Advertisement

Industrial Computer Vision

  • R. C. Gonzalez

Abstract

This chapter is an overview of the principal concepts and techniques used in the design and implementation of state-of-the-art industrial vision systems. Attention is focused on six major areas: visual sensing, preprocessing, segmentation, description, recognition, and interpretation.

Keywords

Machine Vision Finite Automaton Fourier Descriptor Machine Vision System World Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. G. Barrow and J. M. Tenenbaum, “Computational vision,” Proc. IEEE, vol. 69, pp. 572–595, 1981.CrossRefGoogle Scholar
  2. [2]
    J. Birk, R. Kelley, N. Chen, and L. Wilson, “Image feature extraction using diameter-limited gradient direction histograms,” IEEE Trans. PAMI, vol. 1, no. 2, pp. 228–235, 1979.CrossRefGoogle Scholar
  3. [3]
    J. M. Brady (ed.), Computer Vision, North-Holland Publishing Company, Amsterdam, 1981.Google Scholar
  4. [4]
    E. Bribiesca, “Arithmetic operations among shapes using shape numbers,” Pat. Recog., vol. 13, no. 2, pp. 123–137, 1981.CrossRefGoogle Scholar
  5. [5]
    E. Bribiesca and A. Guzman, “How to describe pure form and how to measure differences in shape using shape numbers,” Pat. Recog., vol. 12, no. 2, pp. 101–112, 1980.CrossRefGoogle Scholar
  6. [6]
    R. A. Brooks, “Symbolic reasoning among 3-D models and 2-D images,” Artificial Intelligence, vol. 17, pp. 285–348, 1981.CrossRefGoogle Scholar
  7. [7]
    R. 0. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Comm. ACM, vol. 15, pp. 11–15, 1972.CrossRefGoogle Scholar
  8. [8]
    H. Freeman, “Shape description via the use of critical points,” Proc. Conf. Pat. Recog. and Image Processing, IEEE Publ. 77CHI208–9 C, pp. 169–174, 1977.Google Scholar
  9. [9]
    K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.MATHGoogle Scholar
  10. [10]
    K. S. Fu and J. K. Mui, “A survey of image segmentation,” Pat. Recog., vol. 13, pp. 3–16, 1982.MathSciNetCrossRefGoogle Scholar
  11. [11]
    K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Introduction to Robotics, McGraw-Hill, New York, (to appear ), 1985.Google Scholar
  12. [12]
    R. C. Gonzalez, “How vision systems see,” Machine Design, vol. 55, no. 10, pp. 91–96, 1983.Google Scholar
  13. [13]
    R. C. Gonzalez and R. Safabakhsh, “Computer vision techniques for industrial applications,” Computer, vol. 15, no. 12, pp. 17–32, 1982.CrossRefGoogle Scholar
  14. [14]
    R. C. Gonzalez, J. J. Edwards, and M. G. Thomason, “An algorithm for the inference of tree grammars,” Int’l. Joint Comput. Inform. Sci., vol. 5, no. 2, pp. 145–164, 1976.MATHGoogle Scholar
  15. [15]
    R. C. Gonzalez and M. G. Thomason, Syntactic Pattern Recognition: An Introduction, Addison-Wesley, Reading, MA, 1978.MATHGoogle Scholar
  16. [16]
    R. C. Gonzalez and P. Wintz, Digital Image Processing, Addison-Wesley, Reading, MA, 1977.MATHGoogle Scholar
  17. [17]
    J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Book Co., New York, 1968.Google Scholar
  18. [18]
    A. K. Griffith, “Edge detection in simple scenes using a-priori information,” IEEE Trans. Comput., vol. 22, pp. 371–381, 1973.CrossRefGoogle Scholar
  19. [19]
    E. L. Hall, Computer Image Processing and Recognition, Academic Press, New York, 1979.MATHGoogle Scholar
  20. [20]
    R. M. Haralick, K. Shanmugan, and I. Dinstein, “Textural features for image classification,” IEEE Trans. SMC, vol. SMC-3, no. 6, pp. 610–621, 1973.Google Scholar
  21. [21]
    C. A. Harlow and S. A. Eisenbeis, “The analysis of radiographic images,” IEEE Trans. Comput., vol. C-22, pp. 678–689, 1973.Google Scholar
  22. [22]
