Flux Pinning and Microstructure in YBa2Cu3O7

  • M. Suenaga
  • D. O. Welch
  • Youwen Xu
  • Y. Zhu
  • A. K. Ghosh
  • A. R. Moodenbaugh


Critical current densities Jc of superconductors are one of the most important properties of superconductors in the majority of applications. Unfortunately, in spite of the fact that tremendous efforts have been mounted internationally in studies of the high temperature oxide superconductors, the current values of Jc are disappointingly low except in single crystal bulk specimens and films with the current flowing in the basal planes.1,2 The majority of the studies of Jc in bulk superconductors have emphasized that the difficulties may have been due to the poor intergranular superconductivity and/or the large anisotropy in the value of Jc, depending on the orientation of the crystallographic axis with applied magnetic fields.3–5 In order to minimize this problem, Jin et al.6 and more recently Murakami et al.7 have synthesized grain-aligned bulk specimens which show values Jc (~10 A/mm2 in applied magnetic fields of a few tesla and at 77 K) significantly larger than those in the sintered materials.


Twin Boundary Critical Current Density Coherence Length Flux Line Flux Pinning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, see T. R. Dinger, T. K. Warthington, W. J. Gallagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    For example, see Y. Enomoto, T. Murakami, M. Suzuki, and K. Moriwaki, Jpn. J. Appl. Phys. 26, L1248 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    M. Suenaga, A. Ghosh, T. Asano, R. L. Sabatini, and A. R. Moodenbaugh, in Proc. Mater. Res. Soc. Meeting, Anaheim, April, 1987.Google Scholar
  4. 4.
    D. C. Larbalestier, M. Daeumling, X. Cai, J. Seuntjens, J. McKinnell, D. Hampshire, P. Lee, T. Willis, H. Muller, R. D. Ray, R. D. Dillenburg, E. E. Hellstrom, and R. Jount, J. Appl. Phys. 62, 3308 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone, II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys, 62, 4821 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kammloff, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2075 (1988).ADSGoogle Scholar
  7. 7.
    M. Murakami, M. Morita, K. Miyamoto, and S. Matsuda, in Proc. Intern. Symp. on High Tc Superconductors, Osaka, Oct. 1988, to be published.Google Scholar
  8. 8.
    Youwen Xu, unpublished. These data were taken from “c” axis oriented powder specimens with applied fields parallel to the c axis. Thus, the induced current circulates in the a-b plane.Google Scholar
  9. 9.
    R. Wordenweber, G. V. S. Sastry, K. Heinemenn, and H. C. Freyhardt, J. Appl. Phys. 65, 1649 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    G. Zerweck, J. Low Temp. Phys. 42, 1 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    D. O. Welch, IEEE Trans. Magn. MAG-21, 827 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    E. V. Thuneberg, J. Low Temp. Phys. 57, 415 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    A. Pruymboom and P. H. Kes, Jpn. J. Appl. Phys. 26, Suppl. 26–3, 1533 (1987).Google Scholar
  14. 14.
    K. Yamafuji, T. Fujiyoshi, K. Toko, and T. Matsushita, Physical C 159, 743 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    B. Serin, in Superconductivity, R. D. Parks, editor, p. 925, Marcel Dekker, New York, 1969.Google Scholar
  16. 16.
    Youwen Xu, M. Suenaga, A. R. Moodenbaugh, J. L. Peng, and R. N. Shelton, Mater. and Mech. of High Tc Superconductivity, Stanford, CA 1989, to be published.Google Scholar
  17. 17.
    A. Junod, D. Ekert, T. Graf, G. Triscone, and J. Muller, Mater. and Mech. of High Tc Superconductivity, Stanford, CA 1989, to be published.Google Scholar
  18. 18.
    F. J. Blunt, A. M. Campbell, P. P. Edwards, J. E. Evetts, P. Freeman, J. Johnson, J. Loram, K. Mirza, A. Putnig, E. Salije, and W. Schmall, Mater. and Mech. of High Tc Superconductivity, Stanford, CA 1989, to be published.Google Scholar
  19. 19.
    S. Kim, R. A. Fisher, N. E. Phillips, and J. E. Gordon, Mater. and Mech. of High Tc Superconductivity, Stanford, CA 1989, to be published.Google Scholar
  20. 20.
    K. S. Athreya, O. B. Hynn, J. E. Ostenson, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 38, 1846 (1988).CrossRefGoogle Scholar
  21. 21.
    K. S. Athreya, S. C. Sanders, D. Hofreiter, D. K. Finnemore, and Youwen Xu, M. Suenaga, Phys. Rev. B, to be published.Google Scholar
  22. 22.
    T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 54, 763 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    J. D. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E. G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh, Phys. Rev. Lett. 62, 3093 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    A. P. Malozemoff, L. Krusin-Elbaum, D. C. Cronemeyer, Y. Yeshurun, and F. Holtzberg, Phys. Rev. B 38, 6490 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    R. Griessen, C. F. J. Flipse, C. W. Hagen, J. Lensink, B. Dam, and G. M. Stollman, J. Less-Comm. Metals 151, 39 (1989).CrossRefGoogle Scholar
  28. 28.
    Y. Iye, S. Nakamura, and T. Tamegai, Physica C 159, 433 (1989).CrossRefGoogle Scholar
  29. 29.
    Youwen Xu, M. Suenaga, A. R. Moodenbaugh, and D. O. Welch, Phys. Rev. B (1989), to be published.Google Scholar
  30. 30.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 129, 528 (1963).ADSCrossRefGoogle Scholar
  31. 31.
    M. R. Beasley, R. Labush, and W. W. Webb, Phys. Rev. 181, 682 (1969).ADSCrossRefGoogle Scholar
  32. 32.
    M. Tinkham and C. J. Lobb, Solid State Phys. Vol. 42.Google Scholar
  33. 33.
    C. W. Hagen, R. Friessen, and E. Salomons, Phys. Rev. B, to be published.Google Scholar
  34. 34.
    M. Suenaga and M. Murakami, unpublished.Google Scholar
  35. 35.
    D. O. Welch, unpublished.Google Scholar
  36. 36.
    M. Suenaga, A. K. Ghosh, and D. O. Welch, unpublished.Google Scholar
  37. 37.
    D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    P. H. Kes, Physica C 153–5, 1121 (1988).ADSCrossRefGoogle Scholar
  39. 39.
    T. Matsushita, K. Fumaki, M. Takeo, and K. Yamafuji, Jpn. J. Appl. Phys. 26, L1524 (1987).CrossRefGoogle Scholar
  40. 40.
    Yimei Zhu, M. Suenaga, and Youwen Xu, Philos. Mag. Lett. 60, 51 (1989).ADSCrossRefGoogle Scholar
  41. 41.
    Y. Zhu, M. Suenaga, Youwen Xu, R. L. Sabatini, and A. R. Moodenbaugh, Appl. Phys. Lett. 54, 374 (1989).ADSCrossRefGoogle Scholar
  42. 42.
    Youwen Xu, M. Suenaga, J. Tafto, R. L. Sabatini, A. R. Moodenbaugh, and P. Zolliker, Phys. Rev. B 39, 6667 (1989).ADSCrossRefGoogle Scholar
  43. 43.
    M. Murakami, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Suenaga
    • 1
  • D. O. Welch
    • 1
  • Youwen Xu
    • 1
  • Y. Zhu
    • 1
  • A. K. Ghosh
    • 1
  • A. R. Moodenbaugh
    • 1
  1. 1.Materials Science Division Department of Applied ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations