Advertisement

Biosynthesis and Function of Unconjugated Pterins in Mammalian Tissues

  • E. Martin Gál
Part of the Advances in Neurochemistry book series (ANCH, volume 4)

Abstract

Sometime, somewhere in the very distant biological past, possibly at the time of the primordial “ooze” with the arrival of purine nucleotides, other condensed pyrimidine rings might have also appeared. Of the condensed pyrimidines, the bicyclic nitrogen-containing ring termed pyrimido-(4,5-b)-pyrazine is the central cast of our story. This story is as old as modern science itself.

Keywords

Tyrosine Hydroxylase Xanthine Oxidase Dihydrofolate Reductase Glyceryl Ether Syrian Golden Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H. T., Spector, R., Gorka, C., and Fosburg, M., 1978, Kinetics of tetrahydrobiopterin synthesis by rabbit brain dihydrofolate reductase, Biochem. J. 171: 267–268.PubMedGoogle Scholar
  2. Abita, J. P., Milstien, S., Chang, N., and Kaufman, S., 1976, In vitro activation of rat liver phenylalanine hydroxylase by phosphorylation, J. Biol. Chem. 251: 5310–5314.PubMedGoogle Scholar
  3. Albert, A., 1957, Transformation of purines into pteridines, Biochem. J. 65: 124–127.PubMedGoogle Scholar
  4. Andrews, K. J. M., Barber, W. E., and Tong, B. P., 1969, A new synthesis of biopterin, J. Chem. Soc. 928–930.Google Scholar
  5. Archer, M.C., Vonderschmitt, D. J., and Scrimgeour, K. G., 1972, Mechanism of oxidation of tetrahydropterins, Can. J. Biochem. 50: 1174–1182.PubMedGoogle Scholar
  6. Ayling, J. E., and Helfand, G. D., 1975, Effect of pteridine cofactor structure on the regulation of phenylalanine hydroxylase activity, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 305–318, W. de Gruyter, Berlin.Google Scholar
  7. Baba, W. I., Tudhope, G. R., and Wilson, G. M., 1964, Site and mechanism of action of the diuretic, triamterene, J. Clin. Sci. 27: 181–193.Google Scholar
  8. Bagnara, J. T., 1961, Chromatotrophic hormone, pteridines, and amphibian pigmentation, Gen. Comp. Endocrinol. 1: 124–133.PubMedGoogle Scholar
  9. Bagnara, J. T., and Obika, M., 1965, Comparative aspects of integumental pteridine distribution among amphibians, Comp. Biochem. Physiol. 15: 33–49.PubMedGoogle Scholar
  10. Bailey, S. W., and Ayling, J. E., 1975, High pressure liquid chromatography of substituted pteridines and tetrahydropteridines, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 633–643, W. de Gruyter, Berlin.Google Scholar
  11. Bailey, S. W., and Ayling, J. E., 1978, Separation and properties of the 6 diastereoisomers of 1erythrotetrahydrobiopterin and their reactivities with phenylalanine hydroxylase, J. Biol. Chem. 253: 1598–1605.PubMedGoogle Scholar
  12. Baker, H., Frank, O., Bacchi, D. J., and Hunter, S. H., 1974, Biopterin content of human and rat fluids and tissues determined protozoologically, Am. J. Clin. Nutr. 27: 1247–1253.PubMedGoogle Scholar
  13. Bergmann, F., and Kwietney, H., 1959, Pteridines as substrates of mammalian xanthine oxidase. II. Pathways and rates of oxidation, Biochem. Biophys. Acta 33: 29–46.PubMedGoogle Scholar
  14. Bertino, J. R., Perkins, J. P., and Johns, D. G., 1965, Purification and properties of dihydrofolate reductase from Ehrlich ascites carcinoma cells, Biochemistry 4: 839–846.PubMedGoogle Scholar
  15. Blakley, R. L., 1957, The interconversion of serine and glycine: Preparation and properties of catalytic derivatives of pteroylglutamic acid, Biochem. J. 65: 331–342.PubMedGoogle Scholar
  16. Blakley, R. L., 1969, The Biochemistry of Folic Acid and Related Pteridines, pp. 1–540, North-Holland Publishing, Amsterdam.Google Scholar
  17. Boon, W. R., and Jones, W. G., 1951, Pteridines. Part II. The synthesis of some a-(5-nitro-4pyrimidylamino)-ketones and their conversion into 7,8-dihydropterins and pteridines, J. Chem. Soc., 591–596.Google Scholar
  18. Brenneman, A. R., and Kaufman, S., 1964, The role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine, Biochem. Biophys. Res. Commun. 17: 177–183.Google Scholar
  19. Broquist, H. P., and Albrecht, A. M., 1955, Pteridines and the nutrition of the protozoon Crithidia fasciculata, Proc. Soc. Biol. Med. 89: 178–180.Google Scholar
  20. Brown, D. J., and Jacobsen, N. W., 1961, Pteridine studies. Part XIV. Methylation of 2-amino4-hydroxypteridine and related compounds, J. Chem. Soc. 4413–4420.Google Scholar
  21. Brown, G. M., 1971, The biosynthesis of pterins, in: Advances in Enzymology ( A. Meister, ed.), Vol. 35, pp. 35–77, Wiley Interscience, New York.Google Scholar
  22. Brown, G. M., Yim, J., Suzuki, Y., Heine, M. C., and Foor, F., 1975, The enzymic synthesis of pterins in Escherichia Coli, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 219–244, W. de Gruyter, Berlin.Google Scholar
  23. Buff, K., and Dairman, W., 1975a, Biosynthesis of biopterin in the intact rat and in mouse neuroblastoma cells, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 273–284, W. de Gruyter, Berlin.Google Scholar
  24. Buff, K., and Dairman, W., 1975b, Biosynthesis of biopterin by two clones of mouse neuroblastoma, Mol. Pharmacol. 11: 87–93.PubMedGoogle Scholar
  25. Bullard, W. P., Guthrie, P. B., Russo, V., and Mandell, A. J., 1978, Regional and subcellular distribution and some factors in the regulation of reduced pterins in rat brain, J. Pharmacol. Exp. Ther. 206: 4–20.PubMedGoogle Scholar
  26. Burchall, J. J., and Hitchings, G. H., 1965, Inhibitor binding analysis of dihydrofolate reductases from various species, Mol. Pharmacol. 1: 126–136.PubMedGoogle Scholar
  27. Burg, A. W., and Brown, G. M., 1968, The biosynthesis of folic acid. VIII. Purification and properties of the enzyme that catalyzes the production of formate from carbon 8 of guano-sine triphosphate, J. Biol. Chem. 243: 2349–2358.PubMedGoogle Scholar
