Mechanisms of Heat Conduction in High-Tc Superconductors

  • Ctirad Uher


Much excitement has been generated by the discovery of high-Tc superconductivity by Bednorz and Müller1 and by the subsequent rapid development culminating in the synthesis of novel superconducting structures with transition temperatures at 90K and beyond.2–4 Suddenly a whole spectrum of perovskite-related structures has become available upon which one can model theoretical ideas spanning from ordinary to exotic forms of superconductivity. At the same time, material scientists and physicists have been working hard to find ways to make these fascinating materials more mechanically amenable and to improve their superconducting properties.


Thermal Conductivity Sintered Sample Thermal Transport Vacuum Annealing Tunneling State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Bednorz and K.A. Müller, Z. Phys., B 64:189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    M.K. Wu, J.R. Asburn, C.J. Torng, P.H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58:908 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jap. J. Appl. Phys. 27:L209 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    Z.Z. Sheng and A.M. Herman, Nature 332:55 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    P.L. Richards, J. Clarke, R. Leoni, Ph. Lerch, B. Verghese, M.R. Beasley, T.H. Geballe, R.H. Hammond, P. Rosenthal, and S.R. Spielmann, Appl. Phys. Lett. 54:283 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    M.I. Flik and C.L. Tien, to appear in Journal of Heat Transfer.Google Scholar
  7. 7.
    H.E. Fischer, S.K. Watson, and D.G. Cahill, Comments Cond. Mat. Phys. 14:65 (1988).Google Scholar
  8. 8.
    E. Gmelin, in “Studies of High Temperature Superconductors”, ed. A. Narlikar, Nova Science Publishers, New York, Vol. 2, Ch. 4, p. 95 (1989).Google Scholar
  9. 9.
    A. Inam, M.S. Hegde, X.D. Wu, T. Venkatesan, D. England, P.F. Miceli, E.W. Chase, C.C. Chang, J.M. Tarascon, and Y.B. Wachtman, Appl. Phys. Lett. 53:908 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Fanton, A. Kapitulnik, D.B. Mitzi, B.T. Khuri-Yakub, and G.S. Kino, Appl. Phys. Lett. in press.Google Scholar
  11. 11.
    J. Bardeen, G. Rickhayzen, and L. Tewordt, Phys,. Rev. 113:982 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    B.T. Geilikman and V.Z. Kresin, “Kinetic and Nonsteady-State Effects in Superconductors”, John Wiley & Sons, New York (1974).Google Scholar
  13. 13.
    J.L. Olsen, Proc. Phys. Sec., A65:518 (1952).Google Scholar
  14. 14.
    A. Jezowski, J. Mucha, K. Rogacki, R. Horyn, Z. Bukowski, M. Horobiowski, J. Rafalowicz, J. Stepien-Damm, C. Sulkowski, E. Trojnar, A.J. Zaleski, and J. Klamut, Phys. Lett. Al22:431 (1987).Google Scholar
  15. 15.
    D.T. Morelli, J. Heremans, and D.E. Swets, Phys. Rev. B 36:3917 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    C. Uher and A.B. Kaiser, Phys. Rev. B 36:5680 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    V. Bayot, F. Delannay, C. Dewitte, J.-P. Erauw, X. Gonze, J.-P. Issi, A. Jonas, M. Kinany-Alaoui, M. Lambricht, J.-P. Michenand, J.-P. Minet, and L. Piraux, Solid State Commun 63:983 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    U. Gottwick, R. Held, G. Sparn, F. Steglich, H. Rietschel, D. Ewert, B. Renker, W. Bauhofer, S. von Molnar, M. Wilhelm, and H.E. Hoenig, Europhysics Lett. 4:1183 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    B. Salse, R. Calemczuk, C. Ayache, E. Bonjour, J.Y. Henry, M. Raki, L. Forro, M. Couach, A.F. Khoder, B. Barbara, P. Burlet, M.J.M. Jurgens, and J. RossatMignod, Physica, C153–155:1014 (1988).Google Scholar
  20. 20.
    S.J. Hagen, Z.Z. Wang, and N.P. Ong, Phys. Rev., submitted.Google Scholar
  21. 21.
    N.V. Zavaritskii, A.V. Samoilov, and A.A. Yurgens, Soy. Phys. JETP Lett. 48:242 (1988).ADSGoogle Scholar
