Studies of Neutral and Ion Transport during Laser Ablation of 1:2:3 Superconductors by Optical Absorption Spectroscopy

  • D. B. Geohegan
  • D. N. Mashburn


Transient optical absorption spectroscopy, a new diagnostic technique for examining the density of ground state neutrals and ions following laser ablation, has been utilized for the first time to study the transport of ground state Y, Ba, Cu, Y+ and Ba+ following laser ablation of Y1Ba2Cu3Ox pellets under film deposition conditions. The technique reveals significantly broadened velocity distributions with a low velocity component which is not observed in velocity distributions inferred from monitoring excited state plume fluorescence. Ion probe measurements confirm this low velocity component. High resolution emission spectroscopy is also utilized to examine the spectral broadening arising from collision processes in the laser plasma as well as obtain estimates of plasma densities.


Laser Ablation Laser Plasma Knudsen Layer Optical Absorption Spectroscopy Laser Ablation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. D. Wu, B. Dutta, M. S. Hedge, A. Inam, T. Venkatesan, E. W. Chase, C. C. Chang, and R. Howard, Appl. Phys. Leu. 54, 179 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    Q. Y. Ying, D. T. Shaw, and H. S. Kwok, Appl. Phys. Leu. 53, 1762 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    O. Auciello, S. Athavale, O. E. Hankins, M. Sito, A. F. Schreiner, and N. Biunno, Appl. Phys. Leu. 53, 72 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    Wayne A. Weimer, Appl. Phys Leu. 52, 2171 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    T. J. Geyer and W. A. Weimer, Appl. Phys. Lett. 54, 469 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    J. P. Zheng, Z. Q. Huang, D. T. Shaw, and H. S. Kwok, Appl. Phys. Leu. 54, 280 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Zheng, Q. Y. Ying, S. Witanachchi, Z. Q. Huang, D. T. Shaw, and H. S. Kwok, Appl. Phys. Lett. 54, 954 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    P. E. Dyer, R. D. Greenough, A. Issa, and P. H. Key, Appl. Phys. Leu. 53, 534 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    T. Venkatesan, X. D. Wu, A. Inam, Y. Jeon, M. Croft, E. W. Chase, C. C. Chang, J. B. Wachtman, R. W. Odom, F. Radicati di Brozolo, and C. A. Magee, Appl. Phys. Lett. 53, 1431 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    C. H. Becker and J. B. Pallix, J. Appl. Phys. 64, 5152 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    T. Venkatesan, X. D. Wu, A. Inam, and J. B. Wachtman, Appl. Phys. Leu. 52, 1193 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    C. H. Chen, M. P. McCann and R. C. Phillips, Appl. Phys. Lett. 53, 2701 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    Principles of Laser Plasmas, edited by George Bekefi, John Wiley and Sons, p.549 (1976).Google Scholar
  14. 14.
    T. P. Hughes, Plasmas and Laser Light, John Wiley and Sons, New York, (1975).Google Scholar
  15. 15.
    R. E. Walkup, J. M. Jasinski, and R. W. Dreyfus Appl. Phys. Lett. 48, 1690 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    D. B. Geohegan and D. N. Mashburn, Appl. Phys. Leu.,in press.Google Scholar
  17. 17.
    Hans R. Griem, Spectral Line Broadening by Plasmas, Academic Press, London (1974).Google Scholar
  18. 18.
    Hans R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).Google Scholar
  19. 19.
    J. F. Ready, Effects of High Power Laser Radiation, Academic Press, London (1971).Google Scholar
  20. 20.
    Roger Kelly and R. W. Dreyfus, Nucl. Instr. and Meth. B 32, 341 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • D. B. Geohegan
    • 1
  • D. N. Mashburn
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations