Self-Similarity, Current Commutators, and Vector Dominance in Deep Inelastic Lepton-Hadron Interactions

  • V. A. Matveev
  • R. M. Muradyan
  • A. N. Tavkhelidze


A general approach based on the principle of approximate self-similarity, current algebra, and vector dominance is developed for studying inelastic lepton-hadron interactions. Since the form factors for deep inelastic electromagnetic and weak interactions are self-similar, the number of independent variables in the asymptotic region can be reduced by one. Combined with current algebra, this circumstance leads to special sum rules which can in principle be used to solve the fundamental question of the structure of the electromagnetic or weak hadron current. It is shown that the mechanism for the violation of self-similarity or invariance is related to violation of conformal symmetry up to the Poincaré symmetry group. The formation of a muon pair in a deep inelastic proton-proton collision, p + p → μ + + μ + hadrons, is discussed in detail.


Form Factor Total Cross Section Virtual Photon Physical Region Lepton Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. A. Markow, The Neutrino [in Russian], Nauka, Moscow (1964); Preprint E2–4370, Joint Institute for Nuclear Research, Dubna (1969).Google Scholar
  2. 2.
    S. Adler, Phys. Rev., 143, 1144 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    J. D. Bjorken, Lecture in Verenna School. Course 41, Verenna, Italy, 1967.Google Scholar
  4. 4.
    A. A. Logunov, Nguyen Van Hieu, and O. A. Khrustalev, in: Problems of Theoretical Physics [in Russian], Nauka, Moscow (1969), p. 90Google Scholar
  5. A. A. Logunov, M. A. Mestvirishvili, and Nguyen Van Hieu, Phys. Letters, 25B, 661 (1967)Google Scholar
  6. A. A. Logunov and Nguyen Van Hieu, Tropical Conference on High-Energy Collision of Hadrons, CERN 68–7, Vol. 11 (1968).Google Scholar
  7. 5.
    R. M. Muraydna, Collection. Proceedings of the International Symposium on the Theory of Elementary Particles, Verna, Bulgaria [in Russian], Dubna (1968).Google Scholar
  8. 6.
    E. D. Bloom et al., Phys. Rev. Letters, 23, 930 (1969)ADSCrossRefGoogle Scholar
  9. N. Breidenbach et al., Phys. Rev. Letters, 23, 935 (1969).ADSCrossRefGoogle Scholar
  10. 7.
    I. Budagov et al., Phys. Letters, 30, B364 (1969).ADSGoogle Scholar
  11. 8.
    D. H. Perkins, Topical Conference on Weak Interactions. CERN 69–7, Geneva, 1969, p. 1.Google Scholar
  12. 9.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Report R2–4543, Joint Institute for Nuclear Research, Dubna (1969).Google Scholar
  13. 10.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Report R-4578, Joint Institute for Nuclear Research, Dubna (1969).Google Scholar
  14. 11.
    V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, in: Proceedings of the International Seminar on Electromagnetic Interactions and Vector Mesons [in Russian], Dubna (1969), p. 109.Google Scholar
  15. 12.
    V. A. Matveev, R. M. Muradyna, and A. N. Tavkhelidze, Report R2–4824, Joint Institute for Nuclear Research, Dubna (1969).Google Scholar
  16. 13.
    A. N. Tavkhelidze, Deep Inelastic Lepton-Hadron Interactions. Proceedings of the Coral Gables Conference, Gordon and Breach (1970).Google Scholar
  17. 14.
    J. Christenson et al., Proceedings of the International Symposium on Electron and Photon Interactions at High Energies, Daresbury Nuclear Physics Laboratory, Daresbury, England, 1969.Google Scholar
  18. 15.
    L. D. Okunt, Yadernaya Fizika, 3, 590 (1966).Google Scholar
  19. 16.
    F. Chilton, M. Saperstein, and E. Shrauner, Phys. Rev., 148, 1380 (1966).ADSCrossRefGoogle Scholar
  20. 17.
    Y. Yamaguchi, Nuovo Cimento, 43, 193 (1966).ADSCrossRefGoogle Scholar