  22. 22.
    A. Jezowski, J. Klamut, R. Horyn, and K. Rogacki, Supercond. Sci. & Technol., to be published.Google Scholar
  23. 23.
    V.B. Yefimov, A.A. Levchenko, L.P. Mezhov-Deglin, R.K. Nikolaev, N.S. Sidorov, Sov. Journal Superconductivity: Physics, Chemistry, Engineering 2:16 (1989).Google Scholar
  24. 24.
    L. Tewordt and Th. Wölkhausen, Solid State Commun. 70:839 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    M. Núnez Regueiro, D. Castello, M.A. Izbizky, D. Esparza, and C.D’Ovidio, Phys. Rev. B 36:8813 (1987).CrossRefGoogle Scholar
  26. 26.
    B. Golding, N.O. Birge, W.H. Haemmerle, R.J. Cava, and E. Rietman, Phys. Rev. B 36:5606 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    see, e.g., R. Srinivasan in “Studies of High Temperature Superconductors”, ed. A. Narlikar, Nova Science Publishers, New York, Vol. 1, p. 267 (1989).Google Scholar
  28. 28.
    S. Hunklinger and A.K. Raychaudhuri, in. “Progress in Low Temperature Physics”, ed. by D.F. Brewer, Elsevier, Amsterdam, Vol. 9 (1986).Google Scholar
  29. 29.
    J.J. DeYoreo, W. Knaak, M. Meissner, R.O. Pohl, Phys. Rev. B 34:8828 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    J.J. Freeman, T.A. Friedmann, D.M. Ginsberg, J. Chen, and A. Zangvil, Phys. Rev. B 36:8786 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Graebner, L.F. Schneemeyer, R.J. Cava, J.V. Waszczak, and E.A. Riet-man, Symp. Proc. Mat. Res. Soc. 99:745 (1988).CrossRefGoogle Scholar
  32. 32.
    G. Sparn, W. Schiebeling, M. Lang, R. Held, U. Gottwick, F. Steglich, and H. Rietschel, Physica C153–155:1010 (1988).Google Scholar
  33. 33.
    J.L. Cohn, S.D. Peacor, and C. Uher, Phys. Rev. B 38:2892 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    W.P. Kirk, P.S. Kobiela, R.N. Tsumura, and R.K. Pandey, Ferroelectrics 92:151 (1989).CrossRefGoogle Scholar
  35. 35.
    A. Jezowski, A.J. Zaleski, M. Ciszek, J. Mucha, T. Olejniczak, E. Trojnar, and J. Klamut, Helvetica Physica Acta 61:438 (1988).Google Scholar
  36. 36.
    J. Heremans, D.T. Morelli, G.W. Smith, and S.C. Strite III, Phys. Rev. B 37:1604 (1988).CrossRefGoogle Scholar
  37. 37.
    K. Mori, K. Noto, M. Sasakawa, Y. Isikawa, K. Sato, N. Kobayashi, and Y. Muto, Physica C153–155:1515 (1988).Google Scholar
  38. 38.
    M.A. Izbizky, M. Núnez Regueiro, P. Esquinazi, and C. Fainstein, Phys. Rev. B 38:9220 (1988).ADSCrossRefGoogle Scholar
  39. 39.
    C. Uher and W.-N. Huang, Phys. Rev. B 40:2694 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    K. Bartkowski, R. Horyn, A.J. Zaleski, Z. Bukowski, M. Horobiowski, C. Marucha, J. Rafalowicz, K. Rogacki, A. Stepien-Damm, C. Sulkowski, E. Trojnar, and J. Klamut, Phys. Stat. Solidi (a) 103:K37 (1987).ADSCrossRefGoogle Scholar
  41. 41.
    F. Steglich, U. Ahlheim, D. Ewert, U. Gottwick, R. Held, H. Kneissel, M. Lang, U. Rauchschwalbe, B. Renker, H. Rietschel, G. Sparn and H. Spille, Physica Scripta 37:901 (1988).ADSCrossRefGoogle Scholar
  42. 42.
    A. Bernasconi, E. Felder, F. Hulliger, H.R. Ott, Z. Fisk, F. Greuter, and C. Schueler, Physica C153–155:1034 (1988).Google Scholar
  43. 43.
    C. Uher and J.L. Cohn, J. Phys. C21:L957 (1988).ADSGoogle Scholar
  44. 44.
    D.T. Morelli, J. Heremans, G. Doll, P.J. Picone, H.P. Jenssen, and M.S. Dresselhaus, Phys. Rev. B 39:804 (1989).ADSCrossRefGoogle Scholar
  45. 45.
    D.T. Morelli, G.L. Doll, J. Heremans, M.S. Dresselhaus, A. Cassanho, D.R. Gabbe, and H.P. Jenssen, to be published.Google Scholar
  46. 46.
    S.D. Peacor and C. Uher, Phys. Rev. B 39:11559 (1989).ADSCrossRefGoogle Scholar
  47. 47.
    Da-Ming Zhu, A.C. Anderson, E.D. Bukowski, and D.M. Ginsberg, Phys. Rev. B 40:841 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ctirad Uher
    • 1
  1. 1.Physics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations