The Radioactive Deoxyglucose Method

Theory, Procedure, and Applications for the Measurement of Local Glucose Utilization in the Central Nervous System
  • Louis Sokoloff
Part of the Advances in Neurochemistry book series (ANCH, volume 4)


The brain is a complex, heterogeneous organ composed of many anatomical and functional components with markedly different levels of functional activity that vary independently with time and function. Other tissues are generally far more homogeneous with most of their cells functioning similarly and synchronously in response to a common stimulus or regulatory influence. The central nervous system, however, consists of innumerable subunits each integrated into its own set of functional pathways and networks and subserving only one or a few of the many activities in which the nervous system participates. Understanding how the nervous system functions requires knowledge not only of the mechanisms of excitation and inhibition but even more so of their precise localization in the nervous system and the relationships of neural subunits to specific functions.


Operational Equation Glucose Utilization Inferior Colliculus Plasma Glucose Concentration Striate Cortex 







Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, R. W., 1967, Biochemical aspects of active transport, Annu. Rev. Biochem. 36: 727–756.PubMedCrossRefGoogle Scholar
  2. Altenau, L. L., and Agranoff, B. W., 1978, A sequential double-label 2-deoxyglucose method for measuring regional cerebral metabolism, Brain Res. 153: 375–381.PubMedCrossRefGoogle Scholar
  3. Bachelard, H. S., 1971, Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro, J. Neurochem. 18: 213–222.PubMedCrossRefGoogle Scholar
  4. Bachelard, H. S., Clark, A. G., and Thompson, M. F., 1971, Cerebral-cortex hexokinases. Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis, Biochem. J. 123: 707–715.PubMedGoogle Scholar
  5. Ballas, L. M., and Arion, W. J., 1977, Measurement of glucose 6-phosphate penetration into liver microsomes. Confirmation of substrate transport in the glucose-6-phosphatase system, J. Biol. Chem. 252: 8512–8518.PubMedGoogle Scholar
  6. Batipps, M., Miyaoka, M., Shinohara, M., Sokoloff, L., and Kennedy, C., 1981, Comparative rates of local cerebral glucose utilization in the visual system of conscious albino and pigmented rats, Neurology 31: 58–62.PubMedCrossRefGoogle Scholar
  7. Bidder, T. G., 1968, Hexose translocation across the blood—brain interface: Configurational aspects, J. Neurochem. 15: 867–874.PubMedCrossRefGoogle Scholar
  8. Birren, J. E., Butler, R. N., Greenhouse, S. W., Sokoloff, L., and Yarrow, M. R. (eds.), 1963, Human Aging: A Biological and Behavioral Study, Public Health Service Publication No. 986, US Government Printing Office, Washington DC.Google Scholar
  9. Brown, L., and Wolfson, L., 1978, Apomorphine increases glucose utilization in the substantia nigra, subthalamic nucleus, and corpus striatum of the rat, Brain Res. 148: 188–193.CrossRefGoogle Scholar
  10. Caldwell, P. C., 1968, Factors governing movement and distribution of inorganic ions in nerve and muscle, Physiol. Rev. 48: 1–64.PubMedGoogle Scholar
  11. Caveness, W. F., 1969, Ontogeny of focal seizures, in: Basic Mechanisms of the Epilepsies ( H. H. Jasper, A. A. Ward, and A. Pope, eds.), pp. 517–534, Little, Brown and Co., Boston.Google Scholar
  12. Caveness, W. F., 1980, Appendix: Tables of local cerebral glucose utilization in various experimental preparations, Ann. Neurol. 7: 230–237.CrossRefGoogle Scholar
  13. Caveness, W. F., Kato, M., Malamut, B. L., Hosokawa, S., Wakisaka, S., and O’Neill, R. R., 1980, Propagation of focal motor seizures in the pubescent moneky, Ann. Neurol. 7: 213–221PubMedCrossRefGoogle Scholar
  14. Collins, R. C., Kennedy, C., Sokoloff, L., and Plum, F., 1976, Metabolic anatomy of focal motor seizures, Arch. Neurol. (Chicago) 33: 536–542.CrossRefGoogle Scholar
