwang, B. G. Bagley, L. H. Greene, G. W. Hull, Y. LePage, N. Stoffel, and M. Giroud, Phys. Rev. B38:8885 (1988).ADSGoogle Scholar
  10. 10.
    R. J. Cava, B. Batlogg, S. A. Sunshine, T. Siegrist, R. M. Fleming, K. Rabe, L. F. Schneemeyer, D. W. Murphy, R. B. van Dover, P. K. Gallagher, S. H. Glarum, S. Nakahara, R. C. Farrow, J. J. Krajewski, S. M. Zahurak, J. V. Waszczak, J. H. Marshall, P. Marsh, L. W. Rupp, Jr., W. F. Peck, and E. A. Rietman, Physica C 153-155:560 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    S. M. Green, C. Jiang, Yu Mei, H. L. Luo, and C. Politis, Phys. Rev. B38:5016 (1988).ADSGoogle Scholar
  12. 12.
    B. W. Statt, Z. Wang, M. J. G. Lee, J. V. Yakhmi, P. C. deCamargo, J. F. Major, and J. W. Rutter, Physica C 156:251 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    Yu Mei, S. M. Green, C. Jiang, and H. L. Luo, J. Appl. Phys. 66:1777 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Iqbal, H. Eckhardt, F. Reidinger, A. Bose, J. C. Barry, and B. L. Ramakrishna, Phys. Rev. B38:859 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    G. S. Grader, E. M. Gyorgy, P. K. Gallagher, H. M. O’Bryan, D. W. Johnson, Jr., S. Sunshine, S. M. Zahurak, S. Jin, and R. C. Sherwood, Phys. Rev. B38:757 (1988).ADSGoogle Scholar
  16. 16.
    C. J. D. Hetherington, R. Ramesh, M. A. O’Keefe, R. Kilaas, G. Thomas, S. M. Green, and H. L. Luo, Appl. Phys. Lett. 53:1016 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    H. L. Luo, S. M. Green, C. Jiang, Yu Mei, and C. Politis, Metal. Trans. 19A:734 (1988).CrossRefGoogle Scholar
  18. 18.
    E. M. Engler, V. Y. Lee, A. I. Nazzal, R. B. Beyers, G. Lim, P. M. Grant, S. S. P. Parkin, M. L. Ramirez, J. E. Vazquez, and R. J. Savoy, J. Am. Chem. Soc. 109:2848 (1987).CrossRefGoogle Scholar
  19. 19.
    Z. Fisk, J. D. Thompson, E. Zirngiebl, J. L. Smith, and S. W. Cheong, Solid State Commun. 62:743 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    S. Tsurumi, M. Hitkita, T. Iwata, K. Semba, and S. Kurihara, Jpn. J. Appl. Phys. 26:L856 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. V. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B36:3608 (1987).ADSGoogle Scholar
  22. 22.
    D. E. Morris, C. T. Hultgren, A. M. Markelz, J. Y. T. Wei, N. G. Asmar, and J. H. Nickel, Phys. Rev. B39:6612 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    R. G. Buckley, J. L. Tallon, I. W. M. Brown, M. R. Presland, N. E. Flower, P. W. Gilberd, M. Bowden, and N. B. Midestone, Physica C156:629 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. L. Luo
    • 1
  • S. M. Green
    • 2
  • Yu Mei
    • 1
  • A. E. Manzi
    • 1
  1. 1.Department of Electrical and Computer Engineering, R-007University of CaliforniaSan DiegoLa JollaUSA
  2. 2.Superconductivity CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations