Fluorescence Energy Transfer as a Structural Probe in Membranes and Membrane-Bound Proteins

  • W. E. Blumberg
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)


In 1972 Radda and Vanderkooi (Radda 72) wrote “Fluorescence has been used in biochemical studies for many years, yet it is only fairly recently that its potential to the study of problems associated with membrane-related phenomena has been realized,” and in 1976 Badley (Badley 76) added “... it is only recently that fluorescence methods have been used in a more problem-oriented way in contrast to the, perhaps inevitable, initial rush of data primarily concerned with establishing the method as one of ‘high potential’.” I might begin by noting that as of 1982 only a handful of fluorescence experiments involving membranes have made full and rigorous use of the physical phenomena accessible to the fluorescence spectroscopist: quantum yield, spectral shifts, emission anisotropy, and resonance energy transfer including their multiple interactions. The first three of these phenomena have been treated in other lectures of this Advanced Study Institute. I will concentrate on energy transfer, but, as we shall see, it is quite useless and even misleading to try to analyze it without considering quantum yield and anisotropy, both in the steady state and time-resolved domains. Therefore, in the first few sections I will lay the groundwork necessary for the analysis of resonance energy transfer experiments.


Energy Transfer Resonance Energy Transfer Transition Moment Orientation Factor Energy Transfer Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonov-Romanovsky, V. V., and Galanin, M. D. (1957) Theoretical derivation of the law of luminescence decay for the case of resonance quenching. Optika i Spectroscopia 3:389–391.Google Scholar
  2. Badley, R. A., (1976) XXX in “Modern Fluorescence Spectroscopy,” (E. L. Whery, ed.), Plenum Press, New York, pp. 91–168.Google Scholar
  3. Berman, H. A., Yguerabide, J., and Taylor, P. (1980) Fluorescence energy transfer on acetylcholinesterase: spatial relationship between peripheral site and active site. Biochemistry 19:2226–2235.PubMedCrossRefGoogle Scholar
  4. Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979) Orientational freedom of molecular probes — the orientation factor in intramolecular energy transfer. Biophysical J. 26:161–194.CrossRefGoogle Scholar
  5. Dale, R. E., Eisinger, J., and Blumberg, W. E. (1980) Correction: Orientational freedom of molecular probes — the orientation factor in intramolecular energy transfer. Biophysical J. 30:365.CrossRefGoogle Scholar
  6. Dobretsov, G. E., Spirin, M. M., Chekrygin, O. V., Karmansky, I. M., Dmitriev, V. M., and Vladimirov, Y. A. (1982) A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim. Biophys. Acta 710:172–180.PubMedGoogle Scholar
  7. Eisinger, J., and Dale, R. E. (1974) Interpretation of intramolecular energy transfer experiments. J. Mol. Biol. 84:643–647.PubMedCrossRefGoogle Scholar
  8. Eisinger, J., Blumberg, W. E., and Dale, R. E. (1981) Orientational effects in intra-and intermolecular long range excitation energy transfer. Ann. New York Acad. Sci. 366:155–175.CrossRefGoogle Scholar
  9. Eisinger, J., Flores, J., and Salhany, J. M. (1982a) Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc. Natl. Acad. Sci. USA 79:408–412.CrossRefGoogle Scholar
  10. Eisinger, J., and Flores, J. (1982b) The relative locations of intramembrane fluorescent probes and of the cytosol hemoglobin in erythrocytes, studied by transverse resonance energy transfer. Biophysical J. 37:6–7.CrossRefGoogle Scholar
  11. Eisinger, J., and Flores, J. (1983) The cytosol-membrane interface of human erythrocytes — a resonance energy transfer study. Biophysical J. (in press).Google Scholar
  12. Fleming, P. J., Koppel, D. E., Lau, A. L. Y., and Strittmatter, P. (1979) Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome b5. Biochemistry 18:5458–5464.PubMedCrossRefGoogle Scholar
  13. Forster, T. (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Physik 2:55–75.CrossRefGoogle Scholar
  14. FOrster, T. (1949) Experimentelle und theoretische untersuchung des zwischenmolekularen abergangs vom electronenanregungsenergie. Z. Naturforsch. 4a:322–327.Google Scholar
  15. Förster, T. (1951) “Fluoreszenz Organischer Verbindung,” Vandenhoeck and Ruprecht, Gottingen.Google Scholar
  16. Forster, T. (1959) Transfer mechanisms of electronic excitation. Disc. Faraday Soc. 27:7–17.CrossRefGoogle Scholar
  17. Hillel, Z., and Wu, C.-W., (1976) Statistical interpretation of fluorescence energy transfer measurements in macromolecular systems. Biochemistry 15:2105–2113.PubMedCrossRefGoogle Scholar
  18. Jones, R. E. (1970) Nanosecond fluorimetry. Ph.D. thesis, Stanford University.Google Scholar
  19. Koppel D. E., Fleming, P. J., and Strittmatter, P. (1979) Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer. Biochemistry 18:5450–5457.PubMedCrossRefGoogle Scholar
  20. Perrin, F. (1926) Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’etat excité. J. Phys. (Paris) 7:390–401.Google Scholar
  21. Radda, G. K., and Vanderkooi, J. (1972) Can fluorescent probes tell us anything about membranes? Biochim. Biophys. Acta 265:509–549.Google Scholar
  22. Rozman, I. M. (1958) Theory of quenching of luminescence in solutions. Optika i Spectroscopiya 4:536–538.Google Scholar
  23. Sklar, L. A., Miljanich, G. P., Bursten, S. L., and Dratz, E. A. (1979) Thermal lateral phase separations in bovine retinal rod outer segment membranes and phospholipids as evidenced by parinaric acid fluorescence polarization and energy transfer. J. Biol. Chem. 254:9583–9591.PubMedGoogle Scholar
  24. Soleillet, P. (1929) Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann. Physique 12:23–97.Google Scholar
  25. Steinberg, I. Z. (1971) Long range non-radiative transfer of electronic excitation energy in proteins and polypeptides. Ann. Rev. Biochem. 40:83.PubMedCrossRefGoogle Scholar
  26. Tompa, H., and Englert, A. (1979) The frequency distribution of the orientation factor of dipole-dipole interaction. Biophys. Chem. 9:211–214.PubMedCrossRefGoogle Scholar
  27. Tweet, A. G., Bellamy, W. D., and Gaines, G. L. (1964) Fluorescence quenching and energy transfer in monomolecular films containing chlorophyll. J. Chem. Phys. 41:2068–2977.CrossRefGoogle Scholar
  28. Wolber, P. K., and Hudson, B. S. (1979) An analytic solution to the Forster energy transfer problem in two dimensions. Biophysical J. 28:197–210.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. E. Blumberg
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations