Advertisement

Low Temperature Metal-Organic Chemical Vapor Deposition (LTMOCVD) Route to the Fabrication of Thin Films of High Temperature Oxide Superconductors

  • Alain E. Kaloyeros
  • Aiguo Feng
  • Jonathan Garhart
  • Marianne Holma
  • Kenneth C. Brooks
  • Wendell S. Williams

Abstract

Although the recent discovery of high Tc superconductivity in bulk oxide ceramic samples has excited the scientific community, the technological potential of this new class of superconductors, especially in device-oriented applications, will not be fully realized until a relatively straightforward and easily reproducible technique can be applied to the synthesis of high quality superconducting thin films.1, 2 There has been considerable progress in the fabrication of superconductor thin films using a variety of techniques, e.g., reactive ion beam deposition, cosputtering from separate sources, dc and rf magnetron sputtering from a single source, sequential evaporation, plasma-assisted laser beam deposition, and chemical vapor deposition.3-8 In the present paper, we report on the successful preparation of thin films of the Y-Ba-Cu-O system, showing a sharp transition at 90K, by a novel metal-organic chemical vapor method, followed by in-situ post-deposition annealing. This method has the advantages of relative simplicity and controllability, good film adherence, high film uniformity over a large area and reduced susceptibility to interfacial mixing and cross-contamination. In addition, it produces superconductor films on substrates of complex shape and with high growth rates. Because deposition can be achieved at temperatures as low as 300 °C, the method is called LTMOCVD.

Keywords

Auger Electron Spectroscopy Primary Electron Beam Film Versus Superconductor Thin Film Auger Electron Spectroscopy Depth Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Chu, P. H. Hor, R.L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang, “Evidence for Superconductivity above 40K in the La-Ba-Cu-O Compound System,” Phys. Rev. Lett. 58:405 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    L. R. Testardi, W. G. Moulton, H. Mathias, H. K. Ng, and C. M. Rey, “Superconducting and Nonsuperconducting phases of Y-Ba-Cu-O: Modifications at the High-Temperature Phase Transition,” Phys. Rev. B16:8816 (1987).Google Scholar
  3. 3.
    A. B. Harker, P. H. Kobrin, P. E. D. Morgan, J. F. DeNatale, J. J. Ratto, I. S. Gergis, and D. G. Howitt, “Superconductor Thin Films by Reactive Ion Beam Deposition,”Appl. Phys. Lett. 52:2180 (1988).Google Scholar
  4. 4.
    M. Fukutomi, J. Machida, Y. Tanaka, T. Asano, T. Yamamoto, and H. Maeda, “New Technique for Preparation of Bi-Sr-Ca-Cu-O Thin Films with Tc of 100K and Above,” Jpn. J. Appl. Phys. 27:L1484 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    B. T. Sullivan, N. R. Osborne, W. N. Hardy, J. F. Carolan, B. X. Yang, P. J. Michael, and R. R. Parsons, “Growth of Y-Ba-Cu-O Superconductor Thin Films by DC Magnetron Sputtering,” Appl. Phys. Lett. 52:1992 (1988).Google Scholar
  6. 6.
    B. F. Kim, J. Bohandy, T. E. Phillips, W. J. Green, E. Agostinelli, F. J. Adrian, K. Moorjani, L. J. Swartzendruber, R. D. Shull, L. H. Bennett. and J. S. Wallace, “Superconducting Thin Films of Bi-Sr-CaCu-O obtained by Laser Ablation Processing,” Appl. Phys. Lett. 53:321 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    M. Levinson, S. S. P. Shah, and N. Naito, “Superconducting Films by Magnetron Sputtering of Single Bi2O3-SrF2-CaF2-CuO Targets,” Appl. Phys. Lett. 53:922 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    T. Venkatesam, X. D. Wu, B. Dutta, A. Inam, M. S. Hedge, D. M. Hwang, C. C. Chang, L. Nazar and B. Wilkens, “High Temperature Superconductivity in Ultrathin Films of Y-Ba-Cu-O,” Appl. Phys. Lett. 54:581 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. D. Berry, D. K. Gaskill, R. T. Holm, E. J. Cukauskas, R. Kaplan, and R. L. Henry, “Formation Of High Tc Superconducting Films by Organometallic Chemical Vapor Deposition,” Appl. Phys. Lett. 52:1743 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhao, K. H. Dahmen, H. O. Marcy, L. M. Tonga, B. W. Wessels, T. J. Marks, and C. R. Kannewurf, “Low Pressure Organometallic Chemical Vapor Deposition of high T Superconducting YBa2Cu3O7−d Films,” Solid State Comm. 69:187 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    R. Belcher, C.R. Cranly, J.R. Majer, W.I. Stephen, and P.C. Uden, “Volatile Alkaline Earth Chelates of Fluorinated Alkanoylpivalyl Methanes,” Anal. Chim. Acta 60:109 (1972).CrossRefGoogle Scholar
  12. 12.
    R.C. Mehrotra, R. Bohra, and D.P. Gaur, Metal ß-Diketonates and Allied Derivatives, Academic Press, London (1978).Google Scholar
  13. 13.
    A. E. Kaloyeros, W.S. Williams, and G. Constant, “ Method for the Preparation of Protective Coatings by Low-Temperature Metal-Organic Chemical Vapor Deposition (MOCVD),” Rev. Sci Instrum. 59:1209 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Alain E. Kaloyeros
    • 1
  • Aiguo Feng
    • 1
  • Jonathan Garhart
    • 1
  • Marianne Holma
    • 2
  • Kenneth C. Brooks
    • 2
  • Wendell S. Williams
    • 3
  1. 1.Physics DepartmentState University of New York at AlbanyAlbanyUSA
  2. 2.Physics Department, Chemistry DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Materials Science & EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations