The Combined Use of Clofibrate and Anion Exchange in the Treatment of Hypercholesterolemia

  • A. N. Howard
  • D. E. Hyams
  • R. Courtenay Evans
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 26)


The use of anion exchange resins for the treatment of type II hyperlipoproteinemia is now well established, and one such resin, cholestyramine, has received considerable attention (1, 2). This class of drug acts by preferentially binding bile acids in the intestine and facilitating their increased excretion. Since cholesterol is the precursor of bile acids in the liver, total body cholesterol decreases and there is a subsequent fall in plasma cholesterol. Cholestyramine is found to be only moderately effective because the liver compensates by synthesizing more cholesterol from acetate (3). Also, the proportion of bile acids sequestered in the intestine is small (about 5–10%) compared with the total available (4). For these reasons, effective treatment is obtained with only large doses (12–35 g/day) of the resin. In type II hypercholesterolemic patients even 32 g/day gives a mean decrease of only 22% (5).


Bile Acid Anion Exchange Serum Cholesterol Plasma Cholesterol Anion Exchange Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergen, S. S., Jr. and T. B. van Itallie. Ann. Intern. Med. 58: 355 (1963).PubMedCrossRefGoogle Scholar
  2. 2.
    Hashim, S. A. and T. B. van Itallie. J. Amer. Med. Assn. 192: 289 (1965).CrossRefGoogle Scholar
  3. 3.
    Goodman, D. S. and R. P. Noble. J. Clin. Invest. 47: 231 (1968).CrossRefGoogle Scholar
  4. 4.
    van Itallie, T. B. and S. A. Hashim. Med. Clin. N. Amer. 47: 629 (1963).PubMedGoogle Scholar
  5. 5.
    Miettinen, T. A. In, Atherosclerosis, Proc. 2nd Int. Symp. (Ed.) R. J. Jones, Springer-Verlag, Berlin (1970) p. 508.Google Scholar
  6. 6.
    Parkinson, T. M. J. Lipid Res. 8: 24 (1967).PubMedGoogle Scholar
  7. 7.
    Smith, D. H. and E. Gaman. Fed. Proc. 19: 236 (1960).Google Scholar
  8. 8.
    Howard, A. N. and D. E. Hyams. Brit. Med. J. 3: 25 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    Hyams, D. E., A. N. Howard, and R. C. Evans. (In preparation)Google Scholar
  10. 10.
    Steinberg, D. In, Atherosclerosis, Proc. 2nd Int. Symp. (Ed.) R. J. Jones, Springer-Verlag, Berlin (1970) p. 500.Google Scholar
  11. 11.
    Pereira, J. N. and G. F. Holland. In, Atherosclerosis, Proc. 2nd Int. Symp. (Ed.) R. J. Jones, Springer-Verlag, Berlin (1970) p. 549.Google Scholar
  12. 12.
    Horning, M. and E. Horning (1970). Unpublished observations.Google Scholar
  13. 13.
    Hess, R. (1970). Unpublished observations.Google Scholar
  14. 14.
    Grundy, S. M., E. H. Ahrens, Jr., G. Salen, and E. Quintao. J. Clin. Invest. 48: 33a (1969).Google Scholar
  15. 15.
    Gould, R.G. and E. A. Swyryd. Progr. Biochem. Pharm. 4: 191 (1968).Google Scholar
  16. 16.
    Cayen, M. N. and D. Dvornik. Canad. J. Biochem. 48: 1022 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • A. N. Howard
    • 1
  • D. E. Hyams
    • 2
  • R. Courtenay Evans
    • 1
  1. 1.Dept. of Investigative MedicineUniversity of Cambridge and Chesterton HospitalCambridgeEngland
  2. 2.Department of Geriatric Medicine (Guy’s Hospital)New Cross HospitalLondonUK

Personalised recommendations