  15. Des Rosiers, M. H., Kennedy, C., Shinohara, M., and Sokoloff, L., 1976, Effects of CO, on local cerebral glucose utilization in the conscious rat, Neurology 26: 346.Google Scholar
  16. Des Rosiers, M. H., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., and Sokoloff, L., 1978, Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method, Science 200: 447–449.PubMedCrossRefGoogle Scholar
  17. Des Rosiers, M. H., and Descarries, L., 1978, Adaptation de la méthode au désoxyglucose à l’échelle cellulaire: préparation histologique du système nerveux central en vue de la radio-autographie à haute résolution, C. R. Acad. Sci. Ser. D 287: 153–156.Google Scholar
  18. Dixon, M., and Webb, E. C., 1964, Enzymes, 2nd ed., pp. 84–87, Academic Press, New York.Google Scholar
  19. Duffy, T. E., Cavazzuti, M., Gregoire, N. M., Cruz, N. F., Kennedy, C., and Sokoloff, L., 1979, Regional cerebral glucose metabolism in newborn beagle dogs, Trans. Am. Soc. Neurochem. 10: 171.Google Scholar
  20. Durham, D., and Woolsey, T. A., 1977, Barrels and columnar cortical organization: Evidence from 2-deoxyglucose (2-DG) experiments, Brain Res. 137: 169–174.PubMedCrossRefGoogle Scholar
  21. Eklöf, B., Lassen, N. A., Nilsson, L., Norberg, K., and Siesjö, B. K., 1973, Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat, Acta Physiol. Scand. 88: 587–589.PubMedCrossRefGoogle Scholar
  22. Engel, J., Jr., Wolfson, L., and Brown, L., 1978, Anatomical correlates of electrical and behavioral events related to amygdaloid kindling, Ann. Neurol. 3: 538–544.PubMedCrossRefGoogle Scholar
  23. Freygang, W. H., Jr., and Sokoloff, L., 1958, Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas, Adv. Biol. Med. Phys. 6: 263–279.PubMedGoogle Scholar
  24. Friedli, C., 1977, Kinetics of changes in p02 and extracellular potassium activity in stimulated rat sympathetic ganglia, in: Advances in Experimental Medicine and Biology, Oxygen Transport to Tissue Ill ( I. A. Silver, M. Erecinska and H. I. Bicher, eds.), pp. 747–754, Plenum Press, New York.Google Scholar
  25. Galvan, M., Ten Bruggencate, G., and Senekowitsch, R., 1979, The effects of neuronal stimulation and oubain upon extracellular K+ and Ca2+ levels in rat isolated sympathetic ganglia, Brain Res. 160: 544–548.PubMedCrossRefGoogle Scholar
  26. Gjedde, A., Caronna, J. J., Hindfelt, B., and Plum, F., 1975, Whole-brain blood flow and oxygen metabolism in the rat during nitrous oxide anesthesia, Am. J. Physiol. 229: 113–118.PubMedGoogle Scholar
  27. Goochee, C., Rasband, W., and Sokoloff, L., 1980, Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs, Ann. Neurol. 7: 359–370.PubMedCrossRefGoogle Scholar
  28. Hand, P. J., Greenberg, J. H., Miselis, R. R., Weller, W. L., and Reivich, M., 1978, A normal and altered cortical column: a quantitative and qualitative (14C)-2 deoxyglucose (2DG) mapping study, Neurosci. Abstr. 4: 553.Google Scholar
  29. Hawkins, R. A., and Miller, A. L., 1978, Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: Implications for quantitative autoradiographic determination of regional glucose utilization, Neuroscience 3: 251–258.PubMedCrossRefGoogle Scholar
  30. Hawkins, R. A., Miller, A. L., Cremer, J. E., and Veech, R. L., 1974, Measurement of the rate of glucose utilization by rat brain in vivo, J. Neurochem. 23: 917–923.PubMedCrossRefGoogle Scholar
  31. Hers, H. G., 1957, Le Métabolisme du Fructose, p. 102, Arscia, Brussels.Google Scholar
  32. Hers, H. G., and deDuve, C., 1950, Le système hexose-phosphatasique. II. Repartition de l’activite glucose-6-phosphatasique dans les tissus, Bull. Soc. Chim. Biol. 32: 20–29.PubMedGoogle Scholar
  33. Horowicz, P., and Larrabee, M. G., 1958, Glucose consumption and lactate production in a mammalian sympathetic ganglion at rest and in activity, J. Neurochem. 2: 102–118.PubMedCrossRefGoogle Scholar