  28. Cheema, S., Soldin, S. J., Knapp, A., Hofmann, T., and Scrimgeour, K. G., 1973, Properties of purified quinonoid dihydropterin reductase, Can. J. Biochem. 51: 1229–1239.PubMedGoogle Scholar
  29. Cone, J., and Guroff, G., 1971, Partial purification and properties of guanosine triphosphate cyclohydrolase, the first enzyme in pteridine biosynthesis from Comamonas sp. (ATCC 11299a), J. Biol. Chem. 246: 979–985.PubMedGoogle Scholar
  30. Cotton, R. G. H., 1977, The primary molecular defects in phenylketonuria and its variants, Int. J. Biochem. 8: 333–341.Google Scholar
  31. Crame, J. E., Hall, S. E., and Kaufman, S., 1972, The isolation and characterization of dihydropteridine reductase from sheep liver, J. Biol. Chem. 247: 6082–6091.Google Scholar
  32. Cremer-Bartels, G., and Hollwich, F., 1978, Effects of pteridines on melatonin biosynthesis of pineal gland and retina, Abstract, 6th International Symposium on Chemistry and Biology of Pteridines, p. 24.Google Scholar
  33. Curtius, H.-Ch., Niederwieser, A., Viscontini, M., Otten, A., Schaub, J., Scheibenreiter, S., and Schmidt, H., 1979, Atypical phenylketonuria due to tetrahydrobiopterin deficiency. Diagnosis and treatment with tetrahydrobiopterin, dihydrobiopterin and sepiapterin, Clin. Chim. Acta 93: 251–262.PubMedGoogle Scholar
  34. Danks, D. M., Cotton, R. G., and Schlesinger, P., 1975, Tetrahydrobiopterin treatment of variant form of phenylketonuria, Lancet 2: 1043.PubMedGoogle Scholar
  35. Descimon, H., and Barial, M., 1973, Correlation entre structure et proprietes chromatographiques des pterines, Bull. Soc. Chim. France 1: 87–92.Google Scholar
  36. Dewey, V. C., and Kidder, G. W., 1967, The use of Sephadex for the concentration of pteridines, J. Chromatogr. 31: 326–336.PubMedGoogle Scholar
  37. Dewey, V. C., and Kidder, G. W., 1971, Assay of unconjugated pteridines, in: Methods of Enzymology ( D. B. McCormich, and L. D. Wright, eds.), Vol. 18B, pp. 618–624, Academic Press, New York.Google Scholar
  38. Dewey, V. C., and Kidder, G. W., 1974, Pteridine diuretics as biopterin antagonists, Biochem. Pharmacol. 23: 773–779.PubMedGoogle Scholar
  39. Dewey, V. C., Kidder, G. W., and Butler, F. P., 1959, Replacement of the biopterin requirement of Crithidia, Biochem. Res. Commun. 1: 25–28.Google Scholar
  40. Doctor, V. M., 1958, Studies on the inhibitory nature of pteridines, J. Biol. Chem. 232:617–626. Donlon, J., and Kaufman, S., 1977, Modification of the multiple forms of rat hepatic phenylalanine hydroxylase by in vitro phosphorylation, Biochem. Biophys. Res. Commun. 78: 1011–1017.Google Scholar
  41. Ehrenberg, A., Henmerich, P., Miller, F., Okada, T., and Viscontini, M., 1967, Uber pterinchemie. 18. Monohydro und trihydropterin-radikale, Heiv. Chim. Acta 50: 411–416.Google Scholar
  42. Elderfield, R. C., and Mehta, A. C., 1967, Heterocyclic compounds, in: Heterocyclic Chemistry ( R. C. Elderfield, ed.), Vol. 9, pp. 45–107, J. Wiley and Sons, New York.Google Scholar
  43. Ellenbogen, L., Taylor, R. J., and Brundage, G. B., 1965, On the role of pteridines as cofactors for tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 19: 708–715.PubMedGoogle Scholar
  44. Eto, L., Fukushima, K., and Shiota, T., 1976, Enzymatic synthesis of biopterin from D-erythrodihydroneopterin triphosphate by extracts of kidney from Syrian golden hamsters, J. Biol. Chem. 251: 6505–6512.PubMedGoogle Scholar
  45. Eugster, C. H., Frauenfelder, E. F., and Koch, H., 1970, Russulafarbstoff: Erkennung der roten Hautkomponenten als dimere Pteridineglykoside: Trennung von Pterinen durch isoelectrische Fokussierung in einem pH-Saccharose-Gradienten, Hely. Chim. Acta 53: 131–147.Google Scholar
  46. Fisher, D. B., and Kaufman, S., 1972, The inhibition of phenylalanine and tyrosine hydroxylases by high oxygen levels, J. Neurochem. 19: 1359–1365.PubMedGoogle Scholar
  47. Fisher, D. B., and Kaufman, S., 1973a, Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase, J. Biol. Chem. 248: 4300–4304.PubMedGoogle Scholar
  48. Fisher, D. B., and Kaufman, S., 1973b, The stimulation of rat liver phenylalanine hydroxylase by lysolecithin and a-chymotrypsin, J. Biol. Chem. 248: 4345–4353.PubMedGoogle Scholar
  49. Fisher, D. B., Kirkwood, R., and Kaufman, S., 1972, Rat liver hydroxylase, an iron enzyme, J. Biol. Chem. 247: 5161–5167.PubMedGoogle Scholar
  50. Fleming, A. F., and Broquist, H. P., 1967, Biopterin and folic acid deficiency, Am. J. Clin. Nutr. 20: 613–621.PubMedGoogle Scholar
  51. Forrest, H. S., and Nawa, S., 1964, Recent work on the structures of isosepiapterin and the drosopterins and its relation to pteridine biosynthesis, in: Pteridine Chemistry ( W. Pfleiderer and E. C. Taylor, eds.) pp. 281–289, Pergamon Press, Oxford.Google Scholar
  52. Forrest, H. S., and Van Baalen, C., 1970, Microbiology of unconjugated pteridines, Annu. Rev. Microbiol. 24: 91–108.PubMedGoogle Scholar
  53. Frank, O., Baker, H., and Sobotka, H., 1963, Blood-and serum-levels of water-soluble vitamins in man and animals, Nature London 197: 490–491.PubMedGoogle Scholar
  54. Friedman, P. A., and Kaufman, S., 1973, Some characteristics of partially purified human liver phenylalanine hydroxylase, Biochem. Biophys. Acta 293: 56–61.PubMedGoogle Scholar
  55. Friedman, P. A., Kappelman, A. H., and Kaufman, S., 1972, Partial purification and characterization of tryptophan hydroxylase from rabbit hind brain, J. Biol. Chem. 247: 4165–4173.PubMedGoogle Scholar
  56. Friedman, P. A., Fisher, D. B., Kang, E. S., and Kaufman, S., 1973, Detection of hepatic phenylalanine-4-hydroxylase in classical phenylketonuria, Proc. Natl. Acad. Sci. U.S.A. 70: 552–556.PubMedGoogle Scholar
  57. Fujimori, E., 1959, Interaction between pteridines and tryptophan, Proc. Natl. Acad. Sci. U.S.A. 45: 133–136.PubMedGoogle Scholar
  58. Fukushima, T., 1970, Biosynthesis of pteridines in the tadpole of the bullfrog, Rana catesbiana, Arch. Biochem. Biophys. 139: 361–369.PubMedGoogle Scholar