    S. W. Holland, L. Rossol, and M. R. Ward, “CONSIGHT-1: A vision-controlled robot system for transferring parts from belt conveyors,” in Computer Vision and Sensor-Based Robots (G. G. Dodd and L. Rossol, eds.), Plenum Press, New York, pp. 81–97, 1979.CrossRefGoogle Scholar
  23. [23]
    R. Horaud and J. P. Charras, “Automatic inspection and orientation of external screws,” Proc. 5th Int’l Joint Conf. Pat. Recog., pp. 264–268, 1980.Google Scholar
  24. [24]
    B. K. P. Horn, “Understanding image intensities,” Artificial Intelligence, vol. 8, pp. 201–231, 1977.MATHCrossRefGoogle Scholar
  25. [25]
    M. K. Hu, “Visual pattern recognition by moment invariants,” IEEE Trans. Info. Theory, vol. 8, pp. 179–187, 1962.MATHGoogle Scholar
  26. [26]
    I. Katsushi and B. K. P. Horn, “Numerical shape from shading and occluding boundaries,” Artificial Intelligence, vol. 17, pp. 141–184, 1981.CrossRefGoogle Scholar
  27. [27]
    R. B. Kelley, J. R. Birk, H. A. S. Martins, and R. Tella, “A robot system which acquires cylindrical workpieces from bins,” IEEE Trans. SMC, vol. SMC-12, no. 2, pp. 204–213, 1982.Google Scholar
  28. [28]
    C. S. G. Lee, J. Campbell, and G. Saridis, “Voice-controlled trainable manipulators with visual feedback,” Proc. IEEE Conf. Decision amp; Control, pp. 1423–1428, 1979.Google Scholar
  29. [29]
    D. Marr, “Visual Inf. Processing: The structure and creation of visual representations,” Proc. Int’l Joint Conf. Artif. Intell., Tokyo, Japan, pp. 1108–1126, 1979.Google Scholar
  30. [30]
    L. Mero and T. Vamos, “Medium level vision,” in Progress in Pattern Recognition ( L. Kanal and A. Rosenfeld, eds.), North-Holland Publishing Co., New York, 1981.Google Scholar
  31. [31]
    U. Montanari, “On the optimal detection of curves in noisy pictures,” Comm. ACM, vol. 14, pp. 335–345, 1971.MATHCrossRefGoogle Scholar
  32. [32]
    J. L. Mundy, “Automatic visual inspection,” Proc. 1977 Conf. Decision and Control, pp. 705–710, 1977.Google Scholar
  33. [33]
    T. Pavlidis, “Algorithms for shape analysis of contours and waveforms,” IEEE Trans. PAMI, vol. PAMI-2, no. 4, pp. 301–312, 1981.Google Scholar
  34. [34]
    T. Pavlidis, “A review of algorithms for shape analysis,” CGIP, vol. 7, pp. 243–258, 1978.Google Scholar
  35. [35]
    T. Pavlidis, Structural Pattern Recognition, Springer-Verlag, New York, 1977.MATHGoogle Scholar
  36. [36]
    T. Pavlidis and F. Ali, “A hierarchical syntactic shape analyzer,” IEEE Trans. PAMI, vol. PAMI-1, pp. 2–9, 1979.Google Scholar
  37. [37]
    W. A. Perkins, “Area segmentation of images using edge points,” IEEE Trans. PAMI, vol. PAMI-2, no. 1, pp. 8–15, 1980.CrossRefGoogle Scholar
  38. [38]
    W. A. Perkins, “Simplified model-based part locator,” Proc. 5th Int’l Joint Conf. Pat. Recog., pp. 260–263, 1980.Google Scholar
  39. [39]
    W. A. Perkins, “Model-based vision system for scenes containing multiple parts,” Proc. Int’l Joint Conf. Artificial Intelligence, pp. 678–684, 1977.Google Scholar
  40. [40]
    E. Persoon and K. S. Fu, “Shape discrimination using Fourier descriptors,” IEEE Trans. SMC, vol. SMC-7, no. 3, pp. 170–179, 1977.MathSciNetGoogle Scholar
  41. [41]
    U. Ramer, “Extraction of line structures from photographs of curved objects,” CGIP, vol. 4, pp. 81–103, 1975.Google Scholar
  42. [42]
    C. W. Richard, Jr. and H. Hemani, “Identification of three-dimensional objects using Fourier descriptors of the boundary curve,” IEEE Trans. SMC, vol. SMC-4, no. 4, pp. 371–378, 1974.MathSciNetMATHGoogle Scholar
  43. [43]
    A. Rosenfeld, “Picture processing,” CGIP, vols. 1–7, 1972–78.Google Scholar
  44. [44]
    A. Rosenfeld, R. A. Hummel, and S. W. Zucker, “Scene labeling by relaxation operations,” IEEE Trans. SMC, vol. SMC-6, pp. 420–433, 1976.Google Scholar