  21. 18.
    G. G. Bunatyan et al., ZhÉTF Pis. Red., 8, 325 (1969).ADSGoogle Scholar
  22. 19.
    P. I. Wanderer et al., Phys. Rev. Letters, 23, 729 (1969).ADSCrossRefGoogle Scholar
  23. 20.
    R. F. Kögerler and R. M. Muradyan, Communications of the Joint Institute for Nuclear Research, E2–4791, Dubna (1969).Google Scholar
  24. 21.
    R. J. Oakes, Nuovo Cimento, 44, 440 (1966).ADSCrossRefGoogle Scholar
  25. 22.
    Yu. S. Surovtsev and F. G. Tkebuchava, Preprint R2–4524, Joint Institute for Nuclear Research, Dubna (1969).Google Scholar
  26. 23.
    J. D. Bjorken, Phys. Rev., 179, 1547 (1969).ADSCrossRefGoogle Scholar
  27. 24.
    L. I. Selov, Dimensionality and Similarity Methods in Mechanics [in Russian], Gostekhizdat, Moscow (1957).Google Scholar
  28. 25.
    K. P. Stanyukovich, Nonsteady-State Motion of Continuous Media [in Russian], Gostekhizdat, Moscow (1958).Google Scholar
  29. 26.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to Quantum Field Theory [in Russian], Gostekhizdat, Moscow (1957).Google Scholar
  30. 27.
    J. D. Bjorken, Phys. Rev., 148, 1467 (1966).ADSCrossRefGoogle Scholar
  31. 28.
    V. N. Gribov, B. L. Ioffe, and I. Ya. Pomeranchuk, Phys. Letters, 24B, 554 (1967).ADSGoogle Scholar
  32. 29.
    I. Schwinger, Phys. Rev. Letters, 3, 296 (1959).ADSCrossRefGoogle Scholar
  33. 30.
    S. Drell and I. Walecka, Ann. Phys., 28, 18 (1964).ADSCrossRefGoogle Scholar
  34. 31.
    S. D. Drell, D. J. Levy, and T. M. Yan, SLAC Pub., 606, 645, 685 (1969).Google Scholar
  35. 32.
    J. D. Bjorken and E. A. Paschos, SLAC Pub., 572 (1969).Google Scholar
  36. 33.
    D. J. Gross and C. H. Llewellyn Smith, Preprint CERN TH-1043 (1969).Google Scholar
  37. 34.
    J. Wess, Nuovo Cimento, 18, 1086 (1960).MathSciNetMATHCrossRefGoogle Scholar
  38. 35.
    G. Mack and A. Salam, Ann. Phys., 53, 174 (1969).MathSciNetADSCrossRefGoogle Scholar
  39. 36.
    D. J. Gross and J. Wess, Preprint CERN TH-1076, Geneva (1969).Google Scholar
  40. 37.
    C. J. Isham, A. Salam, and A. Strathdee, Preprint IC/70/3, Trieste (1970).Google Scholar
  41. 38.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev., 122, 345 (1960).ADSCrossRefGoogle Scholar
  42. 39.
    B. A. Arbuzov, A. N. Tavkhelidze, and R. N. Faustov, Dokl. Akad. Nauk SSSR, 139, 345 (1961).Google Scholar
  43. 40.
    A. A. Logunov, V. A. Meshcheryakov, and A. N. Tavkhelidze, Dokl. Akad. Nauk SSSR, 142, 317 (1961).Google Scholar
  44. 41.
    C. Callan and D. Gross, Phys. Rev. Letters, 22, 156 (1969).ADSCrossRefGoogle Scholar
  45. 42.
    J. Cornwall and R. Norton, SLAC Pub., 458 (1968).Google Scholar
  46. 43.
    J. J. Sakurai, Currents and Mesons, University of Chicago Press, Chicago (1969).Google Scholar
  47. 44.
    D. Schildknecht, Preprint DESY 69/10.Google Scholar
  48. 45.
    F. Turkot, Topical Conference on High-Energy Collisions of Hadrons, Part I, CERN, Geneva (1968), p. 316.Google Scholar
  49. 46.
    R. G. Roberts, Nuovo Cimento, 53A, 557 (1968).ADSGoogle Scholar
  50. 47.
    I. R. Kenyon, Nucl. Phys., B13, 255 (1969).ADSCrossRefGoogle Scholar
  51. 48.
    H. H. Kung, Preprint, Columbia University, Nevis 171 (1969).Google Scholar
  52. 49.
    M. A. Jaffe, Phys. Rev. Letters, 17, 661 (1966).ADSCrossRefGoogle Scholar
  53. 50.
    A. Martin, Nuovo Cimento, 37, 671 (1965).CrossRefGoogle Scholar
  54. 51.
    S. M. Berman, D. J. Levy, and T. L. Neff, Preprint SLAC Pub., 681 (1969)Google Scholar
  55. 52.
    Preprint Joint Institute for Nuclear Research E2–5962, Dubna (1971).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • V. A. Matveev
  • R. M. Muradyan
  • A. N. Tavkhelidze

There are no affiliations available

Personalised recommendations