  34. Horton, R. W., Meldrum, B. S., and Bachelard, H. S., 1973, Enzymic and cerebral metabolic effects of 2-deoxy-D-glucose, J. Neurochem. 21: 507–520.PubMedCrossRefGoogle Scholar
  35. Hosokawa, S., Iguchi, T., Caveness, W. F., Kato, M., O’Neill, R. R., Wakisaka, S., and Mala-mut, B. L., 1980, Effects of manipulation of the sensorimotor system on focal motor seizures in the monkey, Ann. Neurol. 7: 222–229.PubMedCrossRefGoogle Scholar
  36. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195: 215–243.PubMedGoogle Scholar
  37. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the Macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  38. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey, J. Comp. Neurol. 177: 361–380.PubMedCrossRefGoogle Scholar
  39. Jarvis, C. D., Mishkin, M., Shinohara, M., Sakurada, O., Miyaoka, M., and Kennedy, C., 1978, Mapping the primate visual system with the [1°C] 2-deoxyglucose technique, Neurosci. Abstr. 4: 632.Google Scholar
  40. Kato, M., Malamut, B. L., Caveness, W. F., Hosokawa, S., Wakisaka, S., and O’Neill, R. R., 1980, Local cerebral glucose utilization in newborn and pubescent monkeys during focal motor seizures, Ann. Neurol. 7: 204–212.PubMedCrossRefGoogle Scholar
  41. Kennedy, C., Des Rosiers, M., Jehle, J. W., Reivich, M., Sharp, F., and Sokoloff, L., 1975, Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose, Science 187: 850–853.Google Scholar
  42. Kennedy, C., Des Rosiers, M. H., Sakurada, O., Shinohara, M., Reivich, M., Jehle, J. W., and Sokoloff, L., 1976, Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique, Proc. Natl. Acad. Sci. USA 73: 4230–4234.PubMedCrossRefGoogle Scholar
  43. Kennedy, C., Sakurada, O., Shinohara, M., Jehle, J., and Sokoloff, L., 1978, Local cerebral glucose utilization in the normal conscious Macaque monkey, Ann. Neurol. 4: 293–301.PubMedCrossRefGoogle Scholar
  44. Kety, S. S., 1950, Circulation and metabolism of the human brain in health and disease, Am. J. Med. 8: 205–217.PubMedCrossRefGoogle Scholar
  45. Kety, S. S., 1957, The general metabolism of the brain in vivo, in: Metabolism of the Nervous System ( D. Richter, ed.), pp. 221–237, Pergamon Press, London.Google Scholar
  46. Kety, S. S., 1960, Measurement of local blood flow by the exchange of an inert, diffusible substance, Methods Med. Res. 8: 228–236.Google Scholar
  47. Kety, S. S., and Schmidt, C. F., 1948a, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values, J. Clin. Invest. 27: 476–483.PubMedCrossRefGoogle Scholar
  48. Kety, S. S., and Schmidt, C. F., 1948b, Effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men, J. Clin. Invest. 27: 484–492.PubMedCrossRefGoogle Scholar
  49. Knott, G. D., and Reece, D. K., 1972, mlab: A civilized curve-fitting system, in: Proceedings of the online ’72 International Conference, Vol. 1, pp. 497–526, Brunel University, England.Google Scholar
  50. Knott, G. D., and Shrager, R. I., 1972, On-line modeling by curve-fitting, in: Computer Graphics: Proceedings of the siggraph Computers in Medicine Symposium, Vol. 6, No. 4, pp. 138–151, Association for Computing Machinery, siggraph Notices.Google Scholar
  51. Kuhl, D., Engel, J., Phelps, M., and Selin, C., 1979, Patterns of local cerebral metabolism and perfusion in partial epilepsy by emission computed tomography of’ $F-flurodeoxyglucose and “N-ammonia, Acta Neurol. Scand. Suppl. 60: 538–539.Google Scholar
  52. Landau, B. R., and Lubs, H. A., 1958, Animal response to 2-deoxy-D-glucose administration, Proc. Soc. Exp. Biol. 99: 124–127.PubMedGoogle Scholar
  53. Landau, W. M., Freygang, W. H., Jr., Rowland, L. P., Sokoloff, L., and Kety, S. S., 1955, The local circulation of the living brain; Values in the unanesthetized and anesthetized cat, Trans. Am. Neurol. Assoc. 80: 125–129.Google Scholar