  59. Fukushima, T., and Akino, M., 1968, Nuclear magnetic resonance studies of some biologically active dihydropterins, Arch. Biochem. Biophys. 128: 1–5.PubMedGoogle Scholar
  60. Fukushima, T., and Nixon, J. C., 1980, Analysis of reduced forms of biopterins in biological tissues and fluids, Anal. Biochem. 102: 176–188.PubMedGoogle Scholar
  61. Fukushima, T., and Shiota, T., 1972, Pterins in human urine, J. Biol. Chem. 247: 4549–4556.PubMedGoogle Scholar
  62. Fukushima, T., and Shiota, T., 1974, Biosynthesis of biopterin by Chinese hamster ovary (CHO K1) cell culture, J. Biol. Chem. 249: 4445–4451.PubMedGoogle Scholar
  63. Fukushima, F., Eto, I., Saliba, D., and Shiota, T., 1975a, The enzymatic synthesis of Crithidia active substances(s) and a phosphorylated u-erythro-neopterin from GTP or GDP by liver preparations from Syrian golden hamsters, Biochem. Biophys. Res. Commun. 65: 644–651.PubMedGoogle Scholar
  64. Fukushima, K., Eto, I., Mayumi, T., Richter, W., Goodson, S., and Shiota, T., 1975b, Biosynthesis of pterins in mammalian systems, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 247–263, W. de Gruyter, Berlin.Google Scholar
  65. Fukushima, K., Richter, W. E., Jr., and Shiota, T., 1977, Partial purification of 6(3-erythro1’,2’,3’-trihydroxypropy1)-7,8-dihydropterin triphosphate synthetase from chicken liver, J. Biol. Chem. 252: 5750–5755.PubMedGoogle Scholar
  66. Fukushima, T., Kobayashi, K., Eto, I., and Shiota, T., 1978, A differential microdetermination for the various forms of biopterin. Anal. Biochem. 89: 71–79.PubMedGoogle Scholar
  67. Gal, E. M., 1965, In vitro hydroxylation of tryptophan by brain tissue, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24: 580.Google Scholar
  68. Gal, E. M., 1974a, Cerebral tryptophan-2,3’-dioxygenase (pyrrolase) and its induction in rat brain, J. Neurochem. 22: 861–863.Google Scholar
  69. Gal, E. M., 1974b, Tryptophan-5-hydroxylase: Function and control, in: Advances in Biochemical Psychopharmacology (E. Costa, G. L. Gessa, and M. Sandler, eds.,) Vol. 11, pp. 1–10, Raven Press, New York.Google Scholar
  70. Gal, E. M., 1975, Hydroxylation of tryptophan and its control in brain, Pavlovian J. Biol. Sci. 10: 145–160.Google Scholar
  71. Gal, E. M., and Roggeveen, A. E., 1973, Cerebral hydroxylases: Stimulation by a new factor, Science 179: 809–811.PubMedGoogle Scholar
  72. Gal, E. M., and Sherman, A. D., 1976, Biopterin II: Evidence for cerebral synthesis of 7,8-dihydrobiopterin in vivo and in vitro, Neurochem. Res. 1: 627–639.Google Scholar
  73. Gal, E. M., and Sherman, A. D., 1977a, Rapid isolation and quantitation of biopterin, neopterin, and their guanine ribotide precursor from biological samples, Prep. Biochem. 7 (2): 155–164.PubMedGoogle Scholar
  74. Gal, E. M., and Sherman, A. D., 1977b, Biosynthesis and control of pterins in the brain, in: Structure and Function of Monoamine Enzymes ( E. Usdin, N. Weiner, and M. Youdim, eds.) pp. 23–42, Marcel Dekker, New York.Google Scholar
  75. Gal, E. M., and Sherman, A. D., 1978a, Biosynthesis of reduced biopterins: Effect of methotrexate, Fed. Proc. Fed. Am. Soc. Exp. 37: 1346.Google Scholar
  76. Gal, E. M., and Sherman, A. D., 1978b, Phosphorylation, a factor controlling the synthesis of Lerythro-dihydrobiopterin (BH2), Biochem. Biophys. Res. Commun. 83: 593–598.PubMedGoogle Scholar
  77. Gal, E. M., and Whitacre, D. H., 1981, Biopterin VII: Inhibition of synthesis of reduced biopterins and its bearing on the function of cerebral tryptophan-5 hydroxylase in vivo, Neurochem. Res. 6: 233–241.Google Scholar
  78. Gal, E. M., Armstrong, J. C., and Ginsberg, B., 1966, The nature of in vitro hydroxylation of Ltryptophan by brain tissue, J. Neurochem. 13: 643–654.PubMedGoogle Scholar
  79. Gal, E. M., Hanson, G., and Sherman, A. D., 1976, Biopterin I: Profile and quantitation in rat brain, Neurochem. Res. 1: 511–523.Google Scholar
  80. Gal, E. M., Nelson, J. M., and Sherman, A. D., 1978a, Biopterin III: Purification and characterization of enzymes involved in the cerebral synthesis of 7,8-dihydrobiopterin, Neurochem. Res. 3: 69–88.PubMedGoogle Scholar
  81. Gal, E. M., Henn, F. A., and Sherman, A. D., 1978b, Biopterin IV: Regional and subcellular aspects of L-erythro-7,8-dihydrobiopterin synthesis in brain, Neurochem. Res. 3: 493–499.PubMedGoogle Scholar
  82. Gal, E. M., Young, R. B., and Sherman, A. D., 1978c, Tryptophan loading: Consequent effects on the synthesis of Kynurenine and 5-hydroxyindoles in rat brain, J. Neurochem. 31: 237–244.PubMedGoogle Scholar
  83. Gal, E. M., Bybee, J. A., and Sherman, A. D., 1979a, Biopterin V: De novo synthesis of dihydrobiopterin: Evidence for its quinonoid structure and lack of dependence of its reduction to tetrahydrobiopterin on dihydrofolate reductase, J. Neurochem. 32: 179–186.PubMedGoogle Scholar
  84. Gal, E. M., Dawson, M. R., Dudley, D. T., and Sherman, A. D., 1979b, Biopterin VI: Purification and sequence of the primary structure of mammalian o-erythro-7,8-dihydroneopterin triphosphate synthetase, Neurochem. Res. 4: 605–625.Google Scholar
  85. Gerhart, J. D., and Maclntyre, R. J., 1970, Quantification of drosopterins in single eyes of Drosophila melanogaster, Anal. Biochem. 37: 21–25.Google Scholar
  86. Guroff, G., and Strenkoski, C. A., 1966, Biosynthesis of pteridines and of phenylalanine hydroxylase cofactor in cell-free extracts of Pseudomonas species (ATCC 11299a), J. Biol. Chem. 241: 2220–2227.PubMedGoogle Scholar
  87. Guroff, G., Rhoads, C. A., and Abramowitz, A., 1967, A simple radioisotope assay for phenylalanine hydroxylase cofactor, Anal. Biochem. 21: 273–278.PubMedGoogle Scholar
  88. Hadorn, E., and Mitchell, H. K., 1951, Properties of mutants of Drosophila melanogaster and changes during development as revealed by paper chromatography, Proc. Nat. Acad. Sci. U.S.A. 37: 650–665.Google Scholar
