In-Situ Growth of Y1Ba2Cu3O7−x Thin Films on Three-Inch Wafers Using Laser-Ablation and an Atomic Oxygen Source

  • James A. Greer


Pulsed laser-ablation is emerging as the deposition technique of choice for producing high quality, high temperature superconducting (HTS) thin films. Since the first report of Y1Ba2Cu3O7−x(YBCO) thin film deposition using pulsed laser-ablation1, a number of HTS compounds and novel in-situ laser-ablation approaches have been described in the literature2,3,4,5,6,7,8,9,10. The laser-ablation process, when used in conjunction with a variety of activated oxygen sources, has produced HTS films with excellent superconducting properties, principally on single crystal substrates of SrTiO3, MgO, ZrO2, and more recently LaA1O3, NdGaO3, and LaGaO3. However, the laser-ablation technique has, until now, only been used to coat relatively small substrates (up to about one square inch) due to the rather narrow angular distribution for the ablated material, which is a fundamental property of the ablation process. This narrow angular distribution is also responsible for the noticeably poor thickness uniformity obtained over even smaller substrate sizes. Practical electronic applications of HTS materials will require larger areas to be uniformly coated in order to increase the device size and/or the number of devices obtainable per substrate. Film thickness uniformity is extremely important when defining HTS structures with micron size features using photolithography and dry etching techniques. Also, by utilizing larger area substrates, more practical use can be made of existing semiconductor processing equipment to fabricate HTS devices in an efficient and cost effective manner.


Rutherford Backscattering Spectroscopy YBCO Film Room Temperature Resistivity Ablation Plume Pulse Laser Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrani, Y. M. Min-Lee, W. L. McLean, and M. Croft, “Preparation of Y-Ba-Cu Oxide Superconductor Thin Films Using Pulsed Laser Evaporation from High Tc Bulk Material,” Appl. Phys. Lett. 51:619 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    S. Witanachchi, H. S. Kwok, X. W. Wang, and D. T. Shaw “Deposition of Superconducting Y-Ba-Cu-O Films a 400]C Without Post-Annealing,” Appl. Phys. Lett. 53:234 (1988).Google Scholar
  3. 3.
    G. Koren, A. Gupta, and R. J. Baseman, “Role of Atomic Oxygen in the Low-Temperature Growth of YBa2Cu3O7−x Thin Films by Laser Ablation Deposition,” Appl. Phys. Lett. 54:1920 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    B. Roas, L. Schultz, and G. Endres, “Epitaxial Growth of YBa2Cu3O7−x Thin Films by a Laser Evaporation Process,” Appl. Phys. Lett. 53:1557 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    G. Koren, A. Gupta, E. A. Geiss, A. Segmuller, and R. B. Laibowitz, “Epitaxial Films of YBa2Cu3O7−x on NdGaO3, LaGaO3, and SrTiO3 Substrates Deposited by Laser Ablation,” Appl. Phys. Lett. 54:1054 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    A. Inam, M. S. Hegde, X. D. Wu, T. Venkatesan, P. England, P. F. Miceli, E. W. Chase, C. C. Chang, J. M. Tarascon, and J. B. Wachtman, “As-deposited High T and Je Superconducting Thin Films Made at Low Temperatures,” Appl. Phys. Lett. 53:908, (1988).ADSCrossRefGoogle Scholar
  7. 7.
    N. K. Jaggi, M. Meskoob, S. F. Wahid, and C. J. Rollins, “Superconductivity in Thin Films of Bi-SrCa-Cu Oxide Deposited Via Laser Ablation of Oxide Pellets,” Appl. Phys. Lett. 53:1551, (1988).ADSCrossRefGoogle Scholar
  8. 8.
    D. B. Geohegon, D. N. Mashburn, R. J. Culbertson, S. J. Pennycook, J. D. Budai, R. E. Valiga, B. C. Sales, D. H. Lowndes, L. A. Bawer, E. Sunder, D. Eres, D. K. Christen, and W. H. Christe, “Pulsed Laser Deposition of Thin Superconducting Films of Ho1Ba2Cu3O7−x and Y1Ba2Cu3O7−x,” J. Mater. Res. 3 (6):1169 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    S. H. Liou, K. D. Aylesworth, N. J. Ianno, B. Johs, D. Thompson, D. Meyer, J. A. Woollam, and C. Barry, “Highly Oriented T12Ba2Ca2Cu3O10 Thin Films by Pulsed Laser Evaporation,” Appl. Phys. Lett. 54:760 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    R. W. Simon, A. E. Lee, C. E. Platt, K. P. Daly, J. A. Luire, C. B. Eom, P. A. Rosenthal, X. D. Wu, and T. Venkatesan, “Growth of High-Temperature Superconductor Thin Films on Lanthanum Aluminate Substrates,” to be published in the Proceedings of the Conference on Science and Technology of Thin Film Superconductors, Colorado Springs, Nov. 1988.Google Scholar
  11. 11.
    W. R. Grace and Company, Columbia, MD.Google Scholar
  12. 12.
    Applied Science and Technology, Inc., Woburn, MA.Google Scholar
  13. 13.
    X. D. Wu, D. Dijkkamp, S. B. Ogale, A. Inam, E. W. Chase, P. F. Micelli, C. C. Chang, J. M. Tarascon, and T. Venkatesan, “Epitaxial Ordering of Oxide Superconductor Thin Films on (100) StTiO3 Prepared by Pulsed Laser Evaporation,” Appl. Phys. Lett. 51:861 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    R. J. Cava, B. Batlog, C. H. Chen, E. A. Rietman, S. M. Zahurak, and D. Werder, “Single-Phase 60-K Bulk Superconductor in Annealed Ba2YCu3O7−x (0.3x0.4) with Correlated Oxygen Vacancies in the Cu-O Chains,” Phys. Rev. B 36:5719 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    N. Klein, G. Muller, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “Millimeter Wave Surface Resistance of Epitaxially Grown YBa2Cu3O7−x Thin Films,” Appl. Phys. Lett. 54:757 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    J. N. Eckstein, D. G. Schlom, E. S. Hellman, K. E. vonDessonneck, Z. J. Chen, C. Webb, F. Turner, J. S. Harris, Jr., M. R. Beasley, and T. H. Geballe, “Epitaxial Growth of High-Temperature Superconducting Thin Films,” J. Vac. Sci. Technol. B 7:319 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    R. J. Spah, H. F. Hess, H. L. Stormer, A. É. White, and K. T. Short, “Parameters for In Situ Growth of High Tc Superconducting Thin Films Using an Oxygen Plasma Source,” Appl. Phys. Lett. 53:441 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    J. P. Zheng, Q. Y. Ying, S. Witanachchi, A. Q. Huang, D. T. Shaw, and H. S. Kwok, “Role of the Oxygen Atomic Beam in Low-Temperature Growth of Superconducting Films by Laser Deposition,” Appl. Phys. Lett. 54:954 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    C. Girault, D. Damiani, J. Aubreton, and A. Catherinot, “Influence of Oxygen Pressure on the Characteristics of the KrF-Laser-Induced Plasma Plume Created Above an YBaCuO Superconducting Target,” Appl. Phys. Lett. 54:2035 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    D. E. Oates and A. C. Anderson, “Superconducting Stripline Resonators and High Tc Materials,” Proceedings of MTT Long Beach, CA 267 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • James A. Greer
    • 1
  1. 1.Research Division Raytheon CompanyLexingtonUSA

Personalised recommendations