  54. Larrabee, M. G., 1958, Oxygen consumption of excised sympathetic ganglia at rest and in activity, J. Neurochem. 2: 81–101.PubMedCrossRefGoogle Scholar
  55. Lashley, K. S., 1934, The mechanism of vision. VII. The projection of the retina upon the primary optic centers of the rat, J. Comp. Neurol. 59: 341–373.CrossRefGoogle Scholar
  56. Lassen, N. A., 1959, Cerebral blood flow and oxygen consumption in man, Physiol. Rev. 39: 183–238.PubMedGoogle Scholar
  57. Lassen, N. A., and Munck, O., 1955, The cerebral blood flow in man determined by the use of radioactive krypton, Acta Physiol. Scand. 33: 30–49.PubMedCrossRefGoogle Scholar
  58. Mata, M., Fink, D. J., Gainer, H., Smith, C. B., Davidsen, L., Savaki, H., Schwartz, W. J., and Sokoloff, L., 1980, Activity-dependent energy metabolism in rat posterior pituitary reflects sodium pump activity, J. Neurochem. 34: 213–215.PubMedCrossRefGoogle Scholar
  59. Meldrum, B. S., and Horton, R. W., 1973, Cerebral functional effects of 2-deoxy-o-glucose and 3-O-methylglucose in Rhesus monkeys, Electroencephalogr. Clin. Neurophysiol. 35: 59–66.PubMedCrossRefGoogle Scholar
  60. Miyaoka, M., Shinohara, M., Batipps, M., Pettigrew, K. D., Kennedy, C., and Sokoloff, L., 1979a, The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat, Acta Neurol. Scand. Suppl. 60: 16–17.Google Scholar
  61. Miyaoka, M., Shinohara, M., Kennedy, C., and Sokoloff, L., 19796, Alterations in local cerebral glucose utilization (LCGU) in rat brain during hypoxemia, Trans. Am. Neurol. Assoc. 104: 151–154.Google Scholar
  62. Montero, V. M., and Guillery, R. W., 1968, Degeneration in the dorsal lateral geniculate nucleus of the rat following interruption of the retinal or cortical connections, J. Comp. Neurol. 134: 211–242.PubMedCrossRefGoogle Scholar
  63. Nordlie, R. C., 1971, Glucose-6-phosphatase, hydrolytic and synthetic activities, in: The Enzymes 3rd ed., Vol. IV ( P. D. Boyer, ed.), pp. 543–610, Academic Press, New York.Google Scholar
  64. Nordlie, R. C., 1974, Metabolic regulation by multifunctional glucose-6-phosphatase, Curr. Top. Cell Regul. 8: 33–117.PubMedGoogle Scholar
  65. Nordmann, J. J., 1977, Ultrastructural morphometry of the rat neurohypophysis, J. Anat. 123: 213–218.PubMedGoogle Scholar
  66. Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol. 221: 1629–1638.PubMedGoogle Scholar
  67. Pappius, H. M., Savaki, H. E., Fieschi, C., Rapoport, S. I., and Sokoloff, L., 1979, Osmotic opening of the blood-brain barrier and local cerebral glucose utilization, Ann. Neurol. 5: 211–219.PubMedCrossRefGoogle Scholar
  68. Patlak, C. S., and Pettigrew, K. D., 1976, A method to obtain infusion schedules for prescribed blood concentration time courses, J. Appl. Physiol. 40: 458–463.PubMedGoogle Scholar
  69. Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., 1979, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2fluoro-2-deoxy-d-glucose: Validation of method, Ann. Neurol. 6: 371–388.PubMedCrossRefGoogle Scholar
  70. Plum, F., Gjedde, A., and Samson, F. E., 1976, Neuroanatomical mapping by the radioactive 2deoxy-D-glucose method, Neurosci. Res. Program Bull. 14: 457–518.Google Scholar
  71. Post, R. M., Kennedy, C., Shinohara, M., Squillace, K., Miyaoka, M., Suda, S., Ingvar, D. H., and Sokoloff, L., 1979, Local cerebral glucose utilization in lidocaine-kindled seizures, Neurosci. Abstr. 5: 196.Google Scholar
  72. Prasannan, K. G., and Subrahmanyam, K., 1968, Effect of insulin on the synthesis of glucogen in cerebral cortical slices of alloxan diabetic rats, Endocrinology 82: 1–6.PubMedCrossRefGoogle Scholar
  73. Pulsinelli, W. A., and Duffy, T. E., 1979, Local cerebral glucose metabolism during controlled hypoxemia in rats, Science 204: 626–629.PubMedCrossRefGoogle Scholar
  74. Raggi, F., Kronfeld, D. S., and Kleiber, M., 1960, Glucose-6-phosphatase activity in various sheep tissues, Proc. Soc. Exp. Biol. Med. 105: 485–486.PubMedGoogle Scholar