  89. Hagerman, D. D., 1964, Pteridine cofactors in enzymatic hydroxylation of steroids, Fed. Proc. Fed. Am. Soc. Exp. 23: 480.Google Scholar
  90. Hama, T., 1953, Substances fluorescentes du type ptérinique dans la peau ou les yeux de la grenouille (Rana nigromaculata) et leurs transformation photochimiques, Experientia 8: 299–302.Google Scholar
  91. Hama, T., 1963, The relation between the chromatophores and pterin compounds, Ann. N.Y. Acad. Sci. 100: 997–986.Google Scholar
  92. Hamilton, G. A., 1974, Chemical models and mechanisms for oxygenases, in: Molecular Mechanism of Oxygen Activation ( O. Hayaishi, ed.), pp. 405–451, Academic Press, New York.Google Scholar
  93. Hamon, M., Bourgoin, S., Hery, F., Ternaux, J. P., and Glowinski, J., 1976, In vivo and in vitro activation of soluble tryptophan hydroxylase from rat brain stem, Nature London 260: 61–63.PubMedGoogle Scholar
  94. Hamor, T. A., and Robertson, J. M., 1956, The crystal and molecular structure of pteridines, J. Chem. Soc., 3586–3594.Google Scholar
  95. Hasegawa, H., Matsura, S., Nagatsu, T., Ichiyama, A., and Imaizumi, 1978, Cofactor activity of diastereoisomers of tetrahydrobiopterin, Abstract, 6th International Symposium on the Chemistry and Biology of Pteridines, p. 44.Google Scholar
  96. Haug, P., 1970, Mass spectral fragmentation of trimethylsilyl derivatives of 2-amino-4-hydroxypteridines, Anal. Biochem. 37: 285–292.PubMedGoogle Scholar
  97. van der Have-Kirchberg, M. L. L., de Morée, A., van Laar, J. F., Gerwig, G. J., Versluis, C., Ebels, I., Haus-Citharel, A., L’Heritier, A., Roseau, S., Zurbrug, W., and Moszkowska, A., 1977, Separation of pineal extracts by gelfiltration. VI. Isolation and identification from sheep pineals of biopterin: comparison of the isolated compound with some synthetic pteridines and the biological activity in in vitro and in vivo bioassays, J. Neural Transm. 40: 205–220.PubMedGoogle Scholar
  98. Hems, G., 1958, Effect of ionizing radiation on aqueous solutions of guanylic acid and guanosine, Nature London 181: 1721–1722.PubMedGoogle Scholar
  99. Hillcoat, B. L., and Blakley, R. L., 1964, The reduction of folate by borohydride and dithionite, Biochem. Biophys. Res. Commun. 15: 303–307.Google Scholar
  100. Hirata, F., Hayaishi, O., Tokuyama, T., and Senoh, S., 1974, In vitro and in vivo formation of two new metabolites of melatonin, J. Biol. Chem. 249: 1311–1313.PubMedGoogle Scholar
  101. Hopkins, F. G., 1889, Note on a yellow pigment in butterflies, Nature London 40: 335.Google Scholar
  102. Huang, C. Y., and Kaufman, S., 1973, Studies on the mechanism of action of phenylalanine hydroxylase and its protein stimulator. I. Enzyme concentration dependence of the specific activity of phenylalanine hydroxylase due to a non-enzymatic step, J. Biol. Chem. 248: 4242–4251.PubMedGoogle Scholar
  103. Ikeda, M., Levitt, M., and Udenfriend, S., 1965, Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 18: 482–488.PubMedGoogle Scholar
  104. Ikeda, M., Fahien, L. A., and Udenfriend, S., 1966, A kinetic study of bovine adrenal tyrosine hydroxylase, J. Biol. Chem. 241: 4552–4456.Google Scholar
  105. Iwai, K., Akino, M., Gota, M., and Iwanami, Y., 1970, Chemistry and Biology of Pteridines, pp. 1–473, International Academic Printing, Tokyo.Google Scholar
  106. Iwanami, Y., and Akino, M., 1975, Evidence for enedial form of sepiapterin, J. Nutr. Sci. Vitaminol. 21: 143–145.PubMedGoogle Scholar
  107. Jackson, R. J., and Shiota, T., 1971, Identification of the isomer of dihydroneopterin triphosphate synthesized by two enzyme fractions of Lactobacillus plantarum, J. Biol. Chem. 246: 7454–7459.PubMedGoogle Scholar
  108. Jedlicki, E., Kaufman, S., and Milstien, S., 1977, Partial purification and characterization of rat liver phenylalanine hydroxylase phosphatase, J. Biol. Chem. 252: 7711–7714.Google Scholar
  109. Jones, T. H. D., and Brown, G. M., 1967, The biosynthesis of folic acid. VII. Enzymatic synthesis of pteridines from guanosine triphosphate, J. Biol. Chem. 242: 3989–3997.PubMedGoogle Scholar
  110. Katoh, S., 1971, Sepiapterin reductase from horse liver: Purification and properties of the enzyme, Arch. Biochem. Biophys. 146: 202–214.Google Scholar
  111. Katoh, S., Nagai, M., Nagai, Y., Fukushima, T., and Akino, M., 1970, Some new biochemical aspects of sepiapterin and sepiapterin reductase, in: Chemistry and Biology of Pteridines, ( K. Iwai, M. Akino, M. Goto, and Y. Iwanami, eds.), pp. 225–234, International Academic Printing, Tokyo.Google Scholar
  112. Kaufman, S., 1956, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 226: 511–524.Google Scholar
  113. Kaufman, S., 1958, A new cofactor required for the enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 230: 931–939.PubMedGoogle Scholar
  114. Kaufman, S., 1959, Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 234: 2677–2682.PubMedGoogle Scholar
  115. Kaufman, S., 1961, The nature of the primary oxidation product formed from tetrahydropteridines during phenylalanine hydroxylation, J. Biol. Chem. 236: 804–810.PubMedGoogle Scholar
  116. Kaufman, S., 1962, On the structure of the phenylalanine hydroxylation cofactor, J. Biol. Chem. 237: 2712–2713.PubMedGoogle Scholar
  117. Kaufman, S., 1963, The structure of phenylalanine hydroxylase cofactor, Proc. Nat. Acad. Sci. U.S.A. 50: 1085–1092.Google Scholar
  118. Kaufman, S., 1964, Studies on the structure of the primary oxidation product formed from tetrahydropteridines during phenylalanine hydroxylation, J. Biol. Chem. 239: 332–338.PubMedGoogle Scholar
  119. Kaufman, S., 1967a, Metabolism of phenylalanine hydroxylation cofactor, J. Biol. Chem. 242: 3934–3943.PubMedGoogle Scholar
  120. Kaufman, S., 1967b, Pteridine cofactors, Annu. Rev. Biochem. 36: 171–184.PubMedGoogle Scholar
