General and Specific Chemotherapy

  • George M. Maxwell


This section will deal with the treatment by chemotherapeutic agents of diseases due to viruses, bacteria, protozoa, multicellular organisms and neoplasia. There is a unity in the theme, since the drugs used to attack the lesions generally do so by acting at the cellular level. Thus the action of the antibacterial antimetabolites, such as the sulphonamides, or the antiviral agents, such as the cytosine arabinosides, is essentially similar to the action of the anticancer agents, such as methotrexate and fluorouracil.


Skin Rash Optic Neuritis Vinca Alkaloid Blood Dyscrasia Sensitivity Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


The Sulphonamides

  1. Springer, C., Eyal, F. and Michel, J. (1982) ‘Pharmacology of Tri-methoprim/ Sulfamethoxazole in Newborn Infants’, J. Pediat., 100, 647–650CrossRefGoogle Scholar
  2. Watson, I.D., Cotten, H.N., Stewart, M.J., McIntosh, S.J., Shenkin, A. and Thomson, J.A. (1982) ‘Comparative Pharmacokinetics of Co-trifamole and Cotrimoxazole to Steady State in Normal Subjects’, Br. J. Clin. Pharm., 14, 437–443Google Scholar
  3. Weidekamm, E., Plozza-Nottebrock, H., Forgo, I. and Dubach, U.C. (1982) ‘Plasma Concentrations of Pyrimethamine and Sulfadoxine and Evaluation of Pharmacokinetic Data’, Bull. Wld. filth Org., 60, 115–128Google Scholar
  4. Weinstein, L., Madoff, M.A. and Samet, C.A. (1960) The Sulfonamides’, New Engl. J. Med., 263, 793–800, 842–849, 900–907Google Scholar

The Penicillins and Cephalosporins

  1. Brogan, R.N., Carmine, A., Heel, R.C., Morley, P.A., Speight, T.M. and Avery, G.S. (1981) ‘Amoxicillin/Clavulanic Acid: a Review of its Antibacterial Activity, Pharmacokinetics and Therapeutic Use’, Drugs, 22, 337–362CrossRefGoogle Scholar
  2. Feldman, W.E., Nelson, J.D. and Stanberry, L.R. (1978) ‘Clinical and Pharmacokinetic Evaluation of Nafcillin in Infants and Children’, J. Pediat., 96, 1029–1033Google Scholar
  3. Garborg, O. (1981) Mecillinam in Cerebrospinal Fluid in Children’, Clin. Pharmacokinet., 6, 475–479CrossRefGoogle Scholar
  4. Ginsburg, C.M., McCracken, G.H. and Zweighaft, T.H. (1982) ‘Serum Penicillin Concentrations After Intramuscular Administration of Benzathine Penicillin G in Children’, Pediatrics, 69, 452–454Google Scholar
  5. Granneman, G.R., Sennello, L.T., Sonders, R.C., Wynne, B. and Thomas, E.W. (1982) ‘Cefsuldoin Kinetics in Healthy Subjects After Intramuscular and Intravenous Injection’, Clin. Pharmacol. Ther., 31, 95–104CrossRefGoogle Scholar
  6. Leroy, A., Humbert, G., Godin, M. and Fillastre, J.P. (1980) ‘Pharmacokinetics of Azlocillin in Subjects with Normal and Impaired Renal Function’, Antimicrob. Agents Chemother., 17, 344–349Google Scholar
  7. Nahata, M.C., Durrell, D.E. and Barson, W.J. (1982) ‘Moxalactam Epimer Kinetics in Children’, Clin. Pharmacol. Ther., 31, 528–532CrossRefGoogle Scholar
  8. Nightingale, C.H., Greene, D.S. and Quintiliani, R. (1975) ‘Pharmacokinetics and Clinical Use of Cephalosporin Antibiotics’, J. Pharm. Sci., 64, 1899–1927CrossRefGoogle Scholar

The Aminoglycoside Antibiotics

  1. Counts, G.W., Blair, A.D., Wagner, K.F. and Turck, M. (1982) ‘Gentamicin and Tobramycin Kinetics’, Clin. Pharm. Ther., 31, 662–665CrossRefGoogle Scholar
  2. Siber, G.R., Echeverria, P. and Smith, A.L. (1975) ‘Pharmacokinetics of Gentamicin in Children and Adults’, J. Infect. Dis., 132, 637–651CrossRefGoogle Scholar
  3. Vogelstein, B., Kowarski, A.A. and Kietman, P.S. (1977) ‘The Pharmacokinetics of Amikacin in Children’, J. Pediat., 91, 333–339CrossRefGoogle Scholar