  75. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261: 467–471.PubMedCrossRefGoogle Scholar
  76. Reivich, M., Jehle, J., Sokoloff, L., and Kety, S. S., 1969, Measurement of regional cerebral blood flow with antipyrine-[14C] in awake cats, J. Appl. Physiol. 27: 296–300.PubMedGoogle Scholar
  77. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Cassella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., and Sokoloff, L., 1979, The [18F]fluoro-deoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res. 44:127-137.Google Scholar
  78. Roth, R. H., 1976, Striatal dopamine and gamma-hydroxybutyrate, Pharmacol. Ther. 2: 71–88.Google Scholar
  79. Roth, R. H., and Giarman, N. J., 1966, y-Butyrolactone and -y-hydroxybutyric acid—I. Distribution and metabolism, Biochem. Pharmacol. 15: 1333–1348.Google Scholar
  80. Sacks, W., 1957, Cerebral metabolism of isotopic glucose in normal human subjects, J. Appl. Physiol. 10: 37–44.PubMedGoogle Scholar
  81. Sakurada, O., Shinohara, M., Klee, W. A., Kennedy, C., and Sokoloff, L., 1976, Local cerebral glucose utilization following acute chronic morphine administration and withdrawal, Neurosci. Abstr. 2: 613.Google Scholar
  82. Savaki, H. E., Kadekaro, M., Jehle, J., and Sokoloff, L., 1978, a-and 3-adrenoreceptor blockers have opposite effects on energy metabolism of the central auditory system, Nature 276: 521–523.Google Scholar
  83. Savaki, H. E., Davidsen, L., Smith, C., and Sokoloff, L., 1980, Measurement of free glucose turnover in brain, J. Neurochem. 35: 495–502.PubMedCrossRefGoogle Scholar
  84. Scheinberg, P., and Stead, E. A., Jr., 1949, The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, and peripheral resistance, with observations on the effect of tilting and anxiety, J. Clin. Invest. 28: 1163–1171.PubMedCrossRefGoogle Scholar
  85. Schwartz, W. J., 1978, A role for the dopaminergic nigrostriatal bundle in the pathogenesis of altered brain glucose consumption after lateral hypothalamic lesions. Evidence using the “C-labeled deoxyglucose technique, Brain Res. 158: 129–147.PubMedCrossRefGoogle Scholar
  86. Schwartz, W. J., and Gainer, H., 1977, Suprachiasmatic nucleus: use of “C-labeled deoxyglucose uptake as a functional marker, Science 197: 1089–1091.PubMedCrossRefGoogle Scholar
  87. Schwartz, W. J., Sharp, F. R., Gunn, R. H., and Evarts, E. V., 1976, Lesions of ascending dopaminergic pathways decrease forebrain glucose uptake, Nature (London) 261: 155–157.CrossRefGoogle Scholar
  88. Schwartz, W. J., Smith, C. B., Davidsen, L., Savaki, H., Sokoloff, L., Mata, M., Fink, D. J., and Gainer, H., 1979, Metabolic mapping of functional activity in the hypothalamoneurohypophysial system of the rat, Science 205: 723–725.PubMedCrossRefGoogle Scholar
  89. Schwartz, W. J., Davidsen, L. C., and Smith, C. B., 1980, In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus, J. Comp. Neurol. 189: 157–167.Google Scholar
  90. Shapiro, H. M., Greenberg, J. H., Reivich, M., Shipko, E., Van Horn, K., and Sokoloff, L., 1975, Local cerebral glucose utilization during anesthesia, in: Blood Flow and Metabolism in the Brain (A. M. Harper, W. B. Jennett, J. D. Miller and J. O. Rowan, eds.), pp. 9.42–9. 43, Churchill Livingstone, Edinburgh.Google Scholar
  91. Sharp, F. R., Kauer, J. S., and Shepherd, G. M., 1975, Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation, Brain Res. 98: 596–600.PubMedCrossRefGoogle Scholar
  92. Shinohara, M., Sakurada, O., Jehle, J., and Sokoloff, L., 1976, Effects of D-lysergic acid diethylamide on local cerebral glucose utilization in the rat, Neurosci. Abstr. 2: 615.Google Scholar
  93. Shinohara, M., Dollinger, B., Brown, G., Rapoport, S., and Sokoloff, L., 1979, Cerebral glucose utlization: Local changes during and after recovery from spreading cortical depression, Science 203: 188–190.PubMedCrossRefGoogle Scholar