  121. Kaufman, S., 1970, A protein that stimulates rat liver phenylalanine hydroxylase, J. Biol. Chem. 245: 4751–4759.PubMedGoogle Scholar
  122. Kaufman, S., 1971, The phenylalanine hydroxylating system from mammalian liver, in: Advances in Enzymology ( A. Meister, ed.), Vol. 35, pp. 245–319, Wiley Interscience, New York.Google Scholar
  123. Kaufman, S., 1973, Cofactors of tyrosine hydroxylase, in: Frontiers in Catecholanine Research ( E. Usdin and S. Snyder, eds.), pp. 53–60, Pergamon Press, Oxford.Google Scholar
  124. Kaufman, S., 1975, Studies on the mechanism of phenylalanine hydroxylase: Detection of an intermediate, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 291–303, W. du Gruyter, Berlin.Google Scholar
  125. Kaufman, S., 1977, Phenylketonuria: Biochemical aspects, in: Advances in Neurochemistry ( B. W. Agranoff and M. H. Aprison, eds.), Vol. 2, pp. 1–116, Plenum Press, New York.Google Scholar
  126. Kaufman, S., and Fisher, D. B., 1974, Pterin-requiring aromatic amino acid hydroxylases, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), pp. 285–369, Academic Press, New York.Google Scholar
  127. Kaufman, S., Holtzman, N. A., Milstien, S., Butler, L. J., Kurmholz, A., 1975, Phenylketonuria due to a deficiency of dihydropteridine reductase, N. Engl. J. Med. 293: 785–790.PubMedGoogle Scholar
  128. Kidder, G. W., Dewey, V. C., and Rembold, H., 1964, Source of unconjugated pteridines in Crithidia, Fed. Proc. Fed. Am. Soc. Exp. 23: 529.Google Scholar
  129. Koschara, W., 1936, Isolierung eines gelben Farbstoffs (Uropterin) aus Menschenharn, Hoppe Seylers Z. Physiol. Chem. 240: 127–151.Google Scholar
  130. Kraut, H., Pabst, W., Rembold, H., and Wildemann, L., 1963, Uber das verhalten des biopterins im Saugetier-organismus. I. Bilanz-and wachstumsersuche an Ratten, Z. Physiol. Chem. 332: 101–108.Google Scholar
  131. Krumdieck, C. L., Shaw, E., and Baugh, C. M., 1966, The biosynthesis of 2-amino-4-hydroxy6-substituted pteridines, J. Biol. Chem. 241: 383–387.PubMedGoogle Scholar
  132. Kuczenski, R., and Mandell, A. J., 1972, Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase, J. Biol. Chem. 247: 3114–3122.PubMedGoogle Scholar
  133. La Du, B. N., Jr., Fineberg, R. A., Gal, E. M., and Greenberg, D. M., 1950, Toxicity of some synthetic pteridines in rats, Proc. Soc. Exp. Biol. Med. 73: 107–109.Google Scholar
  134. Lee, C., Fukushima, T., and Nixon, J. C., 1979, Biosynthesis of biopterin in rat brain, Abstract, 6th International Symposium on the Chemistry and Biology of Pteridines, p. 31.Google Scholar
  135. Leeming, R. J., Blair, J. A., Melikian, V., and O’Gorman, D. J., 1976a, Biopterin derivatives in human body fluids and tissues, J. Clin. Pathol. 29: 444–451.PubMedGoogle Scholar
  136. Leeming, R. J., Blair, J. A., Green, A., and Raine, D. N., 1976b, Biopterin derivatives in normal and phenylketonuric patients after oral loads of L-phenylalanine, L-tyrosine, and L-tryptophan, Arch. Dis. Child. 51: 771–777.PubMedGoogle Scholar
  137. Lehmann, K. T., 1965, Isolierung und Identifizierung von Stoffwechsel-produkten des Triamterenes, Arzneim. Forsch. 15: 812–816.Google Scholar
  138. Levy, C. C., 1964, Pteridine metabolism in the skin of the tadpole, Rana catesbeiana, J. Biol. Chem. 239: 560–566.Google Scholar
  139. Lind, K. E., 1972, Dihydropteridine reductase—Investigation of the specificity of quinonoid dihydropteridine and the inhibition by 2,4-diaminopteridines, Eur. J. Biochem. 25: 560–562.PubMedGoogle Scholar
  140. Lloyd, T., and Kaufman, S., 1974, The stimulation of partially purified bovine caudate tyrosine hydroxylase by phosphatidyl-L-serine, Biochem. Biophys. Res. Commun. 59: 1262–1269.PubMedGoogle Scholar
  141. Lloyd, T., and Weiner, N., 1971, Isolation and characterization of tyrosine hydroxylase from bovine adrenal medulla, Mol. Pharmacol. 7: 569–580.PubMedGoogle Scholar
  142. Lloyd, T., Markey, S., and Weiner, N., 1971, Identification of 2-amino-4-hydroxy-substituted pteridines by gas-liquid chromatography and mass spectrometry, Anal. Biochem. 42: 108–112.PubMedGoogle Scholar
  143. Loo, T. L., and Adamson, R. H., 1965, The metabolite of 3’,5’-dichloro-4-amino-4-deoxy- N 10 -methylpteroylgiutamic acid (dichloromethotrexate) J. Med. Chem. 8: 513–515.PubMedGoogle Scholar
  144. Lovenberg, W., Jequier, E., and Sjoerdsma, A., 1967, Tryptophan hydroxylation: Measurement in pineal gland, brain stem, and carcinoid tumor, Science 155: 217–219.PubMedGoogle Scholar
  145. Lovenberg, W., Bruckwick, E. A., Hanbauer, I., 1975, ATP, cyclic AMP, and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor, Proc. Natl. Acad. Sci. U.S.A. 72: 2955–2958.PubMedGoogle Scholar
  146. Lund, H., 1975, Electrochemistry of pteridines, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 645–670, W. de Gruyter, Berlin.Google Scholar
  147. Lynn, R., Rueter, M. E., and Guynn, R. W., 1977, Mammalian brain dihydrofolate reductase, J. Neurochem. 29: 1147–1149.PubMedGoogle Scholar
  148. Mager, H. I. X., 1975, Autooxidative conversions of tetrahydropteridines and some related ring systems, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.) pp. 753–771, W. de Gruyter, Berlin.Google Scholar
  149. Mager, H. I. X., and Berends, W., 1965, Hydroperoxides of partially reduced quinoxalines, pteridines and (iso) alloxazines: Intermediates in oxidation processes, Rev. Tray. Chim. 84: 1329–1343.Google Scholar
  150. Mandell, A. J., 1978, Redundant mechanisms regulating brain tyrosine and tryptophan hydroxylases, Annu. Rev. Pharmacol. Toxicol. 18: 461–493.PubMedGoogle Scholar
  151. Matsubara, M., and Akino, M., 1964, On the presence of sepiapterin reductase different from folate and dihydrofolate reductase in chicken liver, Experientia 20: 574–575.PubMedGoogle Scholar
  152. Matsubara, M., Katoh, S., Akino, M., and Kaufman, S., 1966, Sepiapterin reductase, Biochem. Biophys. Acta 122: 202–212.PubMedGoogle Scholar