  1. Friedman, C.A., Lovejoy, F.C. and Smith, A.L. (1979) ‘Chloramphenicol Disposition in Infants and Children’, J. Pediat., 95, 1071–1077CrossRefGoogle Scholar
  2. Lietman, P.S. (1981) ‘Oral Chloramphenicol Therapy’, J. Pediat., 99, 905–906CrossRefGoogle Scholar

The Macrolide Antibiotics

  1. Josefsson, K., Steinbakk, M., Bergan, T., Midtvedt, T. and Magni, L. (1982) ‘Pharmacokinetics of a New Microencapsulated Erythromycin Base after Repeated Oral Doses’, Chemotherapy, 28, 176–184CrossRefGoogle Scholar
  2. Patamasucon, P., Kaojarern, S., Kusmiesz, H. and Nelson, J.D. (1981) Pharmacokinetics of Erythromycin Ethylsuccinate and Estolate in Infants under 4 Months of Age’, Antimicrob. Agents Chemother., 19, 736–739Google Scholar
  3. Schaad, U.B., McCracken, G.H. and Nelson, J.D. (1980) ‘Clinical Pharmacology and Efficacy of Vancomycin in Pediatric Patients’, J. Pediat., 96, 119–126CrossRefGoogle Scholar

Treatment of Gram-Negative Infections

  1. Jager-Roman, E., Doyle, P.E., Baird-Lambert, J. and Buchanan, N. (1982) ‘Pharmacokinetics and Tissue Distribution of Metronidazole in the Newborn Infant’, J. Pediat., 100, 651–654CrossRefGoogle Scholar
  2. Joiner, K., Lowe, B., Dzink, J. and Bartlett, J.G. (1982) ‘Comparative Efficacy of 10 Anti-microbial Agents in Experimental Infections with Bacterioides fragilis’, J. Infect. Dis., 145, 561–565CrossRefGoogle Scholar

Anti-tuberculous Agents

  1. Acocella, J. (1978) ‘Clinical Pharmacokinetics of Rifampicin’, Clin. Pharmacokinet., 3, 108–127CrossRefGoogle Scholar
  2. British Thoracic and Tuberculosis Association (1975) ‘Short-course Chemotherapy in Pulmonary Tuberculosis’, Lancet, i, 119–124Google Scholar


  1. Shepard, C.C. (1966) ‘Chemotherapy of Leprosy’, Ann. Rev. Pharmacol. Toxicol., 9, 37–50Google Scholar

Anti fungal Agents

  1. Editorial (1982) ‘Ketaconazole’, Lancet, i, 319Google Scholar
  2. Polak, A. (1979) ‘Pharmacokinetcs of Amphotericin B and Glucytosine’, Postgrad. Med. J., 55, 667–670CrossRefGoogle Scholar
  3. Smith, R.A., Sidwell, R.W. and Robins, R.K. (1980) ‘Anti-viral Agents’, Ann. Rev. Pharmacol. Toxicol., 20, 259–284CrossRefGoogle Scholar

Anti-protozoal Agents

  1. Dawson, M., Allen, R.J. and Watson, T.R. (1982) ‘The Pharmacokinetics and Bio-availability of Mebendazole in Man’, Br. J. Clin. Pharmacol., 14, 453–455Google Scholar
  2. Gilles, H.M. (1966) ‘Malaria in Children’, Br. Med. J., ii, 1375–1378CrossRefGoogle Scholar
  3. World Health Organization (1973) ‘Chemotherapy of Malaria and Resistance to Anti-malarials’, Technical Report 529 ( WHO, Geneva )Google Scholar


  1. Bender, R.A., Zwelling, L.A., Doroshaw, J.H., Lockyer, G.Y., Hande, K.R., Murinson, D.S., Cohen, M., Myers, C.E. and Chabner, B.A. (1978) ‘Antineoplastic Drugs: Clinical Pharmacology and Therapeutic Use’, Drugs, 16, 46–87CrossRefGoogle Scholar
  2. Hollenberg, J.S. and Camitta, B.M. (1981) ‘Recent Approaches to the Treatment of Acute Lymphocyte Leukaemia in Childhood’, Ann. Rev. Pharmacol. Toxicol., 21, 231–249CrossRefGoogle Scholar
  3. Sladek, N.E., Priest, J., Doeden, D., Mirocha, C.J. and Krivit, W. (1980) ‘Plasma Half-life and Urinary Excretion of Cyclophosphamide in Children’, Cancer Treatment Reports, 64, 1061–1066Google Scholar

Copyright information

© George M. Maxwell 1984

Authors and Affiliations

  • George M. Maxwell
    • 1
  1. 1.University of AdelaideAustralia

Personalised recommendations