  45. [45]
    A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, New York, 1982.Google Scholar
  46. [46]
    A. Rosenfeld and D. L. Milgram, “Web Automata and Web Grammars,” in Machine Intelligence-7 ( B. Miltzer and D. Michie, eds.), Wiley, New York, 1972.Google Scholar
  47. [47]
    F. A. Sadjadi and E. L. Hall, “Three-dimensional moment invariants,” IEEE Trans. PAMI, vol. PAMI-2, no. 2, pp. 127–136, 1980.MATHCrossRefGoogle Scholar
  48. [48]
    P. Saraga, and D. R. Skoyles, “An experimental visually-controlled pick and place machine for industry,” Proc. 3rd Int’l Joint Conf. Pat. Recog., pp. 17–21, 1976.Google Scholar
  49. [49]
    Y. Shirai, “Three-dimensional computer vision,” in Computer Vision and Sensor-Based Robots ( G. G. Dodd and L. Rossol, eds.), Plenum Press, New York, 1979.Google Scholar
  50. [50]
    Y. Shirai and H. Inoue, “Guiding a robot by visual feedback in assembling tasks,” Pat. Recog., vol. 5, pp. 99–108, 1973.CrossRefGoogle Scholar
  51. [51]
    W. E. Snyder and D. A. Tang, “Finding the extrema of a region,” IEEE Trans. PAMI, vol. PAMI-2, no. 3, pp. 266–269, 1980.CrossRefGoogle Scholar
  52. [52]
    T. W. Sze and Y. H. Yang, “A simple contour matching algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-3, no. 6, pp. 676–678, 1981.CrossRefGoogle Scholar
  53. [53]
    G. Y. Tang and T. S. Huang, “A syntactic-semantic approach to image understanding and creation,” IEEE Trans. PAMI, vol. PAMI-1, pp. 135–144, 1979.Google Scholar
  54. [54]
    J. M. Tenenbaum and H. G. Barrow, “IGS: A paradigm for integrating image segmentation and interpretation,” Proc. 3rd Int’l Joint Conf. Pat. Recog., pp. 504–513, 1976.Google Scholar
  55. [55]
    J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, Reading, MA, 1974.MATHGoogle Scholar
  56. [56]
    T. P. Wallace and O. R. Mitchell, “Analysis of three-dimensional movement using Fourier descriptors,” IEEE Trans. PAMI, vol. PAMI-2, no. 6, pp. 583–588, 1980.Google Scholar
  57. [57]
    H. Wechsler and T. Citron, “Feature extraction for texture classification,” Pat. Recog., vol. 12, no. 5, pp. 301–311, 1980.CrossRefGoogle Scholar
  58. [58]
    J. S. Weszka and A. Rosenfeld, An application of texture analysis to material inspection,“ Pat. Recog., vol. 8, pp. 195–200, 1976.CrossRefGoogle Scholar
  59. [59]
    M. Yachida, M. Ikeda, and S. Tsuji, “A plan-guided analysis of cineangiograms for measurement of dynamic behavior of heart wall,” IEEE Trans. PAMI, vol. PAMI-2, pp. 537–543, 1980.Google Scholar
  60. [60]
    Y. Yakimovsky and R. Cunningham, “A system for extracting three-dimensional measurements from a stereo pair of TV cameras,” CGIP, vol. 7, pp. 195–210, 1978.Google Scholar
  61. [61]
    K. C. You and K. S. Fu, “Distorted shape recognition using attributed grammars and error-correcting techniques,” CGIP, vol. 13, pp. 1–16, 1980.Google Scholar
  62. [62]
    K. C. You and K. S. Fu, “A syntactic approach to shape recognition using attributed grammars,” IEEE Trans. SMC, vol. MC-9, pp. 334–345, 1979.Google Scholar
  63. [63]
    C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves,” IEEE Trans. Comput., vol. 12, pp. 269–281, 1972.MathSciNetCrossRefGoogle Scholar
  64. [64]
    S. W. Zucker and R. A. Hummel, “A three-dimensional edge operator,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-3, no. 3, pp. 324–331, 1981.MATHCrossRefGoogle Scholar
  65. [65]
    S. W. Zucker, “Region growing: Childhood and adolescence,” CGIP, vol. 5, pp. 382–399, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. C. Gonzalez
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of TennesseeKnoxvilleUSA

Personalised recommendations