  153. McGeer, E. G., Gibson, S., and McGeer, P. L., 1967, Some characteristics of brain tyrosine hydroxylase, Can. J. Biochem. 45: 1557–1563.PubMedGoogle Scholar
  154. McNutt, W. S., 1964, A spectrophotometric test for xanthopterin, Anal. Chem. 36: 912–914.Google Scholar
  155. Millard, S. A., Kubose, A., and Gal, E. M., 1969, Brain lipoyl dehydrogenase. Purification, properties and inhibitors, J. Biol. Chem. 244: 2511–2515.PubMedGoogle Scholar
  156. Milstien, S., Orloff, S., Spielberg, S., Berlow, S., Schulman, J. D., Kaufman, S., 1977, Hyperphenylalaninemia due to phenylalanine hydroxylase cofactor deficiency, Ped. Res. 11: 460.Google Scholar
  157. Musacchio, J. M., Craviso, G. L., and Wurzburger, R., 1972, Dihydropteridine reductase in the rat brain, Life Sci. 11: 267–276.Google Scholar
  158. Nagai, (Matsubara) M., 1968, Studies on sepiapterin reductase: Further characterization of the reaction product, Arch. Biochem. Biophys. 126: 426–435.PubMedGoogle Scholar
  159. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis, J. Biol. Chem. 239: 2910–2917.PubMedGoogle Scholar
  160. Nagatsu, T., Mizutani, K., Nagatsu, I., Matsuura, S., and Sugimoto, T., 1972a, Pteridines as cofactor or inhibitor of tyrosine hydroxylase, Biochem. Pharmacol. 21: 1945–1953.PubMedGoogle Scholar
  161. Nagatsu, T., Mizutani, K., Sudo, Y., and Nagatsu, I., 1972b, Tyrosine hydroxylase in human adrenal glands and human pheochromocytoma, Clin. Chia’. Acta 39: 417–424.Google Scholar
  162. Nakamura, S., Ichiyama, A., and Hayaishi, O., 1965, Purification and properties of tryptophan hydroxylase in brain, Fed. Proc. Fed. Am. Soc. Exp. 24: 604.Google Scholar
  163. Nathan, H. A., and Cowperthwaite, I., 1955, “Crithidia factor.” A new member of the folic acid group of vitamins, J. Protozool. 2: 37–42.Google Scholar
  164. Nawa, S., Matsuura, S., and Hirata, Y. J., 1953, Studies on pteridines. V. Reductive cleavage of pteridyl side chains, J. Am. Chem. Soc. 75: 4450–4451.Google Scholar
  165. Nicolaus, B. J. R., 1960, Anwendung der Dünnschichtchromatographie auf Pteridine, J. Chromatogr. 4: 384–390.Google Scholar
  166. Niederwieser, A., Curtius, H.-Ch., Bettoni, O., Bieri, J., Schircks, B., Viscontini, M., and Schaub, J., 1979, Atypical phenylketonuria caused by 7,8-dihydrobiopterin synthetase deficiency, Lancet 131–133.Google Scholar
  167. Niiderwieser, A., Curtis, H.-Ch., Gitzelmann, R., Otten, A., Baerlocher, K., Blehova, B., Berlow, S., Grobe, H., Rey, F., Schaub, J., Scheibenreiter, S., Schmidt, H., and Viscontini, M., 1980, Excretion of pterins in phenylketonuria an phenylketonuria variants, Heiv. Paediatr. Acta 35: 335–342.Google Scholar
  168. Nielsen, K. H., 1969, Rat liver phenylalanine hydroxylase: A method for the measurement of activity, with particular reference to the distinctive features of the enzyme and the pteridine cofactor, Fur. J. Biochem. 7: 360–369.Google Scholar
  169. Nishikimi, M., 1975, A function of tetrahydropteridines as cofactors for indolamine 2,3-dioxygenase, Biochem. Biophys. Res. Commun. 63: 92–98.PubMedGoogle Scholar
  170. Numata (Sudo), Y., Kato, T., Nagatsu, T., Sugimoto, T., and Matsuura, S., 1977, Effects of stereochemical structures of tetrahydrobiopterin on tyrosine hydroxylase, Biochim. Biophys. Acta 480: 104–112.PubMedGoogle Scholar
  171. Okada, T., and Goto, M., 1965, Syntheses of 2-amino-4-hydroxy-6-hydroxymethylpteridine-[1014C] and 2-amino-4-hydroxypteridine-[10-14C] and their metabolism in Drosophila melanogaster, J. Biochem. Tokyo 58: 458–462.Google Scholar
  172. Ortiz, E., Throckmorton, L. H., and Williams-Ashman, H. G., 1962, Drosopterins in the throat-fans of some Puerto Rican lizards, Nature London 196: 595–596.Google Scholar
  173. Pabst, W., and Rembold, H., 1966, Uber das Verhalten der Biopterins im Säugetierorganismus II. Einfluss vom Vitaminmangel und eines Antagonisten auf die Biopterin-ausscheidung und das Wachstum in der Ratte, Z. Physiol. Chem. 344: 107–112.Google Scholar
  174. Patterson, E. L., Broquist, H. P., Albrecht, A. M., von Saltza, M. H., and Stokstad, E. K. R., 1955, A new pteridine in urine required for the growth of the protozoon Crithidia fasciculata, J. Am. Chem. Soc. 77: 3167–3168.Google Scholar
  175. Pearson, A. J., and Blair, J. A., 1975, Autoxidation of tetrahydropterins, in: Chemistry and Biology of Pteridines ( W. Pfleiderer, ed.), pp. 775–793, W. du Gruyter, Berlin.Google Scholar
  176. Pfleiderer, W., 1957, Pteridine II. Uber 7-Hydroxy und 7-Hydroxy-6-methyl-2,4-dioxo-tetra-hydropteridine, Chem. Ber. 90: 2588–2603.Google Scholar
  177. Pfleiderer, W., 1964, Recent developments in the chemistry of pteridines, Angew. Chem. Int. Ed. Engl. 3: 114–132.Google Scholar
  178. Pfleiderer, W., (ed.), 1975, Chemistry and Biology of Pteridines, 941 pp, W. de Gruyter, Berlin.Google Scholar
  179. Pfleiderer, W., and Taylor, E. C., 1964, Pteridine Chemistry, Pergamon Press, Oxford.Google Scholar
  180. Pfleiderer, W., Liedek, E., Lohrmann, R., and Rukwied, M., 1960, Pteridine X. Zur Strukture des Pterins, Chem. Ber. 93: 2015–2024.Google Scholar
  181. Philipsborn, W. V., Stierlin, H., and Traber, W., 1964, Über die Protonen-resonanz-spektren von Pteridinen, in: Pteridine Chemistry ( W. Pfleiderer and E. C. Taylor, eds.), pp. 169–179, Pergamon Press, Oxford.Google Scholar
  182. Purrmann, R., 1940, Über die Flügelpigmente der Schmitterlinge. VII. Synthese des Leukopterins und Natur des Guanopterins, Liebig’s Ann. Chem. 544: 182–190.Google Scholar
  183. Purrmann, R., 1941, Konstitution und Synthese des sogenannten anhydroleucopterins. XII., Liebig’s Ann. Chem. 548: 284–292.Google Scholar
  184. Rembold, H., 1964, Untersuchungen über den Stoffwechsel des Biopterins und über die polarographishce Characterizierung von Pteridinen, in: Pteridine Chemistry ( W. Pfleiderer and E. C. Taylor, eds.), pp. 465–484, Pergamon Press, Oxford.Google Scholar