  94. Silverman, M. S., Hendrickson, A. E., and Clopton, B. M., 1977, Mapping of the tonotopic organization of the auditory system by uptake of radioactive metabolities, Neurosci. Abstr. 3: 11.Google Scholar
  95. Smith, C. B., Goochee, C., Rapoport, S. I., and Sokoloff, L., 1980, Effects of ageing on local rates of cerebral glucose utilization in the rat, Brain 103: 351–365.PubMedCrossRefGoogle Scholar
  96. Sokoloff, L., 1960, Metabolism of the central nervous system in vivo, in: Handbook of Physiology-Neurophysiology, Vol. III (J. Field, H. W. Magoun and V. E. Hall, eds.) pp. 18431864, American Physiological Society, Washington, D.C.Google Scholar
  97. Sokoloff, L., 1966, Cerebral circulatory and metabolic changes associated with aging, Res. Publ. Res. Assoc. Nerv. Ment. Dis. 41: 237–254.Google Scholar
  98. Sokoloff, L., 1969, Cerebral circulation and behavior in man: strategy and findings, in: Psycho-chemical Research in Man ( A. J. Mandell and M. P. Mandell, eds.), pp. 237–252, Academic Press, New York.Google Scholar
  99. Sokoloff, L., 1976, Circulation and energy metabolism of the brain, in: Basic Neurochemistry 2nd ed. ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 388–413, Little, Brown and Company, Boston.Google Scholar
  100. Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem. 29: 13–26.PubMedCrossRefGoogle Scholar
  101. Sokoloff, L., 1978, Mapping cerebral functional activity with radioactive deoxyglucose, Trends Neurosci. 1 (3): 75–79.CrossRefGoogle Scholar
  102. Sokoloff, L., 1979, The [14C] deoxyglucose method: four years later, Acta Neurol. Scand. Suppl. 60: 640–649.CrossRefGoogle Scholar
  103. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  104. Sols, A., and Crane, R. K., 1954, Substrate specificity of brain hexokinase, J. Biol. Chem. 210: 581–595.PubMedGoogle Scholar
  105. Tower, D. B., 1958, The effects of 2-deoxy-o-glucose on metabolism of slices of cerebral cortex incubated in vitro, J. Neurochem. 3: 185–205.CrossRefGoogle Scholar
  106. Webster, W. R., Serviere, J., Batini, C., and LaPlante, S., 1978, Autoradiographic demonstration with 2-[1°C] deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity, Neurosci. Lett. 10: 43–48.PubMedCrossRefGoogle Scholar
  107. Wechsler, L. R., Savaki, H. E., and Sokoloff, L., 1979, Effects of d-and /-amphetamine on local cerebral glucose utilization in the conscious rat, J. Neurochem. 32: 15–22.PubMedCrossRefGoogle Scholar
  108. Whittam, R., 1962, The dependence of the respiration of brain cortex on active cation transport, Biochem. J. 82: 205–212.PubMedGoogle Scholar
  109. Wick, A. N., Drury, D. R., Nakada, H. I., and Wolfe, J. B., 1957, Localization of the primary metabolic block produced by 2-deoxyglucose, J. Biol. Chem. 224: 963–969.PubMedGoogle Scholar
  110. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.PubMedCrossRefGoogle Scholar
  111. Wolfson, L. I., Sakurada, O., and Sokoloff, L., 1977, Effects of y-butyrolactone on local cerebral glucose utilization in the rat, J. Neurochem. 29: 777–783.PubMedCrossRefGoogle Scholar
  112. Yarowsky, P. J., Jehle, J., Ingvar, D. H., and Sokoloff, L., 1979, Relationship between functional activity and glucose utilization in the rat superior cervical ganglion in vivo, Neurosci. Abstr. 5: 421.Google Scholar
  113. Yarowsky, P. J., Crane, A. M., and Sokoloff, L., 1980, Stimulation of neuronal glucose utilization by antidromic electrical stimulation in the superior cervical ganglion of the rat, Neurosci. Abstr. 6: 340.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Louis Sokoloff
    • 1
    • 2
  1. 1.Laboratory of Cerebral MetabolismNational Institute of Mental HealthBethesdaUSA
  2. 2.Department of Health and Human ServicesU.S. Public Health ServiceBethesdaUSA

Personalised recommendations