Advertisement

Lateral and Polymorphic Phase Transitions in Relation to the Barrier Function of a Lipid Membrane

  • J. de Gier
  • C. J. A. van Echteld
  • J. A. Killian
  • B. de Kruijff
  • J. G. Mandersloot
  • P. C. Noordam
  • A. T. M. van der Steen
  • A. J. Verkleij
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 71)

Abstract

The lipid matrix of a biomembrane is built with a complex mixture of lipids showing defined variations in polar headgroups and paraffin chains. For membranes with different functions different combinations of lipid species are used. The significance of this lipid diversity and specificity is not yet well understood. It is the aim of this contribution to discuss properties of individual lipid molecules and to show how these properties work out in the barrier functions of membrane model systems. An important aspect will be to see how these barrier functions can be modified by environmental conditions and by intrinsic protein elements. As a consequence of the combination of a polar and an apolar part in the same molecule membrane lipids spontaneously form aggregates when they are dispersed in water. The molecular organization of such aggregates is dependent on the molecular shape of the constituting molecules. Lipids which have a good balance between the size of the polar group and the size of the hydrophobic part easily form bilayer structures (e.g. phosphatidylcholines, phosphatidylglycerols, sphingomyelins). This bilayer organization is in accordance with the lipid organization in the generally accepted molecular models of biomembranes 1. However, it is relevant to emphasize that in each biological membrane also large fractions of lipids occur which in pure form in water adopt other types of molecular arrangements. Figure 1 illustrates that lipid molecules with a polar head of limited size and hydration (e.g. unsaturated phosphatidylethanolamines, monoglucosyldiglycerides, cardiolipin in the presence of Ca2+) prefer an organization of hexagonal packed cylinders, in which the polar heads of the molecules are directed to the inside of the cylinders. Lipid molecules in which the polar headgroups are dominating (e.g. lysolecithins, gangliosides) form a reversed hexagonal (HI) organization upon hydration with a limited amount of water, which is converted into a system of globular micelles in excess of water.

Keywords

Phase Transition Temperature Lipid Molecule Polar Headgroups Membrane Model System Paraffin Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Singer and G.I. Nicholson, The fluid mosaic model of the structure of cell membrane, Science 175: 720 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    J. de Gier, J.G. Mandersloot, J.V. Hupkes, R.N. McElhaney and W.P. van Beek, On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes, Biochim. Biophys. Acta, 233: 610 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Träuble, The movement of molecules across lipid membranes. A molecular theory, J. Membrane Biol., 4: 193 (1971).CrossRefGoogle Scholar
  4. 4.
    M.C. Blok. L.L.M. van Deenen and J. de Gier, The effect of cholesterol incorporation on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidylcholines, Biochim. Biophys. Acta, 464: 509 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    M.C. Blok, L.L.M. van Deenen and J. de Gier, Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes, Biochim. Biophys. Acta, 433: 1 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    B. de Kruijff and E.J.J. van Zoelen, Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles, Biochim. Biophys. Acta, 511: 105 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    A.T.M. van der Steen, B. de Kruijff and J. de Gier, Glycophorin incorporation increases the bilayer permeability of large uni-lamellar vesicles in a lipid-dependent manner, Biochim. Biophys. Acta, 691: 13 (1982).CrossRefGoogle Scholar
  8. 8.
    C.J.A. van Echteld, B. de Kruijff, J.G. Mandersloot and J. de Gier, Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P NMR, electron microscopy and permeability studies, Biochim. Biophys. Acta, 649: 211 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    P.C. Noordam, C.J.A. van Echteld, B. de Kruijff, A.J. Verkleij and J. de Gier, Barrier characteristics of membrane model systems containing unsaturated phosphatidylethanolamines, Chem. Phys. Lipids, 27: 221 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    J.G. Mandersloot, W.J. Gerritsen, J. Leunissen-Bijvelt, C.J.A. van Echteld, P.C. Noordam and J. de Gier, Ca2+-induced changes in the barrier properties of cardiolipin/phosphatidylcholine bi-layers, Biochim. Biophys. Acta, 640: 106 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    B. de Kruijff, A.J. Verkleij, C.J.A. van Echteld, W.J. Gerritsen, C. Mombers, P.C. Noordam and J. de Gier, The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron microscopy, Biochim. Biophys. Acta, 555: 200 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    T.F. Taraschi, B. de Kruijff, A.J. Verkleij and C.J.A. van Echteld, Effect of glycophorin on lipid polymorphism, Biochim. Biophys. Acta, 685: 153 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    C.J.A. van Echteld, R. van Stigt, B. de Kruijff, J. LeunissenBijvelt, A.J. Verkleij and J. de Gier, Gramicidin promotes formation of the hexagonal H11 phase in aqueous dispersions of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta, 648: 287 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. de Gier
    • 1
  • C. J. A. van Echteld
    • 1
  • J. A. Killian
    • 1
  • B. de Kruijff
    • 1
  • J. G. Mandersloot
    • 1
  • P. C. Noordam
    • 1
  • A. T. M. van der Steen
    • 1
  • A. J. Verkleij
    • 1
  1. 1.Department of BiochemistryState University of UtrechtUtrechtThe Netherlands

Personalised recommendations