  185. Rembold, H., 1970, Catabolism of unconjugated pteridines, in: Chemistry and Biology of Pteridines ( K. Iwai, M. Akino, M. Goto, and Y. Iwanami, eds.), pp. 163–178, International Academic Printing, Tokyo.Google Scholar
  186. Rembold, H., and Buff, K., 1972, Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer. Effect of tetrahydrobiopterin on intact rat liver mitochondria, Eur. J. Biochem. 28: 579–585.PubMedGoogle Scholar
  187. Rembold, H., and Buschmann, L., 1962, Trennung von 2-amino-4-hydroxy pteridine durch Ionenaustauschen-chromatographie, Hoppe Seylers Z. Physiol. Chem. 330: 132–139.PubMedGoogle Scholar
  188. Rembold, H., and Buschmann, L., 1963, Untersuchungen über die Pteridine der Bienenpuppe (Apis Mellifica), Liebig’s Ann. Chem. 662: 72–82.Google Scholar
  189. Rembold, H., and Gutensohn, W., 1968, 6-hydroxylation of the pteridine ring by xanthine oxidase, Biochem. Biophys. Res. Commun. 31: 837–841.PubMedGoogle Scholar
  190. Rembold, H., and Gyure, W. L., 1972, Biochemistry of pteridines, Angew. Chem. Int. Ed. Engl. 11: 1061–1072.PubMedGoogle Scholar
  191. Rembold, H., and Metzger, H., 1967a, Activierung von Biopterin in der Ratte, Z. Naturforsch. 22: 827–830.Google Scholar
  192. Rembold, H., and Metzger, H., 1967b, On the behavior of biopterins in the mammalian organism. II. Effect of vitamin deficiency and of an antagonist on biopterin differentiation and on the growth of the rat, Hoppe Seylers Z. Physiol. Chem. 344: 107–112.Google Scholar
  193. Rembold, H., Metzger, H., Sudershan, P., and Gutensohn, W., 1969, Catabolism of pteridine cofactors. I. Properties and metabolism in rat liver homogenates of tetrahydrobiopterin and tetrahydroneopterin, Biochem. Biophys. Acta 184: 386–396.PubMedGoogle Scholar
  194. Rembold, H., and Simmersbach, F., 1969, Catabolism of pteridine cofactors. II. A specific pterin deaminase in rat liver, Biochem. Biophys. Acta 184: 589–596.PubMedGoogle Scholar
  195. Rembold, H., Metzger, H., Sudershan, P., and Gutensohn, W., 1969, Catabolism of pteridine cofactors. I. Properties and metabolism in rat liver homogenates of tetrahydrobiopterin and tetrahydroneopterin, Biochem. Biophys. Acta 184: 386–396.PubMedGoogle Scholar
  196. Rembold, H., Metzger, H., and Gutensohn, W., 1971a, Catabolism of pteridine cofactors. III. On the introduction of an oxygen function into position 6 of the pteridine ring, Biochem. Biophys. Acta 230: 117–126.PubMedGoogle Scholar
  197. Rembold, H., Chandrashekar, V., and Sudershan, P., 1971b, Catabolism of pteridine cofactors. IV. In vivo catabolism of reduced pterins in rats, Biochem. Biophys. Acta 237: 365–368.PubMedGoogle Scholar
  198. Rembold, H., Buff, K., and Hernings, G., 1977, Specificity and binding capacity of human blood serum for tetrahydropterins, Clin. Chim. Acta 76: 329–338.PubMedGoogle Scholar
  199. Rey, F., Harpey, J. P., Leeming, R. J., Blair, J. A., Aicardi, J., and Rey, J., 1977, Les hyperphenylalaninemies avec acticité normale de la phenylalanine-hydroxylase, Arch. Fr. Pediatr., 34: 109–120.Google Scholar
  200. Röthler, F., and Karobath, M., 1976, Quantitative determination of unconjugated pterins in urine by gas chromatography/mass fragmentography, Clin. Chim. Acta 69: 457–462.PubMedGoogle Scholar
  201. Samuelsson, B., 1972, Biosynthesis of prostaglandins, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 1442–1450.Google Scholar
  202. Scrimgeour, K. G., and Cheema, S., 1971, Discussion paper: Quinonoid dihydropterin reductase, Ann. N.Y. Acad. Sci. 186: 115–118.PubMedGoogle Scholar
  203. Sherman, A. D., and Gal, E. M., 1979, Lack of dependence of amine or prostaglandin biosynthesis on absolute cerebral level of pteridine cofactor, Life Sci. 23: 1675–1680.Google Scholar
  204. Shiota, T., 1971, The biosynthesis of folic acid and 6-substituted pteridine derivatives, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 21. Chapter 1, pp. 111–152.Google Scholar
  205. Shiota, T., Palumbo, M. P., and Tsai, L., 1967, A chemically prepared formamidopyrimidine derivative of guanosine triphosphate as a possible intermediate in pteridine biosynthesis, J. Biol. Chem. 242: 1961–1969.PubMedGoogle Scholar
  206. Shiota, T., Baugh, C. M., and Myrick, J., 1969, The assignment of structure to the formamidopyrimidine nucleotide triphosphate precursor of pteridines, Biochem. Biophys. Acta 192: 205–210.PubMedGoogle Scholar
  207. Shiota, T., Jackson, R., and Baugh, C. M., 1970, The biosynthetic pathway of dehydrofolate, in: Chemistry and Biology of Pterins ( K. Iwai, M. Akino, M. Goto, and Y. Iwanami, eds.), pp. 264–269, International Academic Printing, Tokyo.Google Scholar
  208. Snady, H., and Musacchio, J. M., 1978a, Quinonoid dihydropterin reductase. 1. Purification and characterization of the bovine brain enzyme, Biochem. Pharmacol. 27: 1939–1945.PubMedGoogle Scholar
  209. Snady, H., and Musacchio, J. M., 1978b, Quinonoid dihydropterin reductase. II. Regional and subcellular distribution of rat brain enzyme, Biochem. Pharmacol. 27: 1947–1953.Google Scholar
  210. Spector, R., Levy, P., and Abelson, H. T., 1977, Identification of dihydrofolate reductase in rabbit brain, Biochem. Pharmocol. 26: 1507–1511.Google Scholar
  211. Spector, S., Gordon, R., Sjoersdma, R., and Udenfriend, S., 1967, End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis, Mol. Pharmacol. 3: 549–555.PubMedGoogle Scholar
  212. Stokstad, E. L. R., and Koch, J., 1967, Folic acid metabolism, Physiol. Rev. 47: 83–116.PubMedGoogle Scholar
  213. Stone, K. J., 1976, The role of tetrahydrofolate dehydrogenase in the hepatic supply of tetrahydrobiopterin in rats, Biochem. J. 157: 105–109.PubMedGoogle Scholar
  214. Storm, C. B., and Kaufman, S., 1968, The effect of variation of cofactor and substrate structure on the action of phenylalanine hydroxylase, Biochem. Biophys. Res. Commun. 32: 788–793.PubMedGoogle Scholar
  215. Sugiura, K., and Goto, M., 1967, Biosynthesis of pteridines in D. melanogaster, Biochem. Biophys. Res. Commun. 28: 687–691.PubMedGoogle Scholar
  216. Sugiura, K., and Goto, M., 1968, Biosynthesis of pteridines in the skin of the tadpole, Rana catesbeiana, J. Biochem. Tokyo 64: 657–666.Google Scholar
  217. Sugiura, K., and Goto, M., 1973, Uber biosynthese von biopterin in säugetieren, Experientia 29: 1481–1482.PubMedGoogle Scholar
  218. Swenseid, M. E., Wittle, E. L., Moersch, G. W., Bird, O. D., and Brown, R. A., 1949, Hematologic effect in rats of pterins structurally related to pteroylglutamic acid, J. Biol. Chem. 179: 1175–1182.Google Scholar
  219. Taira, T., 1961, Enzymatic reduction of the yellow pigment of Drosophila, Nature London 189: 231–232.Google Scholar
  220. Tauro, G. P., Danks, D. M., Rowe, P. B., van der Weyden, M. B., Schwartz, M. A., Collins, V. L., and Neal, B. W., 1976, Dihydrofolate reductase deficiency causing megaloblastic anaemia in two families, New Engl. J. Med. 294: 466–470.PubMedGoogle Scholar
  221. Taylor, D., and Hochstein, P., 1975, Tetrahydrobiopterin: Reduction of cytochrome C and coupled phosphorylation at mitochondrial site 3, Biochem. Biophys. Res. Commun. 67: 156–162.PubMedGoogle Scholar
  222. Taylor, E. C., and Jacobi, P. A., 1974, An unequivocal total synthesis of L-erythro-biopterin, J. Am. Chem. Soc. 96: 6781–6782.PubMedGoogle Scholar
  223. Taylor, E. C., and Jacobi, P. A., 1977, Pteridines. XXXVII. A total synthesis of L-erythro-biopterin and some related 6-(polyhydroxyalkyl) pterins, J. Am. Chem. Soc. 98: 2301–2307.Google Scholar
  224. Tietz, A., Lindberg, M., and Kennedy, E. P., 1964, A new pteridine-regin-ring enzyme system for the oxidation of glyceryl ethers, J. Biol. Chem. 239: 4081–4090.PubMedGoogle Scholar
  225. Tong, J. H., and Kaufman, S., 1975, Tryptophan hydroxylase. Purification and some properties of the enzyme from rabbit hindbrain, J. Biol. Chem. 250: 4152–4158.PubMedGoogle Scholar
  226. Tozer, T. N., Neff, N. H., and Brodie, B. B., 1966, Application of steady state kinetics to the synthesis rate and turnover time of serotonin in the brain of normal and reserpine treated rats, J. Pharmacol. Exp. Ther. 153: 177–182.Google Scholar
  227. Tsuda, H., Noguchi, T., and Kido, R., 1972, 5-hydroxytryptophan pyrrolase in rat brain, J. Neurochem. 19: 887–890.Google Scholar
  228. Turner, A. J., Ponzio, F., and Algeri, S., 1974, Dihydropteridine reductase in rat brain: Regional distribution and the effect of catecholamine-depleting drugs, Brain Res. 70: 553–558.PubMedGoogle Scholar
  229. Turner, A. J., 1977, The roles of folate and pteridine derivatives in neurotransmitter metabolism, Biochem. Pharmacol. 26: 1009–1014.PubMedGoogle Scholar
  230. Udenfriend, S., Zaltman-Nirenberg, P., and Nagatsu, T., 1965, Inhibitors of purified beef adrenal tyrosine hydroxylase, Biochem. Pharmacol. 14: 837–845.PubMedGoogle Scholar
  231. Uyeda, K., and Rabinowitz, J. C., 1963, Fluorescence properties of tetrahydrofolate and related compounds, Anal. Biochem. 6: 100–108.PubMedGoogle Scholar
  232. Valerino, D. M., and McCormack, J. J., 1969, Studies of the oxidation of some amino-pteridines by xanthine oxidase, Biochim. Biophys. Acta 184: 154–163.PubMedGoogle Scholar
  233. Viscontini, M., and Schmidt, G. H. Z., 1965, Über die physiologische Bedeutung der Pteridine, Z. Naturforsch. Teil B 20: 327–331.Google Scholar
  234. Viscontini, M., and Bobst, A., 1965, De la chimie des pterines sur la mécanisme d’oxydation des tetrahydroptérines en dihydroptérins â pH physiologique, Hell). Chim. Acta 48: 816–819.Google Scholar
  235. Vonderschmitt, D. J., and Scrimgeour, K. G., 1967, Reaction of Cu’ and Fe’ with tetrahydropteridines, Biochem. Biophys. Res. Commun. 28: 302–308.PubMedGoogle Scholar
  236. Vonderschmitt, D. J., Vitols, K. S., Huennekens, F. M., and Scrimgeour, K. G., 1967, Addition of bisulfite to folate and dihydrofolate, Arch. Biochem. Biophys. 122: 488–493.PubMedGoogle Scholar
  237. Watson, B. M., Schlesinger, P., and Cotton, R. G. H., 1977, Dihydroxanthopterinuria in phenylketonuria and lethal hyperphenylalaninemia patients, Clin. Chim. Acta 78: 417–423.PubMedGoogle Scholar
  238. Weygand, F., Simon, H., Dahms, G., Waldschmidt, M., Schliep, H. J., and Wacker, H., 1961, Über die Biogenese des Leucopterins, Angew. Chem. 73: 402–407.Google Scholar
  239. Whiteley, J. M., and Huennekens, F. M., 1967, 2-amino-4-hydroxy-6-methyl-7,8-dihydropteridine as a model for dihydrofolate, Biochemistry 6: 2620–2625.PubMedGoogle Scholar
  240. Wieland, H., and Schöpf, C., 1925, Über den gelben Fltigelfarbstoff des Zitronenfalters (Gonepteryx rhamni), Ber Dtsch. Chem. Ges. 58: 2978–2183.Google Scholar
  241. Yamamoto, S., and Hayaishi, O., 1967, Tryptophan pyrrolase of rabbit intestine o-and L-tryptophan cleaving enzyme or enzymes, J. Biol. Chem. 242: 5260–5266.PubMedGoogle Scholar
  242. Yim, J. J., and Brown, G. M., 1976, Characteristics of guanosine triphosphate cyclohydrolase I purified from Escherichia Coli, J. Biol Chem. 251: 5087–5094.Google Scholar
  243. Ziegler, I., 1964, Über natürlich vorkommende Tetrahydropteridinen, in: Pteridine Chemistry ( W. Pfleiderer, and E. C. Taylor, eds.), pp. 295–305, Pergamon Press, Oxford.Google Scholar
  244. Ziegler, I., and Harmsen, R., 1969, The biology of pteridines in insects, Adv. Insect. Physiol. 6: 139–203.Google Scholar
  245. Zivkovic, B., Guidotti, A., and Costa, E., 1975, Effects of neuroleptics on striatal tyrosine hydroxylase: Changes in affinity for the pteridine cofactor, Mol. Pharmacol. 10: 727–735.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. Martin Gál
    • 1
  1. 1.Neurochemical Research Laboratories Department of PsychiatryUniversity of IowaIowa CityUSA

Personalised recommendations